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Abstract— We propose an odometric system for localizing a
walking humanoid robot using standard sensory equipment,
i.e., a camera, an Inertial Measurement Unit, joint encoders
and foot pressure sensors. Our method has the prediction-
correction structure of an Extended Kalman Filter. At each
sampling instant, position and orientation of the torso are
predicted on the basis of the differential kinematic map from the
support foot to the torso, using encoder data from the support
joints. The actual measurements coming from the camera (head
position and orientation reconstructed by a V-SLAM algorithm)
and the Inertial Measurement Unit (torso orientation) are then
compared with their predicted values to correct the estimate.
The filter is made aware of the current placement of the
support foot by an asynchronous update mechanism triggered
by the pressure sensors. An experimental validation on the
humanoid NAO shows the satisfactory performance of the
proposed method.

I. INTRODUCTION

Localization, as an essential feature of autonomous mobile
robots, has been the subject of intensive research in the last
decades. For single-body mobile robots, a simple form of
localization is obtained by keeping track of motion displace-
ments with proprioceptive sensors (e.g., wheel encoders or
inertial sensors); this process, known as dead reckoning or
odometry, provides a reasonably accurate position estimate in
the short term, provided that the operating conditions are ap-
propriate (e.g., for wheeled mobile robots, low velocities, flat
floor, non-slippery terrain, etc.). Odometry is much lighter if
compared with full-blown localization or SLAM (Simulta-
neous Localization And Mapping) methods, because it does
not use or maintain a representation of the environment in
the form of a map, and may be sufficient for autonomous
short-range operation if appropriately complemented, e.g.,
by visual control. Moreover, odometry is used as a low-level
module in many advanced localization schemes.

For multibody robots such as humanoids, however, pure
odometry is hard to achieve, even in the most favorable
conditions. This is due to several reasons, such as the
the high number of degrees of freedom and their serial
arrangement causing the amplification of actuation inaccu-
racies due to backlash or flexibility at the joints, the non-
negligible dynamic effects appearing also at low speeds and
generating undesired moments that can make the feet slip,
the nature itself of biped locomotion which is characterized
by a discontinuous contact with the ground, and others. As a
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consequence, odometric localization methods for humanoids
must exploit the availability of exteroceptive sensors, such
as cameras and range finders.

Existing methods for localizing humanoid robots can be
roughly classified in three main approaches: (i) odometric
localization (ii) localization over an a priori known map
(iii) SLAM methods.

Most odometric localization methods for humanoid robots
rely on visual information, and in particular on a tech-
nique known as Visual Odometry (VO), which tracks the
apparent motion of visual features [1]. VO has been used
to reconstruct the pose of cameras mounted on humanoid
robots in [2] and [3]. In these works the camera is assumed
to move freely, and thus the estimation procedure is not
aware of the humanoid locomotion model. A visual odometry
algorithm with improved robustness to motion blur due
to walking motion is proposed in [4]. Also in this case,
only the motion of the camera frame is estimated, without
contribution from the other sensors of the robot. Although
computationally light, pure visual odometry cannot provide
feedback information at a sufficiently high frequency in a
control loop when the image acquisition rate is low, as in
low-cost humanoids.

There are also works that perform odometric localization
using only encoder and inertial sensor data, such as [5],
where odometry is used to reconstruct a 3D map of the
environment by incorporating successive laser scans. As
expected, the pose estimate is affected in this case by an
error that builds up over time. Other odometric localization
techniques are based on the comparison between the current
camera image and previously registered images, e.g., see [6].
These methods, however, require previous information about
the environment.

Methods for humanoid localization on a priori known
maps of the environment are given in [7] and [8], in which
measurements from a laser range finder are integrated with
odometry computed from proprioceptive sensors.

Among the methods based on SLAM it is worth cit-
ing [9], which integrates walking pattern generator data
in the prediction model of the Extended Kalman Filter
(EKF) embedded in the monocular Visual SLAM (V-SLAM)
algorithm proposed in [10]. A modification of the EKF com-
ponent of a V-SLAM module is also proposed in [11], using
information extracted from known landmarks and inertial
measurements. In [12], a SLAM method is developed for
humanoid navigation based on odometry and data from laser
range finders mounted on the feet.
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Fig. 1. Relevant frames: (a) Fw (world), Ft (torso) and Fh (head); (b)
enlarged view of the torso-to-head kinematic chain with the definition of
the neck joint variables qn.

In this paper, we devise an odometric localization method
that maintains a consistent estimate of the pose (position
and orientation) of a frame attached to the robot torso and
can be used in unknown, unstructured environments. This is
achieved using measurements from sensors that are found in
the standard equipment of humanoid robots, i.e., cameras,
inertial sensors, encoders and foot pressure sensors. In par-
ticular, visual information coming from the head camera is
fed to a monocular V-SLAM algorithm that acts as a sensor
enhancement and supplies a measurement of the head pose.

The choice of a V-SLAM algorithm rather than a visual
odometry for the head pose reconstruction is motivated by its
higher accuracy, obtained at the cost of an increased com-
putational complexity which however does not preclude a
real-time implementation. For example, localization systems
integrating V-SLAM information with inertial data have been
successfully developed for UAVs [13].

The structure of our algorithm is that of an Extended
Kalman Filter, in which the estimate prediction is computed
using the differential kinematics from the support foot to the
torso and the relevant joint encoder readings. For the correc-
tion, we use as measurements the head pose coming from the
V-SLAM algorithm and the torso orientation provided by the
Inertial Measurement Unit. The filter is made aware of the
current placement of the support foot by an asynchronous
update mechanism triggered by the foot pressure sensors.

The paper is organized as follows. In the next section,
we introduce the relevant definitions and formulate the
odometric localization problem. Section III contains the
description of the proposed method, while Sect. IV presents
the experimental results obtained on the humanoid robot
NAO. Section V concludes the paper and hints at some
possible future work.

II. PROBLEM FORMULATION

Loosely speaking, odometric localization consists in main-
taining a real-time estimate of the robot ‘placement’ in
the world by keeping track of motion displacements mea-
sured via proprioceptive and/or exteroceptive sensors. In
this section, we formalize this problem for a humanoid by
introducing the basic geometry and defining the sensory
equipment of the robot.
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Fig. 2. During locomotion, the base of the kinematic chain is the support
foot, whose representative frame Fs moves discontinuously upon each step
completion. The identity of the support joints must be changed accordingly.

