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Abstract— We present a method for sensor-based ex-
ploration of unknown environments by a mobile robot.
The method is based on the randomized incremental
generation of a data structure called Sensor-based Ran-
dom Tree (SRT), which represents a roadmap of the
explored area with an associated safe region. Different
exploration strategies may be obtained by instantiating
the general method with different perception tech-
niques. Two such techniques are discussed: the first,
conservative and particularly suited to noisy sensors,
results in an exploration strategy called SRT-Ball. The
second perception technique is more confident, and the
corresponding strategy is called SRT-Star. The two
strategies are critically compared by simulations as well
as by experiments on the MagellanPro robot.

I. Introduction

The exploration of unknown environments can be con-
sidered to be the fundamental problem for mobile robots,
as it involves all the basic capabilities of such systems, e.g.,
perception, planning, localization, and navigation. From a
practical viewpoint, exploration is a central task in many
applications, such as planetary missions, intervention in
hostile areas and automatic map building.

A widely accepted definition of exploration is “the act of
moving through an unknown environment while building
a map that can be used for subsequent navigation”[1].
The performance of exploration strategies must then be
assessed on the basis of the quality of the obtained map
as well as of the time needed (or space traveled) in order
to assemble it. Most of the existing techniques fall into the
class of frontier-based exploration, pioneered by Yamauchi
in the above cited paper. The rationale of this approach is
that the robot must move towards the boundary (the fron-
tier) between safe explored areas and unknown territory in
order to maximize the information gain coming from new
perceptions. For example, the methods proposed in [2–5]
may be classified as frontier-based exploration, although
they differ under other aspects (e.g., the representation of
the environment, the inclusion of localization, the consid-
eration of perception costs, the use of multiple robots).

It is also interesting to adopt a more general AI per-
spective, according to which exploration is “the process
of selecting actions in active learning”[6]. In the active
learning paradigm, training data are obtained as a result of
the learner’s actions. In particular, the case of robot that

gathers information about the environment by moving and
sensing is a case of order-sensitive active learning, because
the data flow is the result of all past robot actions. The
central problem of exploration is how to select the next
action. Frontier-based exploration is obtained when the
criterion is the maximization of the action’s (expected)
utility. There exists however another possibility, i.e., use a
random selection mechanism (also called a random walk).
The advantages of this choices are (i) simplicity and (ii)
the fact that any sequence of actions will be executed even-
tually. The latter property opens the road to completeness:
a solution will be find whenever one exists. On the other
hand, pure random action selection may be very inefficient.

Our approach to the problem derives from randomized
(also called probabilistic) motion planning (RMP) tech-
niques, which build roadmaps of the free configuration
space by generating random samples and checking them
for collision [7]. In RMP, the problem setting is that
of order-free active learning: what is observed about the
environment depends only on the last action (the random
query), because the map of the environment is available in
advance and the robot does move to gather data. Hence,
randomized planners can be considered as goal-oriented
exploration strategies based on random action selection.
As already mentioned, the (probabilistic) completeness of
these planners is inherent to their nature; in addition, very
high efficiency can be achieved by adding heuristics to the
basic random scheme. The RRT method of [8] is a typical
example which served as an inspiration for our work.

In this paper, we describe an exploration method based
on the random generation of robot configurations within
the local safe area detected by the sensors. A data struc-
ture called Sensor-based Random Tree (SRT) is created,
which represents a roadmap of the explored area with
an associated Safe Region (SR). Each node of the SRT
consists of a free configuration with the associated Local
Safe Region (LSR) as reconstructed by the perception
system; the SR is the union of all the LSRs.

The LSR is an estimate of the free space surrounding
the robot at a given configuration; in general, its shape
will depend on the sensor characteristics (for example,
angular resolution) but may also reflect different atti-
tudes towards perception. We will present two exploration
strategies obtained by instantiating the general method



with different perception techniques. The first, where the
LSR is a ball, realizes a conservative attitude, particularly
suited to noisy or low-resolution sensors, and results in
an exploration strategy called SRT-Ball. The second tech-
nique is confident, and the corresponding strategy is called
SRT-Star; in this case, the LSR shape reminds of a star.
The two strategies are compared by simulations as well as
by experiments on the mobile robot MagellanPro.

