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Università di Roma “La Sapienza”

Via Ariosto 25, 00185 Roma, Italy

{robuffo,deluca,oriolo}@dis.uniroma1.it

Abstract— In the image-based visual servoing framework,
image moments provide an appealing choice as visual features
since they can be easily evaluated on any shape on the image
plane, and do not require tracking and matching of individual
geometric structures between distinct image frames (i.e., the
so-called correspondence problem). However, computation of
the moment interaction matrix still requires the knowledge
of specific unmeasurable 3D quantities relative to the target
object, quantities that are usually approximated in practical
implementations. Therefore, in this paper we analyze the
possibility to estimate on-line the value of such 3D quantities
during the camera motion with the only assumption of a
target shape with planar limb surface. The proposed estimation
scheme builds upon the theory of nonlinear observers, and in
particular exploits the basic formulation of the persistency of
excitation Lemma. Simulation results are then presented in
order to support the effectiveness of the proposed approach.

I. INTRODUCTION

The introduction of visual information in the control loop

of robot systems has increased the flexibility and the accu-

racy of the tasks commonly performed by these systems [1],

[2], by providing higher position accuracy, robustness to

sensor noise and calibration uncertainties, and reactiveness to

environmental changes. This is especially true for the class

of mobile robots, where the elaboration of visual cues is

often crucial for self-localization and navigation. Another

interesting use of visual feedback is the possibility to specify

a robotic task in terms of some image features extracted from

a target object while the camera/robot is moving through the

scene. Two main approaches have been proposed in the past

years to deal with this kind of tasks, namely position-based

visual servoing (PBVS) and image-based visual servoing

(IBVS) schemes, but recently a number of hybrid methods

has also been explored [3]–[5]. A thorough presentation and

discussion of the different approaches can be found in [1],

[6], [7].

In contrast to PBVS methods, which exploit the image

features in order to estimate the relative 3D pose between

the camera and the target, IBVS schemes compute the

error signal directly in terms of quantities extracted from

the image plane. Motion of these features is mapped to

the velocity twist of the camera via an interaction matrix

which is then used to control the robot pose by zeroing

the image plane error signal. The IBVS approach is usually

robust w.r.t. perturbations of the robot/camera models, in

particular to calibration errors [8], and more suited to devise

feature-based motion strategies aimed at keeping the target

always in the field of view of the camera [9]. There are,

however, also some drawbacks to be considered. Apart from

situations where the interaction matrix loses rank during

the motion, local minima of the task error function [10]

may be encountered when trying to impose an (infeasible)

independent motion to a large number of image features [11].

Moreover, knowledge of some unmeasurable 3D quantities

is still needed to correctly compute the interaction matrix.

For instance, when considering individual points as visual

features, the unknown depth Z of each point is required and

must be estimated during the servoing (a common choice

is to simply use the constant value at the desired pose).

Thus, only local stability can be guaranteed for most IBVS

schemes [12].

In the last years, several works have addressed the on-

line identification of 3D information for IBVS schemes:

Chaumette et al. [13] propose a general methodology to

recover the 3D parameters of several geometric primitives

(points, lines, cylinders, spheres, etc.) by measuring the

current values of the features, of the image motion (the

feature time derivatives) and of the camera velocity twist.

In [14], two Kalman filter-based algorithms are derived and

compared, the first estimating a continuous depth map of

the scene, and the second extracting the depth of a discrete

set of features. A similar approach is found in [15] where

only lateral camera motions are allowed. Adaptive IBVS

schemes are devised in [16], [17] for a camera mounted

on a nonholonomic mobile robot via an on-line estimation

of a constant unknown parameter (the height of the object

points and the depth of the target plane at the desired pose,

respectively). General solutions to the problem of depth

identification for point features have also been proposed

in [18]–[20].

Estimating the 3D parameters of geometric primitives

(e.g., depths of point features) improves the overall stability

of IBVS schemes, and can also be relevant for recovering

more complex 3D structures as plane orientations, and simi-

lar quantities. It should be noted, however, that tracking and

matching individual structures during the camera motion, i.e.,

solving the so-called correspondence problem, may not be

always easy or convenient (think to dense objects as spheres,

ellipsoids, etc.). When this is the case, IBVS schemes

usually rely on more global (integral) features, like image

moments, instead of local descriptors like feature points.
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Fig. 1: World and camera frame definition.