With reference to Fig. 1a, denote by Fw the (fixed) world
frame and by Ft, Fh, respectively, the (moving) torso and
head frames. Also denote with pt, ot (ph, oh) the position
and orientation of Ft (Fh) with respect to Fw. As shown in
Fig. 1b, Ft and Fh are kinematically related through the neck
joints, whose configuration is denoted by qn. In particular,
we have

ph = pt +Rt p
t
h (1)

and
oh = Ω(Rh) = Ω(RtR

t
h), (2)

where Rt is the rotation matrix from Fw to Ft, pth is the
position of Fh with respect to Ft, Ω(·) is a function that
extracts the value of the orientation in the chosen coordinates
(e.g., R-P-Y angles) from a rotation matrix, and Rt

h is the
rotation matrix from Ft to Fh. Clearly, both pth and Rt

h are
functions of the neck joint angles qn.

In the method to be proposed, an important part will be
played by kinematic computations. In particular, during the
single support phase of a step, these computations will hinge
on the support foot, which represents the base of an open
kinematic chain whose endpoint is the origin of Ft. For this
reason, we attach a support frame Fs to that foot; moreover,
we define support joints1 those located between Fs and Ft,
and denote their configuration by qs. As shown in Fig. 2, at
the completion of each step Fs jumps to a new placement,
which is the current placement of the former swinging foot;
accordingly, the support joints must also be redefined.

Coming to the sensory equipment, we consider a rather
standard gear for a humanoid, i.e., a monocular camera
located in the robot head, an Inertial Measurement Unit
(IMU) mounted on the torso, joint encoders and foot pressure
sensors. While the last two are essential for kinematic
computations, only the camera and the IMU will actually
appear in the measurement model of our localization filter.
In particular:

• An off-the-shelf V-SLAM algorithm is used to compute
a measure of the position and orientation ph, oh of the
head frame Fh from camera images. The combination
of camera and V-SLAM algorithm is considered as an
intelligent sensor described by a black box.

1These include the joints of the support leg and those of the pelvis.
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• The only IMU measurement used is the orientation ot,
because velocity data are often too noisy and sometimes
simply unavailable, as in the case of the NAO humanoid
used for our experiments.

Our version of the odometric localization problem can now
be defined more precisely. Given initial estimates p̂t,0, ôt,0
for the position and orientation of the torso, update p̂t, ôt
continuously as the humanoid moves, using measurements
of ph, oh coming from the camera plus V-SLAM, measure-
ments of ot coming from the IMU, joint readings from the
encoders and foot pressure sensors to detect step completion.

Clearly, once a reliable estimate is known for the pose of
the torso, one may reconstruct the pose of any other part of
the humanoid body through direct kinematics.

III. THE PROPOSED METHOD

Our proposed method for vision-based odometric localization
of a humanoid has the prediction-correction structure of an
Extended Kalman Filter. In short, at each sampling instant,
a pose for the torso is predicted using the differential
kinematic map from Fs to Ft; in this phase, joint encoders
data for the support joints are used. The prediction is then
corrected on the basis of the difference between the actual
measurements coming from the camera (head position and
orientation reconstructed by a V-SLAM algorithm) plus the
IMU (torso orientation) and their expected values. The filter
is made aware of the current placement of the support foot
by an asynchronous update mechanism triggered by the foot
pressure sensors. Below, we detail this conceptual structure.

Collect the position and orientation of Ft with respect to
Fw in a pose vector x = (pt,ot), which will be the state to
be estimated by our filter. As a state-transition model for x
we will adopt the following:

ẋ = J(qs,os)q̇s, (3)

where J(qs,os) is the Jacobian matrix of the kinematic
map from Fs to Ft and os denotes the orientation of
Fs. This is a kinematic2 model, in that the support joint
velocities q̇s act as control inputs. Note that the evolution
of qs and os are not described by this model. The value
of qs will be simply read from the corresponding joint
encoders. As for os, its dynamics is asynchronous, because
the support foot placement is constant during a step and
changes discontinuously upon its completion. A separate
mechanism will be then used to update os when needed.

The output model expresses the measured variables y as a
function h of the system state x. In our case, these variables
are the head pose reconstructed by the V-SLAM algorithm
and the torso orientation measured by the IMU. Therefore

2The reasons for not using a truly dynamic state-transition model are
essentially two. The first is that the dynamic equations of a humanoid are
vey complex, often unknown and in any case their integration would be
time-consuming. The second is that the inputs of such a model would be
the joint torques, whose measurements are typically unavailable.
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Algorithm 1 Extended Kalman Filter
Require: x̂k, P k, yk+1

(1) Project the state ahead
x̂k+1|k = x̂k + J(os, qa,k)�qa,k

(2) Project covariance ahead
P k+1|k = P k + V k

(3) Compute the Kalman gain and innovation
Gk+1 = P k+1|kHT

k+1(Hk+1P k+1|kHT
k+1 + W k+1)

�1

⌫k+1 = yk+1 � h(x̂k+1|k, qn,k+1)

(4) Update estimate with measurement
x̂k+1 = x̂k+1|k + Gk+1⌫k+1

(5) Update covariance
P k+1 = P k+1|k � Gk+1Hk+1P k+1|k

if “a step is completed” then

(6) Update supporting foot pose

end if

return x̂k, P k

where G 2 R6⇥9 is the Kalman gain matrix:

Gk+1 = P k+1|kHT
k+1(Hk+1P k+1|kHT

k+1 + W k+1)
�1

(10)
and ⌫ 2 R9⇥1 the innovation:

⌫k+1 = yk+1 � h(x̂k+1|k, qn,k+1). (11)

The matrix H 2 R9⇥6 is:

Hk+1 =
@h

@x

����
x=x̂k+1|k

(12)

The correction equation of the covariance matrix is the
following:

P k+1 = P k+1|k � Gk+1Hk+1P k+1|k. (13)

C. The update of the supporting foot pose

The supporting foot pose update is critical for the correct
working of the filter. Whenever a step is completed, i.e. when a
double support phase occurs, the frame Fs is moved from one
foot to the other by updating its pose. In practice, if we assume
that the humanoid is moving on a flat floor only the yaw of
the new supporting foot need to be updated. This is provided
by forward kinematics determined by the current estimate of
the torso pose x and the current measured joint angles qa.

In summary, the algorithm of the designed Extended
Kalman Filter is shown in Algorithm 1 and its block diagram
is depicted in Fig. 3.

IV. THE HUMANOID ROBOT NAO

We consider the humanoid robot NAO as the real platform
for the test of our theoretical results. NAO is created by the
French company Aldebaran and is depicted in Fig.4(a). It has
an height of 58 cm, weighs around 4.3 kg and has 25 DoF: 2 in
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Fig. 4. The humanoid robot NAO and its kinematic model; the arms are not
considered in the kinematic chain since they do not play an active role in this
work.

the neck (qn 2 R2), 5 for each arm, 1 for each hand, 6 for each
leg (3 in the hip, 1 in the knee and 2 in the ankle, i.e. qa 2 R6).
It is equipped by a long list of sensors, in particular 2 CMOS
digital cameras, encoders to joints, gyrometers, accelerometers
and force sensitive resistors under the feet. NAO is a fully
programmable robot and the version we have considered in our
experiments (v.3.3) is equipped with a motherboard x86 AMD
Geode 500 MHz CPU, 2 GB flash Memory and 256 MB
SDRAM. Moreover it is provided of a Wi-Fi connectivity and
an Ethernet port. The onboard operating system is Embedded
Linux 32 bit.