Our exploration method will be presented under the
assumption of perfect localization provided by some other
module. While this may be the case (for example, a GPS
system may be used in a planetary exploration mission),
one cannot overlook the fact that such an assumption is
often unreasonable in unknown environments. However,
our investigation is still at a preliminary stage and our
first interest was to assess the potential of randomized
exploration techniques. The integration of a localization
step into the exploration process is currently in progress.

II. Exploration via the SRT method

In this section, we first clarify the working assumptions
on the robot and the environment; then, we describe the
proposed exploration method from a general viewpoint,
i.e., independently from the particular perception strategy.

A. Working assumptions
A robot must explore a workspace, i.e., an environment

with obstacles. We take the following assumptions:

1) The workspace is planar, i.e., either IR2 or a (con-
nected) subset of IR2.

2) The robot is a disk (or may be reasonably approx-
imated by a disk) free to translate in any direction
(holonomic or free-flying robot). Hence, the config-
uration space is a copy of the workspace with the
obstacles grown so as to allow for the robot size [9].

3) The robot always knows its configuration q (see the
last paragraph of the previous section).

4) The robot is equipped with a sensory system which
provides at each q an estimate (possibly conserva-
tive) of the surrounding free space. This estimate,
called Local Safe Region at q and denoted by S, is a
star-shaped subset of IR2, i.e., it is homeomorphic to
the closed unit ball and the line segment connecting
q to any point of S is completely contained in S [9].

While the techniques presented in this paper rely on
such assumptions, the concluding section contains some
comments about the possibility of relaxing them. The fact
that the Local Safe Region is star-shaped (Assumption
4) is consistent1 with the physics of the most common
sensors, i.e., range finders, but also applies to more so-
phisticated perception techniques (e.g., vision). A concept
similar to LSRs are the ‘safe areas’ of [4].

1Simple geometry shows that this is true provided that the sensors
are located on a circle having the same center of the robot (as in sonar
rings) or at the center itself (as in a rotating laser range finder).

B. The SRT method

The exploration method proposed in this paper builds
a data structure called Sensor-based Random Tree (SRT),
which can be considered as a variation of the Rapidly-
exploring Random Tree (RRT) proposed by LaValle in [8].
Like RRT, the SRT is a tree which represents a roadmap
of the free configuration space of the robot. Each node
of the SRT consists of a collision-free configuration q
which the robot has reached, together with a description
of the Local Safe Region S surrounding q as perceived
through the sensory system. The tree is incrementally built
by extending the structure towards randomly selected
directions in such a way that the new configuration (and
the path reaching it) is contained in the Local Safe Region.

The algorithm implementing the SRT method can be
described as follows.

BUILD SRT (qinit,Kmax,Imax,α,dmin)
qcurr = qinit;
for k=1 to Kmax

S ← PERCEPTION(qcurr);
ADD(T ,(qcurr,S));
i ← 0;
loop

θrand ← RANDOM DIR;
r ← RAY(S,θrand);
qcand ← DISPLACE(qcurr, θrand,α · r);
i ← i + 1;

until (VALID(qcand,dmin,T ) or i = Imax)
if VALID(qcand,dmin,T )

MOVE TO(qcand);
qcurr ← qcand;

else
MOVE TO(qcurr.parent);
qcurr ← qcurr.parent;

return T ;

At each iteration k of the algorithm, a perception
process takes place (i.e., sensor data are gathered and elab-
orated) to obtain a star-shaped region S which estimates
the free space surrounding the robot at the current con-
figuration qcurr. A new node containing the configuration
qcurr and the associated LSR S is then added to the tree
T . The way S is actually represented within the SRT data
structure depends on the perception strategy: in general,
an algebraic description of its boundary could be used,
but we shall see in the next two sections that much lighter
representations are possible in practice.