Indeed, moments can be directly evaluated on any arbitrary

shape on the image plane and are free of the correspondence

problem that typically affects the identification of common

geometric structures. Furthermore, a suitable combination of

moments can be used to control the full pose of a robot,

making them an appealing choice for IBVS pose control [21],

[22]. Of course, all these nice properties come at a price:

when considering moments, the 3D information present in

the relative interaction matrix does not reduce to a simple

punctual depth, but more general 3D structures are involved.

In this respect, the goal of this paper is to explore the

possibility to estimate online such 3D quantities having as

input the known camera motion and the moments measured

on the image plane, under the sole assumption of planar limb

surface for the shape of the target object. To this end, we

generalize the observer scheme for point features developed

in [18] so as to cover the case of moments obtained from

generic shapes. Furthermore, we discuss how the use of

moments in place of single point features can improve the

convergence properties of the mentioned observer, e.g., by

reducing the situations where the persistency of excitation

condition, upon which the observer is built, do not hold.

The paper is organized as follows: in Sect. II we recall

the basic kinematic relationships of the camera/target system,

while in Sect. III we design a nonlinear observer to estimate

the unknown 3D quantities of the moment interaction matrix.

Finally, in Sect. IV some simulations are presented in order to

show the performance of the proposed observation schemes.

II. PIN-HOLE CAMERA MODEL

With reference to Fig. 1, consider an inertial world refer-

ence frame FO : {O; ~XO, ~YO, ~ZO} and a pin-hole camera

associated to the moving frame FC : {OC ; ~XC , ~YC , ~ZC},

with ~ZC coincident with the camera optical axis. The image

plane, perpendicular to the optical axis, lies at a distance

λ (the focal length) from OC , and is endowed with a 2D

reference frame FI : {OI ; ~u, ~v} with axes parallel to ~XC

and ~YC , respectively. Furthermore, let vector [vT
C ωT

C ]T ∈
R

6 represent the linear/angular velocity of FC w.r.t. FO

expressed in FC . From standard kinematics, the apparent

velocity of a point P = [X Y Z] ∈ R
3 in FC , induced by

the camera motion, is

Ṗ = −vC − [ωC ]×P (1)

where [u]× ∈ so(3) is the 3 × 3 skew-symmetric matrix

associated to a vector u ∈ R
3. Equation (1) can be rearranged

in matrix form as



Ẋ

Ẏ

Ż



 =




−1 0 0 0 −Z Y
0 −1 0 Z 0 −X
0 0 −1 −Y X 0




[

vC

ωC

]
.

(2)

The pin-hole camera projects a 3D point P in FC with

homogeneous coordinates P̄ = [X Y Z 1]T into a 2D

point p with homogeneous normalized coordinates p̄ =
[pu pv 1]T = [X/Z Y/Z 1]T . The image plane measurement

(in pixels) of point p is given by p̃ = [p̃u p̃v 1]T = Ap̄, where

A is a nonsingular matrix containing the camera intrinsic

parameters, i.e.,

A =




λku −λku/ tan δ u0

0 λkv/ sin δ v0

0 0 1



 , (3)

with [u0 v0]
T being the coordinates of the principal point

(in pixels), λ the focal length (in meters), ku and kv the

magnifications in the ~u and ~v directions (in pixel/meters),

and δ the angle between these axes. In order to simplify the

notation, in the following we will assume that any quantity

is expressed in the normalized space. This is equivalent

to assume a calibrated camera, i.e., full knowledge of the

calibration matrix A.

Given a vector of visual features f = [f1 . . . fs]
T ∈ R

s,

the velocity twist (vC , ωC) of the camera is mapped into ḟ
by a s × 6 matrix Jv(f, χ) called the interaction matrix

ḟ = Jv(f, χ)

[
vC

ωC

]
, (4)

where χ is a vector representing 3D information associated

to f . It is possible to determine the interaction matrix for

many features of interest, see [2] for the case of points,

lines, planes, circles, and [21], [22] for the set of image

moments. The 3D information represented by χ largely

depends on the particular feature extracted from the selected

geometric structure. In the case of a point P (the most simple

shape), χ reduces to the unknown depth Z while, for more

complex shapes, additional quantities are required, like radii

of spheres, plane orientations of planar shapes, etc. In all

cases, however, depth is always present in χ even if not in

an explicit way as in the case of point features.