A. Vision and Proprioceptive Sensing

1) CMOS camera and PTAM: NAO has two cameras, one
on the forehead and another one on its mouth, designed in a
way such that they do not overlap their fields of view. Each
camera provides a VGA stream video and has got a field of
view 58�. For our experiments we used the top camera by
connecting to it through Ethernet cable in order to catch a
video stream with a resolution of 320 ⇥ 240 at about 20 Hz
(by using YUV422 color space). The video stream has put as
input to PTAM, the VSLAM algorithm proposed in [7] that we
have used for our experiments. PTAM provides a 6D camera
pose at about 13 Hz. This pose represents the [pc oc]

T term
of the measurement vector y as expressed by equation (5).

2) Inertial Measurement Unit: on NAO the IMU is located
in the chest with its own processor. It is not exactly placed in
the origin of torso frame (Ft in Fig. 4), but we can assume that
IMU and torso frames coincide. IMU is made of (i) two axis
gyrometers (5% precision with an angular speed of w 500�/s)
and (ii) a three axis accelerometer (1% precision with an
acceleration of w 2G). An algorithm provided by NAO’s
producer (Aldebaran robotics) computes the torso angles from

and
Rc = RtR

t
c(qn), (2)

where Rt is the rotation matrix from Ft to Fw, pt
c (qn) is

the position of Fc w.r.t. Ft and Rt
c (qn) is the rotation matrix

from Fc to Ft.
In this section we design an EKF for estimating the pose

of the torso frame Ft:

x =


pt

ot

�
2 SE(3). (3)

First we give the state transition and output equation during
a generic step from which the prediction and correction equa-
tions of a standard EKF are derived in sect. III-A and III-B,
respectively. In sect. III-C we briefly describe the foot pose
update process triggered by the pressure sensors, finally the
complete structure of the hybrid EKF will be provided.

During each step, x evolves according to the dynamics

ẋ = J(os, qa)q̇a, (4)

where os denotes the orientation of the current supporting foot
frame Fs, and J(os, qa) is the jacobian of the kinematic chain
with base frame Fs and end effector frame Ft. why kinematic
and not dynamic model of the process? The dynamics of os

is asynchronous w.r.t. x. In particular, os changes discontin-
uosly whenever a step is completed and can be computed
algebraically from ot and the active chain joints including the
(new) supporting leg. flat vs non flat floor?

As observed output vector y of the EKF model we consider
the 3D torso frame orientation and the 6D camera pose given
by eq. (1) and “measured” by the a VSLAM algorithm used
in this work as a sensor, i.e.,

y = h(x, qn) =

0
@

pt + Rtp
t
c (qn)

⌦(RtR
t
c(qn))

ot

1
A (5)

where ⌦(RtR
t
c(qn)) is a function that extracts the RPY

angles, parameterizing the orientation of the camera frame,
from the rotation matrix (2).

Given the dynamics (4) and the output equation (5), the
discrete-time EKF model is⇢

xk+1 = xk + J(os, qa,k)q̇a,kT + vk

yk = h(xk, qn,k) + wk
(6)

where (·)k denotes the variable (·) at time kT , with T the
sampling time and k 2 N. The process and the measurement
noise are denoted respectively by vk 2 R6⇥1 and wk 2 R9⇥1

and are characterized by zero mean and covariance matrices
V k 2 R6⇥6 and W k 2 R9⇥9.

It is worth noting that the velocity input q̇a,k is approxi-
mateted by using �qa,k = qa,k+1 � qa,k. Instead, the angles
qa and qn are taken as known, i.e., they are measured via
the joint encoders and not estimated. In principle, since the
measurement step of the EKF depend on them, they should
enter the state vector and therefore be estimated themselves;
however their measure is much more precise than IMU and
VSLAM measurements, that needs filtering. Hence the choice
to consider them as measured.

Ft Ft Ft

Fs Fs Fs

qa qa qa

Fig. 2. Schematic representation of a step: the support foot is the base of the
kinematic chain (in bold) with Ft as terminal point frame. Upon completion
of a step the base frame Fs is moved to the new supporting foot and the joint
vector qa updated in accordance.
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Fig. 2. The kinematic chain (depicted in bold) considered to compute the
forward kinematic from the current supporting foot (Fh

f
) to the torso and to

back-propagate the estimated IMU pose down until the new supporting foot

(Fh+1
f

in 2(d)). In this scheme the IMU (Ft) is considered the end-effector

of the kinematic chain while the current supporting foot (Ff ) is the base that
changes from one foot to the other one when a step is completed (2(c)-2(d)).

In denotes the n⇥n identity matrix and On⇥m indicates the

n ⇥ m null matrix. The vector d1 is given by equation (3):

d1 = Rt(x)pt
c(qb) (6)

and the vector d2 is filled by the roll-pitch-yaw angles re-

trieved from the rotation matrix Rc expressed in the equa-

tion (5):

d2 =

�
�
 c

✓c

�c

�
� =

�
�

atan2(rc32 , rc33)

atan2(�rc31 , ±
�

r2
c32

+ r2
c33

)
atan2(rc21 , rc11)

�
� . (7)

Finally, we have this non linear, discrete-time equation of the

output vector:

yk = h(xk, qbk
) = Cxk + dk(xk, qbk

) (8)

where (·)k denotes the variable (·) at instant time kT , where
T is the sampling time and k 2 N.
For computing the state prediction we use the following

equation:

xk+1 = xk + �xk (9)

where

�xk = xk+1(fk+1, qak+1
) � xk(fk, qak

). (10)

� = [p̄t ōt]
T 2 R6⇥1 represents the torso pose computed

through forward kinematics by considering the kinematic

chain depicted in Fig. 2 where the end-effector is the IMU

and the base is the current supporting foot. It depends on qa,

the joint angles from the current supporting foot up to the

IMU, and on f , the 6D pose of the current supporting foot

(that is the base of the kinematic chain). Thus the vector �
can be obtained by the following transformation matrix:

T t = T f (f )T f
t (qa) =


Rt p̄t

0 0 0 1

�
(11)

where T t and T f are the transformation matrices which

express the poses of the torso and the supporting foot, and T f
t

is the transformation matrix of the torso w.r.t. the supporting

foot frame. The component ōt of the vector � is filled by the
roll-pitch-yaw angles retrieved by rotation matrix Rt.