At this point, a direction of exploration θrand is ran-
domly generated by the function RANDOM DIR, and the
function RAY is invoked to compute the ‘radius’ r of S
in the direction of θrand (see Figure 1). A candidate new
configuration qcand for the robot is determined by taking
a step of length α ·r in the direction of θrand. The constant
α < 1 guarantees that qcand is within the safe area S and
can be reached with a path contained in S; values of α close
to 1 will increase the exploratory attitude of the algorithm,
while smaller values will augment the safety margin.
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Fig. 1. The generation of candidate configurations in the SRT
method. In the case shown, qcand would be validated, while q′cand
and q′′cand would not: the first falls within a minimum distance dmin

from qcurr, the second in the Local Safe Region of another node.

Once qcand has been randomly generated within the safe
area S, it goes through a validation step performed by the
boolean function VALID. As shown in Figure 1, qcand must
(i) be at a distance larger than a given dmin from qcurr,
and (ii) not fall in the Local Safe Region of any other
node belonging to T . If validation is successful, the robot
moves to qcand and the cycle is repeated. Otherwise, the al-
gorithm generates other random configurations from qcurr

until one is validated or a maximum number Imax of trials
is exceeded. In the latter case, the robot backtracks to the
parent node of qcurr, where the exploration cycle starts
again. A succession of failures in finding new exploration
directions, typical when the free space has been completely
explored, will force the robot to backtrack to the root —
realizing therefore an automatic homing mechanism.

A comparison of the SRT method with the RRT planner
of [8] suggests the following remarks.

• If compared with the RRT data structure, the SRT
is a tree with edges of variable length, depending on
the radius r of the LSR in the random direction θrand.
Hence, during the exploration, the robot will take
longer steps in regions scarcely populated by obstacles
and smaller steps in cluttered regions. Also, no colli-
sion check is needed on the candidate configurations
as they are always generated within the safe area.

• From the exploration viewpoint, the SRT method is
inherently depth-first. In fact, the tree is expanded
along directions originating from qcurr, the current
robot position; this is in contrast with the breadth-
first expansion typical of the pure RRT, which how-
ever does not apply to sensor-based exploration. The
introduction of a backtracking mechanism was obvi-
ously a consequence of the depth-first nature of SRT.

• The SRT method retains some of the most important
features of RRT, such as the fact of being particularly
suited for high-dimensional configuration spaces and
easily modifiable to account for the presence of both
holonomic and nonholonomic constraints.

Fig. 2. The Local Safe Region S according to the SRT-Ball
perception strategy. The robot is the circular body located at the
center of the scene.

III. Conservative exploration: SRT-Ball

As already mentioned, the shape of the Local Safe
Region S must reflect the sensor characteristics as well as
the adopted perception technique. In turn, the exploration
strategy is strongly affected by the shape of S. In this sec-
tion, we consider a particular instance of the general SRT
method, called SRT-Ball, which embodies a conservative
approach to perception and, hence, to exploration.

In SRT-Ball, S is defined as a ball (a very special case
of star-shaped region) whose radius r is determined by the
distance η of the closest obstacle. In particular, the radius
of the ball is computed as the minimum between η and the
maximum measurable range with the available sensors (see
Figure 2). The function RAY(S,θrand) simply returns the
same value r for any direction θrand, and the Safe Region
is built as the union of balls of different size.

To illustrate the behavior of SRT-Ball, we report the
results of two simulations realized within Move3D2, under
the assumption of perfect sensing. The algorithm parame-
ters are Kmax = 1000, Imax = 50, α = 0.8, dmin = 0.07 m.