III. DESIGN OF THE NONLINEAR OBSERVER

As outlined in the introduction, a common problem to pure

IBVS settings is the knowledge of 3D quantities χ in the

interaction matrix (4). Among the various approximations,

one interesting possibility is to obtain an estimation χ̂(t)
to be used in place of χ(t) during the servoing. In [18],

we proposed an on-line identification scheme for the depth
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Z of point features based on the persistency of excitation

lemma [23]. The idea was to interpret Z as an unmeasurable

time-varying state with known (nonlinear) dynamics upon

which a suitable observer could be designed by taking

advantage of the aforementioned lemma. The goal of this

section is to show how the same basic formulation can be

exploited in order to estimate the unknown vector χ relative

to the interaction matrix of moments.

As a preliminary step, we recall the persistency of excita-

tion Lemma upon which our observer will be built.

Lemma 1: Consider the linear time-varying system
{

ξ̇ = Wξ + ΩT (t)z, ξ ∈ R
n

ż = −ΛΩ(t)Sξ, z ∈ R
p (5)

where W is an n×n Hurwitz matrix, S is an n×n symmetric

positive definite matrix such that WT S+SW = −Q, with Q
symmetric positive definite, and Λ is a p×p symmetric posi-

tive definite matrix. If ‖Ω(t)‖, ‖Ω̇(t)‖ are uniformly bounded

and the persistency of excitation condition is satisfied, i.e.,

there exist two positive real numbers T and γ such that
∫ t+T

t

Ω(τ)ΩT (τ)dτ ≥ γI > 0, ∀ t ≥ t0, (6)

then (ξ, z) = 0 is a globally exponentially stable equilibrium

point. ¥

The key idea in using this Lemma is the following: given

a state vector x = [xT
1 xT

2 ]T ∈ R
n+p where only the

state subset x1 is directly measurable, design an update law

for the estimated state x̂ = [x̂T
1 x̂T

2 ] ∈ R
n+p such that,

by letting ξ = x1 − x̂1 and z = x2 − x̂2 be the error

sub-vectors, the associated error dynamics matches formu-

lation (5). When this manipulation is possible, Lemma 1

guarantees exponential convergence of the error system, or,

in other words, that values of the unmeasurable variables

x2 can be inferred from knowledge of x1. In this context,

condition (6) plays the role of an observability test, i.e.,

estimation of x2 is possible iff there does not exist a t̄ such

that ∀t > t̄, det(Ω(t)ΩT (t)) ≡ 0. Such a requirement is

violated whenever matrix Ω(t) ultimately loses rank during

the camera motion, or if n < p, so that Ω(t)ΩT (t) is

structurally singular. As a consequence, in order to estimate p
independent quantities, one must necessarily exploit n ≥ p
independent measurements. Moreover, note that, if p = 1,

Ω(t) becomes a row vector: in this case condition (6) is

satisfied iff the norm of Ω(t) (i.e., at least one component)

does not ultimately vanish over time.

For the sake of illustration, when considering a point

feature p = [pu pv]T , it is possible to recover formulation (5)

by setting x1 = [pu pv]T and x2 = 1/Z, as shown in [18].

In this case, the persistency of excitation conditions states

that estimation of x2 is possible iff

1) the camera is moving with a non-zero linear velocity

vC ;

2) the camera is not translating along the projection ray

of point p,

i.e., the well-known fact that recovering depth requires a

nonzero (and known) camera translational motion [24].