Since the base of the kinematic chain moves from one foot

to the other one during the walking motion (see Fig.2), in

order to compute the state prediction we need some sort of

mechanism to update the estimated supporting foot pose (T f

used in equation (12)) upon the completion of a step. This can

be done by estimating the matrix T f by back-propagating the

estimated pose of the IMU:

T f (x, qa) = T t (x) (T f
t (qa))�1 = T t (x)T t

f (qa) . (12)

The estimate of T f does have a discrete nature since it is

the base orientation of the kinematic chain which in our case

change every time a step is completed. This means that T f

needs to be updated only when the frame Ff moves from one

foot to the other one (see Fig. 2(c) and 2(d)).

By summarizing, the model of the EKF has the following

expression:
⇢

xk+1 = xk + ��k + vk

yk = hk + wk
(13)

where vk 2 R6⇥1 andwk 2 R9⇥1 are respectively the process

and the measurement noise characterized by zero mean and

covariance matrices V k 2 R6⇥6 and W k 2 R9⇥9.

Note: the angles qa and qb are taken as known, i.e., they are
measured via the joint encoders and not estimated. In principle,

since the measurement step of the EKF depend on them,

they should enter the state vector and therefore be estimated

themselves; however their measure is much more precise than

IMU and V-SLAM measurements, that needs filtering. Hence

our choice to consider them as measured.

B. The prediction equations

An intermediate estimate x̂k|k�1 of the state is simply

generated by using the transition equation:

x̂k|k�1 = x̂k�1 + �xk�1 (14)

The covariance has to be estimated as well and its prediction

is expressed by the following relationship:

P k|k�1 = P k�1 + V k�1. (15)

C. The correction equations

For the state correction we have:

x̂k = x̂k|k�1 + Gk⌫k (16)

where G 2 R6⇥9 is the Kalman gain matrix:

Gk = P k|k�1H
T
k (HkP k|k�1H

T
k + W k)�1, (17)

⌫ 2 R9⇥1 the so-called residual:

⌫k = yk � Cx̂k|k�1 � dk|k�1. (18)

The matrix H 2 R9⇥6 can be expresses as follows:

Hk =
@h

@x

����
x=x̂k|k�1

= C +
@d

@x

����
x=x̂k|k�1

(19)

where @d/@x is the Jacobian matrix of the function d w.r.t.

the state vector x .

predictionoutput 
prediction

hold

y

PTAM IMU encoders

pc

oc 

ot

+

-
innovation

os

EKF

º

Fig. 3. Representation of the proposed EKF. Note how the foot pose update
triggered by the pressure sensors is used to reflect the hybrid structure of the
walking gait.

A. The prediction equations

An intermediate estimate x̂k+1|k of the state is simply
generated by using the transition equation:

x̂k+1|k = x̂k + J(os, qa,k)�qa,k. (7)

The covariance has to be estimated as well and its prediction
is expressed by the following relationship:

P k+1|k = P k + V k. (8)

B. The correction equations

For the state correction we have:

x̂k+1 = x̂k+1|k + Gk+1⌫k+1 (9)

and
Rc = RtR

t
c(qn), (2)

where Rt is the rotation matrix from Ft to Fw, pt
c (qn) is

the position of Fc w.r.t. Ft and Rt
c (qn) is the rotation matrix

from Fc to Ft.
In this section we design an EKF for estimating the pose

of the torso frame Ft:

x =


pt

ot

�
2 SE(3). (3)

First we give the state transition and output equation during
a generic step from which the prediction and correction equa-
tions of a standard EKF are derived in sect. III-A and III-B,
respectively. In sect. III-C we briefly describe the foot pose
update process triggered by the pressure sensors, finally the
complete structure of the hybrid EKF will be provided.

During each step, x evolves according to the dynamics

ẋ = J(os, qa)q̇a, (4)

where os denotes the orientation of the current supporting foot
frame Fs, and J(os, qa) is the jacobian of the kinematic chain
with base frame Fs and end effector frame Ft. why kinematic
and not dynamic model of the process? The dynamics of os

is asynchronous w.r.t. x. In particular, os changes discontin-
uosly whenever a step is completed and can be computed
algebraically from ot and the active chain joints including the
(new) supporting leg. flat vs non flat floor?

As observed output vector y of the EKF model we consider
the 3D torso frame orientation and the 6D camera pose given
by eq. (1) and “measured” by the a VSLAM algorithm used
in this work as a sensor, i.e.,

y = h(x, qn) =

0
@

pt + Rtp
t
c (qn)

⌦(RtR
t
c(qn))

ot

1
A (5)

where ⌦(RtR
t
c(qn)) is a function that extracts the RPY

angles, parameterizing the orientation of the camera frame,
from the rotation matrix (2).

Given the dynamics (4) and the output equation (5), the
discrete-time EKF model is⇢

xk+1 = xk + J(os, qa,k)q̇a,kT + vk

yk = h(xk, qn,k) + wk
(6)

where (·)k denotes the variable (·) at time kT , with T the
sampling time and k 2 N. The process and the measurement
noise are denoted respectively by vk 2 R6⇥1 and wk 2 R9⇥1

and are characterized by zero mean and covariance matrices
V k 2 R6⇥6 and W k 2 R9⇥9.

It is worth noting that the velocity input q̇a,k is approxi-
mateted by using �qa,k = qa,k+1 � qa,k. Instead, the angles
qa and qn are taken as known, i.e., they are measured via
the joint encoders and not estimated. In principle, since the
measurement step of the EKF depend on them, they should
enter the state vector and therefore be estimated themselves;
however their measure is much more precise than IMU and
VSLAM measurements, that needs filtering. Hence the choice
to consider them as measured.

Ft Ft Ft

Fs Fs Fs

qa qa qa

Fig. 2. Schematic representation of a step: the support foot is the base of the
kinematic chain (in bold) with Ft as terminal point frame. Upon completion
of a step the base frame Fs is moved to the new supporting foot and the joint
vector qa updated in accordance.
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in 2(d)). In this scheme the IMU (Ft) is considered the end-effector

of the kinematic chain while the current supporting foot (Ff ) is the base that
changes from one foot to the other one when a step is completed (2(c)-2(d)).