Results from the first simulation are shown in Figure 3.
In the first frame, the robot starts from the center of the
scene; each successive frame shows the tree built up to
that point (remember that each node corresponds to a
configuration assumed by the robot) together with the
associated Safe Region. When the robot has reached the
end of the corridor, in the lower right corner of the scene,
no valid candidate configuration can be generated; the
robot then backtracks along the tree and, where possible,
expands the latter by adding new configurations. As a
consequence, the estimation of the Safe Region becomes
increasingly accurate. In the end, the robot goes back to
the root node where the exploration stops. Due to the

2Move3D [10] is a powerful software platform developed at LAAS-
CNRS which provides many motion planning primitives and a graph-
ical environment for scene description. More details can be found at
http://www.laas.fr/̃ nic/Move3D/.



Fig. 3. Simulation 1: The exploration process with SRT-Ball (frames
are ordered from left to right and from top to bottom).

fixed circular shape of S, the boundary of the Safe Region
is a coarse approximation of the obstacles in the first four
frames. Accuracy however improves during backtracking,
as can be appreciated from the last two frames.

The second simulation (Figure 4) shows how the con-
servative nature of SRT-Ball may preclude the robot from
completing exploration tasks which require the negotiation
of narrow passages. As the robot approaches the small
door, the perceived LSR gradually reduces due to the
lateral walls: the SRT-Ball perception strategy cannot ‘see’
through the opening. When the radius r of S becomes
smaller than dmin, no candidate configuration can be vali-
dated and the robot backtracks to the home configuration,
where the exploration terminates.

IV. Confident exploration: SRT-Star

While the conservative perception of SRT-Ball ignores
the directional information provided by most sensory sys-
tems, SRT-Star can exploit it. Below, we consider the case
of a ring of range finders placed along the robot profile.

In SRT-Star, S is a star-shaped region given by the
union of different ‘cones’, with a different radius in each

Fig. 4. Simulation 2: The exploration process with SRT-Ball. Only
the initial and final frames are shown.

cone (see Figure 5). The i-th cone radius is the minimum
between ηi (the distance to the closest obstacle within
the cone) and the maximum measurable range with the
available sensors. Hence, to compute r the function RAY
must first identify the cone corresponding to θrand.

To allow a performance comparison between the two
exploration strategies, we have run the same simulations of
the previous section with SRT-Star, under the assumption
that a ring of 16 range finders is available. The same
parameter values have been used, except for Imax = 16.

Results obtained for the first simulation are shown in
Figure 6. As can be noted by comparing the second
frame with the corresponding frame of Figure 3, SRT-Star
has a more pronounced depth-first exploration attitude
with respect to SRT-Ball, whose tree is more expanded
in width. Still, the estimate of the free space built by
SRT-Star is more accurate right from the start because
the variable shape of S allows a finer reconstruction of
the obstacle region boundary. Table I summarizes the
performance of SRT-Ball and SRT-Star in this simulation.
The total traveled distance and the final number of nodes
in the tree are much smaller with SRT-Star than with

Fig. 5. The Local Safe Region S according to the SRT-Star
perception strategy. Note how the extension of S in some cones is
reduced due to the sensor limited measurable range.



Fig. 6. Simulation 1: The exploration process with SRT-Star (frames
are ordered from left to right and from top to bottom).

1st simulation SRT-Ball SRT-Star
traveled distance (m) 143.4 63.8

number of nodes 419 125
filling 92% 98%

TABLE I

SRT-Ball. We have also computed the percentage of the
free space that is covered by the final Safe Region (filling).

The superiority of SRT-Star is even more evident from
the results of the second simulation in Figure 7. Now, the
robot is able to cross the narrow passage; in fact, the radius
of S is not reduced in all directions as the robot approaches
the small opening, and candidate configurations across the
door are generated and validated. A comparative summary
of the results is given in Table II: of course, SRT-Star
gives a much better filling since the area beyond the small
passage is explored. Moreover, this is obtained by traveling
a smaller distance and reaching less nodes (and hence,
performing less perceptions) with respect to SRT-Ball.

Simulations clips are available at the web page
http://www.dis.uniroma1.it/̃ labrob/research/SRT.html.

Fig. 7. Simulation 2: The exploration process with SRT-Star. An
intermediate and the final frame are shown.