Now consider a generic (i, j)-th order moment mij evalu-

ated on the image plane projection of a 3D object O. Assume

that O is planar or has a planar limb surface [2] with plane

equation

~n · P + d = 0 (7)

in the camera frame, where ~n = [nx ny nz]
T ∈ S

2 is the

plane unit normal and d the plane distance to the origin of

FC . The depth Z of any 3D point P lying on this plane can

be expressed in terms of its image coordinates p as

1

Z
= Apu + Bpv + C, (8)

where 


A
B
C



 = −~n/d. (9)

The interaction matrix Jmij
of mij has the expression

ṁij = Jmij
(mkl, χ)

[
vC

ωC

]
, (10)

where mkl stands for generic (k, l)-th moments of order up

to i + j + 1, and χ = [AB C]T . Hence, when considering

moments of any shape, the 3D information represented by

χ always reduces to the plane normal ~n scaled by the plane

distance d, i.e., the ‘depth’ of the plane. In the following,

we discuss three possible solutions for the estimation of

[AB C]T depending on the initial assumptions made on the

quantities directly measurable.

A. General case

Equation (10) can be rearranged linearly in (A, B, C) as

ṁij =AλA(mkl, vC) + BλB(mkl, vC) + CλC(mkl, vC)+

λD(mkl, ωC),
(11)

where λi(·) are known scalar functions of measurable

quantities (moments and camera velocity) [21]. Let x1 =
[mi1j1 . . .minjn

]T ∈ R
n be a collection of n generic

moments, and x2 = [A B C]T ∈ R
p, p = 3. From (11),

we can rewrite the x1 dynamics in the compact form

ẋ1 =




λA1

λB1
λC1

...
...

...

λAn
λBn

λCn








A
B
C



 +




λD1

...

λDn



 =

= Γx2 + Π.

(12)

Hence, by defining the update law for x̂1 as

˙̂x1 = Γx̂2 + Π + K1(x1 − x̂1), K1 > 0, (13)

we get a ξ̇ = ẋ1 − ˙̂x1 error dynamics

ξ̇ = −K1ξ + Γz (14)

that matches exactly the first row of (5) with z = x2 − x̂2,

W = −K1 and ΩT (t) = Γ(t). Note that Lemma 1 requires

the boundedness of ||Γ(t)|| and ||Γ̇(t)||. In our case, this is

guaranteed as long as the camera velocity (vC , ωC) keeps
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bounded with bounded derivatives and a finite image plane

size is assumed, so that the measured moments are bounded.

Now it remains to design an update law for x̂2 which can

yield a ż dynamics as close as possible to the second row

of (5). To this end, we first need an explicit expression of

ẋ2. From (9), it is

ẋ2 = −
~̇nd − ~nḋ

d2
(15)

and, since ~n is a free vector expressed in FC , from standard

kinematics we have

~̇n = −[ωC ]×~n. (16)

Expression of ḋ can be obtained as follows: among the points

belonging to (7) consider point Pn = −d~n, i.e. the point on

the plane which lies at a distance d along the direction of ~n.

From (7), it is ḋ = −~̇n · Pn − ~n · Ṗn and, since ~n and Pn

are parallel, ~̇n · Pn = 0. By exploiting the kinematics of Pn

given by (1), we have

~n · Ṗn = ~n · (−vC − [ωC ]×Pn) = −~n · vC ,

where, again, the fact that ~n and Pn are parallel is used. In

conclusion, we obtain

ḋ = ~n · vC . (17)

By plugging (16) and (17) into (15), we get the searched

relation

ẋ2 = [ωC ]×
~n

d
+

(
~n

d
· vC

)
~n

d

which, using (9), can be explicitly rewritten in terms of

(A, B, C) as

ẋ2 =




A2 AB AC
AB B2 BC
AC BC C2



 vC − [ωC ]×x2 =

= Θ(x2)vC − [ωC ]×x2.

(18)

Hence, by choosing the update law

˙̂x2 = Θ(x̂2)vC − [ωC ]×x̂2 + K2Γ
T ξ, K2 > 0, (19)

we get a ż error dynamics

ż = (Θ(x2) − Θ(x̂2))vC − [ωC ]×z − K2Γ
T ξ (20)

which, by setting Λ = K2 and S = I , results very close

to the formulation in (5), the only differences being the first

two terms in (20). The last step is to prove stability of the

closed-loop error system (14)–(20) despite the presence of

the unwanted terms in (20).

Proposition 1: Using the observer (13)–(19), the origin of

the error system (14)–(20) is exponentially stable as long

as the conditions of Lemma 1 are verified, in particular

condition (6).