In denotes the n⇥n identity matrix and On⇥m indicates the

n ⇥ m null matrix. The vector d1 is given by equation (3):

d1 = Rt(x)pt
c(qb) (6)

and the vector d2 is filled by the roll-pitch-yaw angles re-

trieved from the rotation matrix Rc expressed in the equa-

tion (5):

d2 =

�
�
 c

✓c

�c

�
� =

�
�

atan2(rc32 , rc33)

atan2(�rc31 , ±
�

r2
c32

+ r2
c33

)
atan2(rc21 , rc11)

�
� . (7)

Finally, we have this non linear, discrete-time equation of the

output vector:

yk = h(xk, qbk
) = Cxk + dk(xk, qbk

) (8)

where (·)k denotes the variable (·) at instant time kT , where
T is the sampling time and k 2 N.
For computing the state prediction we use the following

equation:

xk+1 = xk + �xk (9)

where

�xk = xk+1(fk+1, qak+1
) � xk(fk, qak

). (10)

� = [p̄t ōt]
T 2 R6⇥1 represents the torso pose computed

through forward kinematics by considering the kinematic

chain depicted in Fig. 2 where the end-effector is the IMU

and the base is the current supporting foot. It depends on qa,

the joint angles from the current supporting foot up to the

IMU, and on f , the 6D pose of the current supporting foot

(that is the base of the kinematic chain). Thus the vector �
can be obtained by the following transformation matrix:

T t = T f (f )T f
t (qa) =


Rt p̄t

0 0 0 1

�
(11)

where T t and T f are the transformation matrices which

express the poses of the torso and the supporting foot, and T f
t

is the transformation matrix of the torso w.r.t. the supporting

foot frame. The component ōt of the vector � is filled by the
roll-pitch-yaw angles retrieved by rotation matrix Rt.

Since the base of the kinematic chain moves from one foot

to the other one during the walking motion (see Fig.2), in

order to compute the state prediction we need some sort of

mechanism to update the estimated supporting foot pose (T f

used in equation (12)) upon the completion of a step. This can

be done by estimating the matrix T f by back-propagating the

estimated pose of the IMU:

T f (x, qa) = T t (x) (T f
t (qa))�1 = T t (x)T t

f (qa) . (12)

The estimate of T f does have a discrete nature since it is

the base orientation of the kinematic chain which in our case

change every time a step is completed. This means that T f

needs to be updated only when the frame Ff moves from one

foot to the other one (see Fig. 2(c) and 2(d)).

By summarizing, the model of the EKF has the following

expression:
⇢

xk+1 = xk + ��k + vk

yk = hk + wk
(13)

where vk 2 R6⇥1 andwk 2 R9⇥1 are respectively the process

and the measurement noise characterized by zero mean and

covariance matrices V k 2 R6⇥6 and W k 2 R9⇥9.

Note: the angles qa and qb are taken as known, i.e., they are
measured via the joint encoders and not estimated. In principle,

since the measurement step of the EKF depend on them,

they should enter the state vector and therefore be estimated

themselves; however their measure is much more precise than

IMU and V-SLAM measurements, that needs filtering. Hence

our choice to consider them as measured.

B. The prediction equations

An intermediate estimate x̂k|k�1 of the state is simply

generated by using the transition equation:

x̂k|k�1 = x̂k�1 + �xk�1 (14)

The covariance has to be estimated as well and its prediction

is expressed by the following relationship:

P k|k�1 = P k�1 + V k�1. (15)

C. The correction equations

For the state correction we have:

x̂k = x̂k|k�1 + Gk⌫k (16)

where G 2 R6⇥9 is the Kalman gain matrix:

Gk = P k|k�1H
T
k (HkP k|k�1H

T
k + W k)�1, (17)

⌫ 2 R9⇥1 the so-called residual:

⌫k = yk � Cx̂k|k�1 � dk|k�1. (18)

The matrix H 2 R9⇥6 can be expresses as follows:

Hk =
@h

@x

����
x=x̂k|k�1

= C +
@d

@x

����
x=x̂k|k�1

(19)

where @d/@x is the Jacobian matrix of the function d w.r.t.

the state vector x .

predictionoutput 
prediction

hold

y

PTAM IMU encoders

pc

oc 

ot

+

-
innovation

os

EKF

º

Fig. 3. Representation of the proposed EKF. Note how the foot pose update
triggered by the pressure sensors is used to reflect the hybrid structure of the
walking gait.

A. The prediction equations

An intermediate estimate x̂k+1|k of the state is simply
generated by using the transition equation:

ŷk+1|k = x̂k+1|k = x̂k + J(os, qa,k)�qa,k. (7)

The covariance has to be estimated as well and its prediction
is expressed by the following relationship:

P k+1|k = P k + V k. (8)

B. The correction equations

For the state correction we have:

x̂k+1 = x̂k+1|k + Gk+1⌫k+1 (9)

and
Rc = RtR

t
c(qn), (2)

where Rt is the rotation matrix from Ft to Fw, pt
c (qn) is

the position of Fc w.r.t. Ft and Rt
c (qn) is the rotation matrix

from Fc to Ft.
In this section we design an EKF for estimating the pose

of the torso frame Ft:

x =


pt

ot

�
2 SE(3). (3)

First we give the state transition and output equation during
a generic step from which the prediction and correction equa-
tions of a standard EKF are derived in sect. III-A and III-B,
respectively. In sect. III-C we briefly describe the foot pose
update process triggered by the pressure sensors, finally the
complete structure of the hybrid EKF will be provided.

During each step, x evolves according to the dynamics

ẋ = J(os, qa)q̇a, (4)

where os denotes the orientation of the current supporting foot
frame Fs, and J(os, qa) is the jacobian of the kinematic chain
with base frame Fs and end effector frame Ft. why kinematic
and not dynamic model of the process? The dynamics of os

is asynchronous w.r.t. x. In particular, os changes discontin-
uosly whenever a step is completed and can be computed
algebraically from ot and the active chain joints including the
(new) supporting leg. flat vs non flat floor?

As observed output vector y of the EKF model we consider
the 3D torso frame orientation and the 6D camera pose given
by eq. (1) and “measured” by the a VSLAM algorithm used
in this work as a sensor, i.e.,

y = h(x, qn) =

0
@

pt + Rtp
t
c (qn)

⌦(RtR
t
c(qn))

ot

1
A (5)

where ⌦(RtR
t
c(qn)) is a function that extracts the RPY

angles, parameterizing the orientation of the camera frame,
from the rotation matrix (2).

Given the dynamics (4) and the output equation (5), the
discrete-time EKF model is⇢

xk+1 = xk + J(os, qa,k)q̇a,kT + vk

yk = h(xk, qn,k) + wk
(6)

where (·)k denotes the variable (·) at time kT , with T the
sampling time and k 2 N. The process and the measurement
noise are denoted respectively by vk 2 R6⇥1 and wk 2 R9⇥1

and are characterized by zero mean and covariance matrices
V k 2 R6⇥6 and W k 2 R9⇥9.