2nd simulation SRT-Ball SRT-Star
traveled distance (m) 87.6 74.4

number of nodes 155 120
filling 72% 99%

TABLE II

V. SRT vs. frontier-based methods

If compared with the frontier-based approach, we note
that the SRT method does not make a distinction between
obstacles and unexplored areas; in fact, the boundary of
the Local Safe Region may indifferently describe the sensor
range limit or the profile of an object (see Figure 5). This
means that during the exploration the robot may approach
areas which appear to be occluded. However, when the
obstacle is at close range, candidate configurations which
would push the robot closer to the occlusion will not be
validated because they fall within the minimal distance
dmin from the current point; thus, the robot will promptly
move away from the obstacle boundary without a signifi-
cant loss of efficiency. On the other hand, a more accurate
estimate of the Safe Region will typically be obtained, due
to (i) the increased precision of wide-angle range finders
from closer distance, and (ii) the smaller size3 of the
Local Safe Region. The above is valid for the general SRT
method, and thus for SRT-Ball and SRT-Star as well.

Another difference between the SRT method and other
techniques is the way in which the environment is rep-
resented. The free space estimate built during the explo-
ration is simply the union of the LSR associated to the
nodes of the tree. Relatively simple post-processing opera-
tions would however allow to compute a global description
of the Safe Region, more useful for navigation tasks.

VI. Experiments with SRT

The SRT-Ball and SRT-Star exploration strategies have
been implemented on the MagellanPro robot available in
our lab. MagellanPro is a two-wheeled differential-drive
robot with a caster wheel added for stability; its shape
is circular with a diameter of 40 cm. Its sensory system

3The global Safe Region may be considered as the result of a
topological erosion of the actual free space, in which the LSR acts as
a variable-size structuring element.



includes a ring of 16 ultrasonic range finders (range 0.2
to 4 m), a ring of 16 infrared range finders (range 0.07 to
1 m) and another ring of 16 bumper sensors; besides, an
on-board pan-tilt camera is available.

MagellanPro is a nonholonomic robot, and thus vio-
lates the free-flying assumption of Sect. II-A. In these
preliminary experiments, we have simply solved this prob-
lem by using a rotation/translation/rotation maneuver to
implement the MOVE TO function of the SRT method.
Also, we have used the built-in dead reckoning system for
localization; while this is clearly a limitation, the homing
error at the end of the exploration was quite acceptable
(see the details below).

The perception step for both SRT-Ball and SRT-Star
is realized via the ultrasonic and infrared sensors: in
each sensor cone (having a 22.5◦ angle) a very basic
sensor fusion between the two available range readings
is performed, so that a single range reading is obtained
for each cone. While this directly provides the Local Safe
Region S for SRT-Star, an additional minimization over
all the cones is required for SRT-Ball. The parameters for
both algorithms have been chosen as follows: Kmax = 500,
Imax = 50, α = 3/4 and dmin = 10 cm.

The first experiment refers to MagellanPro exploring a
very simple T-shaped environment using SRT-Star. Fig-
ure 8 shows some snapshots of the exploration process:
the left image of each frame was taken by a hand-held
camera, while the right image shows the tree built by the
robot together with the safe area reconstructed up to that
point; the actual location of the obstacles is superimposed
for the sake of clarity. The environment is successfully
explored and the resulting SRT (which includes 28 nodes)
provides a satisfactory roadmap of the free space. In
particular, the total traveled distance is 19.8 m (consider
that the perimeter of the environment is 14.2 m). Thanks
to the backtracking mechanism, MagellanPro returns to
the starting position once the exploration is completed;
the homing error is 0.07 m.