Proof: Let e = [ξT zT ]T be the error vector and

rewrite (14)–(20) as

ė =

[
−K1 Γ

−K2Γ
T 0

]
e +

[
0

(Θ(x2) − Θ(x̂2))vC − [ωC ]×z

]
=

= A(t)e + g(e, t)
(21)

where we interpreted the term Θ(x2)−Θ(x̂2) as a function

of e. The quantity g(e, t) can be seen as a perturbation term

of the nominal system ė = A(t)e which is guaranteed to be

globally exponentially stable by Lemma 1. Note that g(e, t)
is a vanishing perturbation, i.e., g(0, t) = 0, ∀t. Therefore,

if ||g(e, t)|| is sufficiently small, the exponential stability

of (21) is (locally) preserved. Due to the boundedness of

||Γ(t)|| and ||Γ̇(t)||, the nominal system is an exponentially

stable slowly varying linear system, and therefore there exists

a suitable Lyapunov function V (e, t) such that

c1e
T e ≤ V ≤ c2e

T e

V̇ (e, t) =
∂V

∂t
+

∂V

∂e
A(t)e ≤ −c3‖e‖

2

∥∥∥∥
∂V

∂e

∥∥∥∥ ≤ c4‖e‖,

with c1 . . . c4 positive constants. Let Sc = {e | V (e, t) ≤ c}
be a level set of function V . Since V is radially unbounded,

Sc is a compact set. Due to the assumed boundedness of

(vC , ωC), g(e, t) is (locally) Lipschitz and there exists a

positive constant M such that ||g(e, t)|| ≤ M ||e|| in Sc.

Using the Lyapunov candidate V for the perturbed system

we get

V̇ (e, t) ≤ −c3||e||
2+

∥∥∥∥
∂V

∂e

∥∥∥∥ ||g(e, t)|| ≤ −c3||e||
2+c4M ||e||2.

If M is small enough to satisfy the bound M < c3/c4, V̇ is

negative definite on Sc. Therefore, if the initial error e(t0)
is such that

||e(t0)||
2 ≤

V (e(t0), t0)

c1

≤
c

c1

, (22)

system (14)–(20) converges exponentially to the origin. Note

that, besides being a vanishing perturbation w.r.t. e, the term

g(e, t) also vanishes for (vC , ωC) = (0, 0) — see (21).

Hence, regardless of the initial error e(t0), the value of M
can always be made arbitrarily small by suitably slowing

down the camera motion. Moreover, a less conservative

estimation on the initial error norm can be obtained by

considering that observer (13)–(19) can be initialized with

the measured states x1. In this case, (22) reduces to

||e(t0)||
2 = ||z(t0)||

2 ≤
c

c1

.

This result demonstrates the possibility to use the mea-

sured moments and the known camera velocity to estimate

vector [A B C]T with the only assumption that the object

considered has a planar limb surface. Note, however, that the

persistency of excitation condition (6) is supposed to hold.

As explained before, this is equivalent to assume that ΓT (t)
does not ultimately lose rank over time, and that n ≥ 3
moments are included in vector x1.

In practice, the choice (both in number and kind) of the

image moments to be used for estimation is crucial to meet

condition (6). In fact, as (12) shows, the structure of matrix

Γ(t) depends on such moments. Our current efforts are aimed
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at the identification of a meaningful set of moments suitable

for robust convergence. As a first evaluation, simulation

results are presented in Sect. IV in order to illustrate the

observer behavior when area and barycenter are chosen

as moments. This choice, for instance, can improve the

overall convergence properties of the estimation w.r.t. the

case of a target point feature, since the information relative

to the area proves to be relevant to reduce the situations in

which condition (6) is not met. In any case, since functions

λi(mkl, vC) in (12) are such that λi(mkl, 0) ≡ 0 [21], the

persistency of excitation requires, again, that the camera must

necessarily move with a nonzero linear velocity vC in order

to have a converging estimation process.

B. Plane orientation ~n known

In some cases, it is possible to obtain plane orientation ~n
by a direct evaluation. For instance, if the homography matrix

H between the current and the desired views is available, ~n
can be recovered by suitably decomposing H [24]. Com-

putation of the homography typically requires the tracking

and matching of several distinct points on the current/desired

images, but there also exist techniques to obtain H from a

dense unstructured object [25]–[27].