It is worth noting that the velocity input q̇a,k is approxi-
mateted by using �qa,k = qa,k+1 � qa,k. Instead, the angles
qa and qn are taken as known, i.e., they are measured via
the joint encoders and not estimated. In principle, since the
measurement step of the EKF depend on them, they should
enter the state vector and therefore be estimated themselves;
however their measure is much more precise than IMU and
VSLAM measurements, that needs filtering. Hence the choice
to consider them as measured.
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qa qa qa

Fig. 2. Schematic representation of a step: the support foot is the base of the
kinematic chain (in bold) with Ft as terminal point frame. Upon completion
of a step the base frame Fs is moved to the new supporting foot and the joint
vector qa updated in accordance.
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Fig. 2. The kinematic chain (depicted in bold) considered to compute the
forward kinematic from the current supporting foot (Fh

f
) to the torso and to

back-propagate the estimated IMU pose down until the new supporting foot

(Fh+1
f

in 2(d)). In this scheme the IMU (Ft) is considered the end-effector

of the kinematic chain while the current supporting foot (Ff ) is the base that
changes from one foot to the other one when a step is completed (2(c)-2(d)).

In denotes the n⇥n identity matrix and On⇥m indicates the

n ⇥ m null matrix. The vector d1 is given by equation (3):

d1 = Rt(x)pt
c(qb) (6)

and the vector d2 is filled by the roll-pitch-yaw angles re-

trieved from the rotation matrix Rc expressed in the equa-

tion (5):

d2 =
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Finally, we have this non linear, discrete-time equation of the

output vector:

yk = h(xk, qbk
) = Cxk + dk(xk, qbk

) (8)

where (·)k denotes the variable (·) at instant time kT , where
T is the sampling time and k 2 N.
For computing the state prediction we use the following

equation:

xk+1 = xk + �xk (9)

where

�xk = xk+1(fk+1, qak+1
) � xk(fk, qak

). (10)

� = [p̄t ōt]
T 2 R6⇥1 represents the torso pose computed

through forward kinematics by considering the kinematic

chain depicted in Fig. 2 where the end-effector is the IMU

and the base is the current supporting foot. It depends on qa,

the joint angles from the current supporting foot up to the

IMU, and on f , the 6D pose of the current supporting foot

(that is the base of the kinematic chain). Thus the vector �
can be obtained by the following transformation matrix:

T t = T f (f )T f
t (qa) =


Rt p̄t

0 0 0 1

�
(11)

where T t and T f are the transformation matrices which

express the poses of the torso and the supporting foot, and T f
t

is the transformation matrix of the torso w.r.t. the supporting

foot frame. The component ōt of the vector � is filled by the
roll-pitch-yaw angles retrieved by rotation matrix Rt.

Since the base of the kinematic chain moves from one foot

to the other one during the walking motion (see Fig.2), in

order to compute the state prediction we need some sort of

mechanism to update the estimated supporting foot pose (T f

used in equation (12)) upon the completion of a step. This can

be done by estimating the matrix T f by back-propagating the

estimated pose of the IMU:

T f (x, qa) = T t (x) (T f
t (qa))�1 = T t (x)T t

f (qa) . (12)

The estimate of T f does have a discrete nature since it is

the base orientation of the kinematic chain which in our case

change every time a step is completed. This means that T f

needs to be updated only when the frame Ff moves from one

foot to the other one (see Fig. 2(c) and 2(d)).

By summarizing, the model of the EKF has the following

expression:
⇢

xk+1 = xk + ��k + vk

yk = hk + wk
(13)

where vk 2 R6⇥1 andwk 2 R9⇥1 are respectively the process

and the measurement noise characterized by zero mean and

covariance matrices V k 2 R6⇥6 and W k 2 R9⇥9.

Note: the angles qa and qb are taken as known, i.e., they are
measured via the joint encoders and not estimated. In principle,

since the measurement step of the EKF depend on them,

they should enter the state vector and therefore be estimated

themselves; however their measure is much more precise than

IMU and V-SLAM measurements, that needs filtering. Hence

our choice to consider them as measured.

B. The prediction equations

An intermediate estimate x̂k|k�1 of the state is simply

generated by using the transition equation:

x̂k|k�1 = x̂k�1 + �xk�1 (14)

The covariance has to be estimated as well and its prediction

is expressed by the following relationship:

P k|k�1 = P k�1 + V k�1. (15)

C. The correction equations

For the state correction we have:

x̂k = x̂k|k�1 + Gk⌫k (16)

where G 2 R6⇥9 is the Kalman gain matrix:

Gk = P k|k�1H
T
k (HkP k|k�1H

T
k + W k)�1, (17)

⌫ 2 R9⇥1 the so-called residual:

⌫k = yk � Cx̂k|k�1 � dk|k�1. (18)

The matrix H 2 R9⇥6 can be expresses as follows:

Hk =
@h

@x

����
x=x̂k|k�1

= C +
@d

@x

����
x=x̂k|k�1

(19)

where @d/@x is the Jacobian matrix of the function d w.r.t.

the state vector x .
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Fig. 3. Representation of the proposed EKF. Note how the foot pose update
triggered by the pressure sensors is used to reflect the hybrid structure of the
walking gait.

A. The prediction equations

An intermediate estimate x̂k+1|k of the state is simply
generated by using the transition equation:

x̂k+1|k = x̂k + J(os, qa,k)�qa,k. (7)

The covariance has to be estimated as well and its prediction
is expressed by the following relationship:

P k+1|k = P k + V k. (8)

B. The correction equations

For the state correction we have:

x̂k+1 = x̂k+1|k + Gk+1⌫k+1 (9)
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The covariance prediction is expressed by the relationship:

P k+1|k = P k + V k. (9)

B. The correction equations

For the state correction we have:

x̂k+1 = x̂k+1|k + Gk+1�k+1 (10)

where G ⇥ R6⇥9 is the Kalman gain matrix:

Gk+1 = P k+1|kHT
k+1(Hk+1P k+1|kHT

k+1 + W k+1)
�1

(11)
and � ⇥ R9⇥1 the innovation:

�k+1 = yk+1 � h(x̂k+1|k, qn,k+1). (12)

The matrix H ⇥ R9⇥6 is:

Hk+1 =
�h

�x

����
x=x̂k+1|k

(13)

The correction equation of the covariance matrix is the
following:

P k+1 = P k+1|k � Gk+1Hk+1P k+1|k. (14)

Algorithm 1 Extended Kalman Filter
Require: x̂k, P k, yk+1

(1) Project the state ahead
x̂k+1|k = x̂k + J(os, qa,k)�qa,k

(2) Project covariance ahead
P k+1|k = P k + V k

(3) Compute the Kalman gain and innovation
Gk+1 = P k+1|kHT

k+1(Hk+1P k+1|kHT
k+1 + W k+1)

�1

�k+1 = yk+1 � ŷk+1|k

(4) Update estimate with measurement
x̂k+1 = x̂k+1|k + Gk+1�k+1

(5) Update covariance
P k+1 = P k+1|k � Gk+1Hk+1P k+1|k

if “a step is completed” then

(6) Update supporting foot pose

end if

return x̂k+1,P k+1

C. The update of the supporting foot pose

The supporting foot pose update is critical for the correct
working of the filter. Whenever a step is completed, i.e. when a
double support phase occurs, the frame Fs is moved from one
foot to the other by updating its pose. In practice, if we assume
that the humanoid is moving on a flat floor only the yaw of
the new supporting foot need to be updated. This is provided
by forward kinematics determined by the current estimate of
the torso pose x and the current measured joint angles qa.