Note that at some configurations the Local Safe Region
extends beyond the actual free space. This happens when
the angle of incidence between the ultrasonic beam and
the obstacle surface is below a given threshold (false
reflection). A small value of α is used by SRT-Star to avoid
that, in these situations, the candidate configuration qcand

is placed within an obstacle. In any case, MagellanPro
continuously checks its range finders while moving; if an
unexpected obstacle is detected at close distance (typi-
cally, by the infrared sensors) the robot stops and performs
a new perception step. We emphasize that it is possible
to detect and correct such erroneous range measures by
relatively simple elaborations (e.g., see [11]); here, we
have purposely chosen to avoid any post-processing of
the measures in order to assess the performance of the
exploration method in the presence of noisy data.

In the second experiment, MagellanPro was deployed
into a rectangular ‘room’ with two obstacles protruding

Fig. 8. Experiment 1: The exploration process with SRT-Star.

from the upper and lower wall (see Figure 9). The perime-
ter of the open space boundary is now 17.5 m. The results
obtained using SRT-Ball and SRT-Star are summarized
in Table III for comparison. As expected, the exploration
path produced by SRT-Star is much shorter (and therefore
the odometric homing error is reduced); moreover, the
SRT-Star tree contains approximately 1/6 of the nodes
of the SRT-Ball tree. On the other hand, the conservative
perception attitude typical of SRT-Ball drastically reduces
the inclusion of false reflections in the estimated safe area.

Experiments clips are available at the web page
http://www.dis.uniroma1.it/̃ labrob/research/SRT.html.

VII. Conclusions and future work

We have described a general method for sensor-based
exploration of unknown environments by a mobile robot.
The method proceeds by building a data structure called
Sensor-based Random Tree (SRT) through random gen-
eration of configurations. The SRT represents a roadmap
of the explored area with an associated Safe Region, an
estimate of the free space as perceived by the robot during
the exploration. Different strategies are then obtained by
instantiating the general method with different perception



Fig. 9. Second experiment: the final appearance of the tree and the
associated Safe Region obtained with SRT-Ball (above) and SRT-
Star (below).

2nd experiment SRT-Ball SRT-Star
traveled distance (m) 74.6 21.8

homing error (m) 0.21 0.08
number of nodes 190 30

TABLE III

techniques. In particular, two such techniques have been
presented: SRT-Ball and SRT-Star. The first is more con-
servative and particularly appropriate for noisy sensors,
while SRT-Star is more confident. The two strategies have
been critically compared by simulations as well as by
experiments performed on the mobile robot MagellanPro.

Below, we briefly mention some of the extensions of the
current work which will be the subject of future work.

• Nonholonomic mobile robots (such as the Magel-
lanPro) do not satisfy the free-flying assumption of
Sect. II-A. While we have coped with this difficulty by
using rotation/translation/rotation maneuvers, more
general nonholonomic local planners can be used to
connect qcurr to a validated qcand; clearly, the planner
must be appropriately designed so as to guarantee
that the resulting path is completely contained in S.
Also, it would be interesting to modify the construc-
tion of the Local Safe Region S so as to account for
the nonholonomic obstacle distance defined in [12].

• In principle, the SRT method can be used for sensor-
based exploration of high-dimensional configuration
spaces; this may be, for example, the case of a mobile
manipulator. The main issue would become the gener-
ation of a configuration-space Local Safe Region from

the available sensor measures. Clearly, such region
cannot be expected to be star-shaped, so it would
be necessary to reduce it appropriately. The same
happens with single-body mobile robots if the range
finders are not arranged on a ring.

• Experimental results of SRT-Star in the presence of
false reflections indicate that, in order to achieve
robust performance and accurate estimation of the
free space, the definition of the Local Safe Region
S must incorporate a model of the available sensors
including uncertainty and/or faults. For example, the
safe area definition of [4] includes a simple mechanism
for taking into account incidence angle constraints.

• As mentioned in the introduction, the integration of
a localization step into the exploration process based
on a SLAM technique is currently under way.

• One of the benefits of randomized search techniques
is that they are generally amenable to parallelization.
In our case, this means that the SRT method lends
itself quite directly to an extension to multirobot
exploration. However, to guarantee that the promise
for increased efficiency is fulfilled, some degree of co-
ordination between the robots must be introduced [5].
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