If ~n is known, estimation of [A B C]T is considerably

simplified since the unmeasurable quantities only reduce to

the plane distance d (see (9)). Indeed, in this case we can

set x1 = [mi1j1 . . .minjn
]T ∈ R

n, as before, and x2 = 1/d.

As a consequence, (11) can be rearranged as

ṁij = −

nxλA(mkl, vC) + nyλB(mkl, vC) + nzλC(mkl, vC)

d
+

λD(mkl, ωC) =
λ(~n, mkl, vC)

d
+ λD(mkl, ωC),

(23)

and dynamics of x1 becomes

ẋ1 =
1

d




λ1(~n,mkl, vC)

...

λn(~n,mkl, vC)



 +




λD1

...

λDn



 =

= Γ2x2 + Π.

(24)

By choosing the update law

˙̂x1 = Γ2x̂2 + Π + K1(x1 − x̂1), K1 > 0, (25)

we obtain the same ξ̇ error dynamics as in (14) with ΩT (t) =
Γ2(t). Expression of ẋ2 can be derived from (17) as

ẋ2 = −
~n · vC

d2
= −x2

2~n · vC ,

from which, by designing the update law

˙̂x2 = −x̂2
2~n · vC + K2Γ

T
2 ξ, K2 > 0, (26)

we get the ż error dynamics

ż = −(x2
2 − x̂2

2)~n · vC − K2Γ
T
2 ξ. (27)

The first term in (27) may be again considered as a vanishing

perturbation term g(e, t), so that exponential convergence

of observer (25)–(26) can be proven by following the same

arguments given for the general case (Sect. III-A).

Concerning condition (6), the same former considerations

about number and kind of moments to be included in x1 hold

also in this case. There is, however, a slight difference which

may be important in practical implementations: while Γ(t)
in (12) is a n × 3 matrix, Γ2(t) is always a column vector

of dimension n. Hence, as discussed at the beginning of

Sect. III, it is sufficient that one component of Γ2(t) does not

vanish over time for the persistency of excitation condition to

hold. In many practical situations, this can result in a milder

constraint than requiring, as in the general case, full-rankness

of matrix Γ(t) over time. Such difference is, of course, due

to the assumed knowledge of ~n which reduces the number

of unknown parameters to be estimated.

C. Case of a sphere

In the previous developments, we addressed the estimation

of χ(t) under the sole assumption that object O possesses

a planar limb surface, but without posing other special

requirements on its geometric structure. Of course, if some

additional information about O is available, one can exploit

this knowledge in order to obtain an improved estimation

scheme tailored for the specific case. As an illustrative

example, in this section we consider the design of the

estimation algorithm when object O is a sphere. This case

has also a practical relevance in the mobile robotics field

when, e.g., robots are committed with visual tasks involving

tracking/positionig w.r.t. a ball, and similar scenarios.

Consider a 3D sphere, with center P0 = [X0 Y0 Z0]
T and

radius R, represented by the equation

(X − X0)
2 + (Y − Y0)

2 + (Z − Z0)
2 − R2 = 0.

The sphere is an example of a 3D object with a planar limb

surface, and, in this case, (8) becomes

1

Z
=

X0

K
pu +

Y0

K
pv +

Z0

K
, (28)

where K = X2
0 + Y 2

0 + Z2
0 − R2 [2]. From (28) and (8), it

follows 


A
B
C



 =
1

K




X0

Y0

Z0



 = −
~n

d
, (29)

implying that ~n lies on the ray passing through the sphere

center P0. The projection of a sphere on the image plane is

the ellipse

(X0pu + Y0pv + Z0)
2 − K(p2

u + p2
v + 1) = 0, (30)

with an equivalent expression in terms of image moments

n02p
2

u + n20p
2

v − 2n11pupv + 2(n11yg − n02xg)pu+

+ 2(n11xg − n20yg)pv + n02x
2

g + n20y
2

g

− 2n11xgyg + 4n
2

11 − 4n20n02 = 0,

(31)

where p̄g = [xg yg 1]T is the ellipse barycenter in homoge-

neous coordinates, and nij are normalized centered moments

of order i + j [21]. By equating (30) and (31), it follows

xg =
X0Z0

Z2
0 − R2

yg =
Y0Z0

Z2
0 − R2

,
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which, plugged into (28), yields