In summary, the algorithm of the designed Extended
Kalman Filter is shown in Algorithm 1 and its block diagram
is depicted in Fig. 3.

IV. THE HUMANOID ROBOT NAO

The experimental platform used to validate the proposed
estimation algorithm is the humanoid NAO (version 3.3),
developed by Aldebaran Robotics. Figure 4(a) shows the robot
with the frames of interest for the present study. NAO has 25
degrees of freedom of which 2 are in the neck (qn ⇥ R2) and
6 in each leg (qa ⇥ R6). The remaining degrees of freedom
are distributed between arms and hands and are not used in
this work. The sensor suite includes: 2 CMOS digital cameras,
each with a 58⇤field of view, mounted on the forehead and on
the mouth with non-overlapping field of view; one Inertial
Measurement Unit (IMU) located in the chest, approximately
at the origin of the torso frame Ft, providing the torso roll and
pitch angles computed from accelerometers and gyrometers
data; at least one Magnetic Rotary Encoder (MRE) on each
joint with resolution of about 0.1⇤; Force Sensitive Resistors
(FSRs), located under the feet of the robot, measuring a
resistance change due to the applied pressure.
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Fig. 3. Representation of the proposed EKF. Note how the foot pose update
triggered by the pressure sensors is used to reflect the hybrid structure of the
walking gait.

The covariance prediction is expressed by the relationship:

P k+1|k = P k + V k. (9)

B. The correction equations

For the state correction we have:

x̂k+1 = x̂k+1|k + Gk+1�k+1 (10)

where G ⇥ R6⇥9 is the Kalman gain matrix:

Gk+1 = P k+1|kHT
k+1(Hk+1P k+1|kHT

k+1 + W k+1)
�1

(11)
and � ⇥ R9⇥1 the innovation:

�k+1 = yk+1 � h(x̂k+1|k, qn,k+1). (12)

The matrix H ⇥ R9⇥6 is:

Hk+1 =
�h

�x

����
x=x̂k+1|k

(13)

The correction equation of the covariance matrix is the
following:

P k+1 = P k+1|k � Gk+1Hk+1P k+1|k. (14)

Algorithm 1 Extended Kalman Filter
Require: x̂k, P k, yk+1

(1) Project the state ahead
x̂k+1|k = x̂k + J(os, qa,k)�qa,k

(2) Project covariance ahead
P k+1|k = P k + V k

(3) Compute the Kalman gain and innovation
Gk+1 = P k+1|kHT

k+1(Hk+1P k+1|kHT
k+1 + W k+1)

�1

�k+1 = yk+1 � ŷk+1|k

(4) Update estimate with measurement
x̂k+1 = x̂k+1|k + Gk+1�k+1

(5) Update covariance
P k+1 = P k+1|k � Gk+1Hk+1P k+1|k

if “a step is completed” then

(6) Update supporting foot pose

end if

return x̂k+1,P k+1

C. The update of the supporting foot pose

The supporting foot pose update is critical for the correct
working of the filter. Whenever a step is completed, i.e. when a
double support phase occurs, the frame Fs is moved from one
foot to the other by updating its pose. In practice, if we assume
that the humanoid is moving on a flat floor only the yaw of
the new supporting foot need to be updated. This is provided
by forward kinematics determined by the current estimate of
the torso pose x and the current measured joint angles qa.

In summary, the algorithm of the designed Extended
Kalman Filter is shown in Algorithm 1 and its block diagram
is depicted in Fig. 3.

IV. THE HUMANOID ROBOT NAO

The experimental platform used to validate the proposed
estimation algorithm is the humanoid NAO (version 3.3),
developed by Aldebaran Robotics. Figure 4(a) shows the robot
with the frames of interest for the present study. NAO has 25
degrees of freedom of which 2 are in the neck (qn ⇥ R2) and
6 in each leg (qa ⇥ R6). The remaining degrees of freedom
are distributed between arms and hands and are not used in
this work. The sensor suite includes: 2 CMOS digital cameras,
each with a 58⇤field of view, mounted on the forehead and on
the mouth with non-overlapping field of view; one Inertial
Measurement Unit (IMU) located in the chest, approximately
at the origin of the torso frame Ft, providing the torso roll and
pitch angles computed from accelerometers and gyrometers
data; at least one Magnetic Rotary Encoder (MRE) on each
joint with resolution of about 0.1⇤; Force Sensitive Resistors
(FSRs), located under the feet of the robot, measuring a
resistance change due to the applied pressure.

Fig. 3. A block scheme of the proposed odometric localization method.
Note the asynchronous update mechanism triggered by the pressure sensors
used to make the filter aware of the current orientation of the support foot.

we have:

y = h(x, qn) =



pt +Rt p

t
h

Ω(RtR
t
h)

ot


 , (4)

having used eqs. (1–2). Note that the output is also a function
of the neck joints configuration through pth and Rt

h. Like qs
in the state-transition model, the value of qn is read from
the joint encoders.

Using a subscript k to denote the value of a variable at time
kT , where T is the sampling time, a discrete-time perturbed
system can be associated to model (3–4) as follows:

xk+1 = xk + TJ(qs,k,os)q̇s,k + vk (5)
yk = h(xk, qn,k) +wk, (6)

where vk, wk are white gaussian noises with zero mean and
covariance matrices V k ∈ R6×6, W k ∈ R9×9, respectively.
Once again, note how the orientation os of the support frame
is asynchronous with respect to all the other variables.

We are now ready to write down the equations of the
proposed odometric localization filter, whose block scheme
is illustrated in Fig. 3.

A. State prediction

The state prediction x̂k+1|k is generated from the current
estimate using eq. (5):

x̂k+1|k = x̂k + J(qs,k,os)∆qs,k,
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where the encoder reading difference ∆qs,k = qs,k+1−qs,k
is used to approximate the velocity input term T q̇s,k.