Zg =
Z2

0 − R2

Z0

(32)

as the barycenter depth, i.e., the depth of the point on the

limb plane whose projection is p̄g . In order to evaluate ~n
in terms of image quantities, one could hope that the 3D

barycenter backprojection Pg = Zgp̄g and the sphere center

P0 were aligned. Indeed, in this case, it would be possible

to obtain ~n as the direction of the measured barycenter p̄g .

Unfortunately, while xgZg = X0 and ygZg = Y0, from (32)

it is Zg 6= Z0, so that Pg and P0 do not share the same 3D

direction (actually, Zg < Z0, i.e., Pg is always in front of

P0). Note that, however, if R ≪ Z0, i.e., if the sphere radius

is small compared to the distance of the sphere center from

the camera, (32) can be approximated as Zg ≃ Z0, and (29)

becomes




A
B
C



 =
1

Zg





xg

x2
g + y2

g + 1
yg

x2
g + y2

g + 1

1

x2
g + y2

g + 1




=

~ng

Zg

. (33)

Therefore, under this approximation, the only unmeasurable

quantity reduces to Zg and it is possible to proceed similarly

as in Sect. III-B, by setting x1 = [mi1j1 . . .minjn
]T ∈

R
n and x2 = 1/Zg . Dynamics of x1 and ˙̂x1 are given

by (24) and (25), where d is replaced by Zg , and ~n by ~ng .

Furthermore, by using the last row of (2), we have

ẋ2 = −

Żg

Z2
g

≃ −x
2

2Ż0 = x
2

2(vCz + Y0ωCx − X0ωCy ) =

= x
2

2vCz + x2(ygωCx − xgωCy ).

(34)

The update law for x̂2 is then chosen as

˙̂x2 = x̂2
2vCz

+ x̂2(ygωCx
− xgωCy

) + K2Γ
T
2 ξ (35)

which yields the ż error dynamics

ż = (x2
2 − x̂2

2)vCz
+ z(ygωCx

− xgωCy
) − K2Γ

T
2 ξ. (36)

Since the first two perturbation terms in (36) are, again,

vanishing for z = 0, convergence of observer (25)–(35) can

be proved an in the previous sections.

It is interesting to note that, for a sphere, the design of the

observer structure is conceptually equivalent to the situation

discussed in Sect. III-B. Indeed, in both cases, the plane

normal direction ~n is directly evaluated in terms of image

data, and the only unknown quantity becomes the ‘depth’

of the target object. The only relevant difference is that

the special geometric structure of the sphere allows a direct

evaluation of ~n, while in the previous (and more general) case

a homography decomposition between current and desired

view may be needed in order to obtain the same information.

Fig. 2: Webots simulation environment with a mobile ma-

nipulator carrying a camera mounted on the end-effector. As

target objects, we considered the case of a planar “F” shape

(left) and of a sphere (right).

IV. SIMULATIONS

In this section, we present two simulations which show the

performances of the estimation schemes for a generic planar

shape with known normal (Sect. III-B), and for a sphere

(Sect. III-C). Ongoing research efforts are currently devoted

to select a suitable set of moments for the general case of

Sect. III-A. The algorithms were implemented in the Webots

environment [28] by considering a camera mounted on the

end-effector of a mobile manipulator made of a unicycle-

like platform carrying a polar 2R arm (see Fig. 2). A video

clip of these simulations is also attached to the paper. The

idea was to test the performance of the observer against the

measurement noise automatically introduced by the Webots

engine (roughly equivalent to a white noise with standard

deviation σ = 0.1 pixels added to the extracted image

data). Such a noise is also representative of errors on the

input camera velocity (vC , ωC), since both disturbances have

comparable effects on the observer behavior.

In the first simulation, we considered a planar “F” shape

(Fig. 2, left), and tested the observer (25)–(26) by relying

on the area a and the barycenter (xg, yg) for the estimation

of the plane distance d. Hence, in this case it is x1 =
[a xg yg]

T ∈ R
n, n = 3, x2 = 1/d, and Γ2(t) ∈ R

3. The

robot was commanded with a periodic predefined motion

according to the velocity profiles v(t) = 0.7 sin 0.4 π t,
q̇1(t) = 0.2 sin 1.6 π t, and q̇2(t) = 0.1 sin 0.8 π t, where v
is the platform linear velocity and (q̇1, q̇2) the first/second

link velocities. The observer was initialized with x̂2(t0) =
1/d̂(t0) = 0.667 m, and gains K1 = 25 and K2 = 8000.

Results of the simulation are presented in Figs. 3–5. In

particular, Fig. 3 shows how the estimate d̂(t) approaches the

true value d(t) after about 12 sec of motion, while, in Fig. 4,

we report the behavior of the plane normal ~n = [nx ny nz]
T

which was assumed to be measured independently through

an homography decomposition. Furthermore, Fig. 5 depicts

the behavior of ||Γ2(t)||, showing that the choice of moments

in x1 meets the persistency of excitation condition (||Γ2(t)||
does not ultimately vanish over time).

In the second simulation (Fig. 2, right), we considered a
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Fig. 3: First simulation. Behavior of d (solid blue line) and

d̂ (dashed red line) over time.
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Fig. 4: First simulation. Behavior of ~n = [nx ny nz]
T over

time.

0 5 10 15 20 25 30 35 40 45
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

time [s]

||
Γ

2
(t

)|
|

Fig. 5: First simulation. Behavior of ||Γ2|| over time.
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Fig. 6: Second simulation. Behavior of Zg (solid blue line)

and Ẑg (dashed red line) over time.
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Fig. 7: Second simulation. Behavior of eABC = [A B C]T −
[Â B̂ Ĉ]T over time.
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Fig. 8: Second simulation. Behavior of ||Γ2|| over time.
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sphere with radius R = 0.07 m, lying at a distance of about

0.4 m from the camera, and the same moments exploited

before (area and barycenter). In order to test the performance

of the observer (25)–(35), we discarded the link velocity

commands (q̇1, q̇2), while keeping the previous platform

linear velocity command v. As a result, the camera moves is

such a way that the sphere barycenter stays almost fixed

at the center of the image, i.e., the center of the sphere

lies on the camera optical axis during the backward/forward

camera motion. This choice was meant to demonstrate the

potential benefits of using moments for 3D structure estima-

tion. Indeed, in this situation, an estimation scheme designed

for a point feature (like the one proposed in [18]) could

not correctly recover the feature depth since the camera

linear velocity vC and the projection ray of the point feature

would be almost coincident, thus yielding an ill-conditioned

problem (see Sect. III). On the other hand, exploiting the

area a besides barycenter (xg, yg) makes the estimation

possible. This can be verified from Figs. 6–8 which show, as

before, the good convergence properties of the observation

scheme. Figure 6 illustrates how the estimate Ẑg approaches

the true value Zg obtained from (32) after about 10 sec of

motion, while Fig. 7 reports the behavior of the error vector

eABC = [A B C]T − [Â B̂ Ĉ]T , where the first term is

evaluated according to (29), and the second is given by (33)

with Zg replaced by its estimate Ẑg . Hence, one can check

that, although neglecting the sphere radius R, observer (25)–

(35) is able to recover the actual value of [A B C]T in an

accurate way. Finally, despite the unfavorable arrangement

of the sphere/camera relative motion, the persistency of

excitation condition is still satisfied, as can be checked from

Fig. 8.

V. CONCLUSIONS

By borrowing techniques from nonlinear observer theory,

we developed an estimation framework to recover on-line

the unmeasurable 3D quantities related to the interaction

matrix of image moments. The problem was first addressed

in the general case, under the only assumption of a target

object with planar limb surface. Then, additional results were

presented for more specific cases. Simulation results support

the effectiveness of the proposed technique.

In the future, we will analyze the use of different combi-

nations of moments to evaluate the pros and cons of each

possible choice. Furthermore, we are planning to implement

these estimation techniques on a manipulator equipped with

an eye-in-hand camera, so as to obtain an experimental

validation of the overall approach.
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