Linearization of the discrete-time state equation (5) imme-
diately leads to the following covariance prediction:

P k+1|k = P k + V k. (7)

B. Output prediction

The predicted output is calculated as

ŷk+1|k = h(x̂k+1|k, qn,k+1),

with h(·) defined in eq. (4). This computation requires the
value of the neck joints, read via the corresponding encoders.

C. Correction

Correction of x̂k+1|k is performed based on the value of the
innovation, i.e., the difference between the measured and the
predicted output:

νk+1 = yk+1 − ŷk+1|k.

The state estimate is then corrected as follows:

x̂k+1 = x̂k+1|k +Gk+1νk+1,

where G ∈ R6×9 is the Kalman gain matrix:

Gk+1 = P k+1|kH
T
k+1(Hk+1P k+1|kH

T
k+1 +W k+1)−1

and

Hk+1 =
∂h

∂x

∣∣∣∣
x=x̂k+1|k

.

The actual expression of Hk+1 will depend on the choice
of coordinates for representing orientations.

Finally, the correction equation for the covariance matrix
is

P k+1 = P k+1|k −Gk+1Hk+1P k+1|k.

D. Support foot update

When the foot pressure sensors detect a transition from a
single to a double support phase (i.e., completion of a step),
the support frame is displaced to the next support foot. Since
the differential kinematics (3) do not depend on ps, only the
orientation os of Fs is updated3. To this end, a forward
kinematic computation is carried out from Ft (which now
acts as a base frame placed at its current estimated pose) to
Fs, using the encoders to read the value of the new support
joints (see Fig. 2).

3If the humanoid is moving on a flat floor, only the yaw angle of Fs

needs to be updated.

Fh

Ft

Fs

Fh

Ft

Fs

qn

qs

Fig. 4. NAO and the kinematic chains of interest in this paper.

Fig. 5. Experimental scenarios: The robot is commanded to walk along a
straight line in the first experiment (left) and a square path in the second
experiment (right).

IV. EXPERIMENTAL RESULTS

The experimental platform used to validate our odometric
localization method is the NAO humanoid developed by
Aldebaran Robotics. Figure 4 shows the robot with the
frames and the kinematic chains of interest for the present
study. There are 5 degrees of freedom in each leg, 1 in the
pelvis, and 2 in the neck; therefore, we have qs ∈ R6 and
qn ∈ R2. The built-in sensors we used are: the CMOS digital
camera with a 58◦ field of view mounted on the forehead;
the IMU located in the chest, which provides a measure of
the torso roll and pitch angles but no yaw (hence the output
vector y is actually 8-dimensional in our case); the magnetic
rotary encoders with 0.1◦ resolution available at the joints;
and the force sensitive resistors located under the feet, that
measure the applied pressure through a change in resistance.

As a V-SLAM module, we selected the PTAM algo-
rithm [14]. To avoid overburdening the robot CPU, images
at 320×240 resolution are sent to an external computer that
runs PTAM and makes available a measurement of the pose
of NAO’s head at 13 Hz. Thus, our kinematic EKF runs at
the same rate, although multiple prediction steps are taken to
exploit the fact that IMU and encoder readings are available
at a higher rate (about 93 Hz). The support foot is updated
asynchronously when the force sensitive resistors indicate
transition from single to double support.
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Fig. 6. First experiment. Head position: comparison among filter estimate,
built-in NAO odometry and ground truth.
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Fig. 7. First experiment. Head position error norm: comparison between
filter estimate and built-in NAO odometry.
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Fig. 8. First experiment. Camera position: estimates computed by PTAM
algorithm.

Our experiments begin with an initialization phase, in
which NAO performs a sideways motion on the spot to
collect visual information and allow PTAM to recover the
metric scale. After that, motion commands are sent to the
robot using the NAO APIs, and in particular the setWalk-
TargetVelocity function. This is an open-loop command, and
therefore the robot will soon veer off the nominal course due
to non-idealities (most importantly, foot slippage). To obtain
a baseline for performance assessment, we used a ceiling
camera to record the whole experiment. An automatic feature
tracker extracts the xh, yh coordinates of the head from the
images, thus providing a ground truth; this is compared4

4This comparison does not directly concern the orientation estimate for
the torso. However, the head coordinates clearly depend on such estimate
through the torso-to-head kinematics. Moreover, our objective is to design an
odometric localization method for locomotion tasks, and therefore a simple
cartesian validation appears to be sufficient for a preliminary analysis.

with the value of the same coordinates reconstructed using
the filter estimate for the torso pose and computing forward
kinematics from the torso to the head. For comparison,
we also stored the built-in NAO odometry provided by the
getPosition function.

We report the results of two experiments. On the basis of
empirical observations, the covariance matrices were set to:

V = diag{2.5, 2.5, 2.5, 10, 10, 10} · 10−5

W = diag{25, 25, 25, 1, . . . , 1} · 10−2

using meters for positions and radians for orientations. In the
first experiment, the robot is commanded to walk in straight
line at a velocity of 0.1 m/s (see Fig. 5, left). As shown
in Figs. 6–7, the proposed odometric localization performs
rather well, providing an estimate close to the ground truth.
The built-in NAO odometry does not reflect the fact that the
robot departs from the nominal path. In terms of RMS of
the error, we have a value of 0.039242 m and 0.134535 m,
respectively, for the proposed filter and the built-in odometry.
Looking at the camera5 position estimated by PTAM, shown
in Fig. 8, one may appreciate the benefits of the proposed
filter in smoothing this estimate and making it consistent
with a humanoid motion.

In the second experiment, the robot is commanded to walk
along a square path at 0.1 m/s (see Fig. 5, right). In particular,
to test the filter under the full omnidirectional walk of which
NAO is capable, the robot marches forward along the first
side, sideways (right) along the second, backwards along
the third and sideways (left) along the fourth. The results,
shown in Figs. 9–11, show again that the proposed odometric
localization scheme is quite accurate and outperforms the
built-in odometry. In particular, the RMS of the error is
0.049657 m with the former and 0.128314 m with the latter.

Movie clips of the above two experiments are included
in the video accompanying this paper. We have extensively
tested our odometric localization algorithm in different en-
vironments and settings, obtaining similarly good results. In
particular, the filter proved to be quite robust to changes in
the commanded motion of the robot as well as to temporary
failures of the V-SLAM algorithm, even in the absence of a
specific mechanism for detecting these failures and rejecting
the associated measurements.

V. CONCLUSIONS

We have described a method for odometric localization of a
humanoid robot using visual information. The proposed algo-
rithm has the prediction-correction structure of an Extended
Kalman Filter. At each sampling instant, a pose for the torso
is predicted using the differential kinematic map from the
support foot to torso itself; in this phase, joint encoders
data for the support joints are used. The prediction is then
corrected on the basis of the difference between the actual
measurements coming from the camera (head position and
orientation reconstructed by a V-SLAM algorithm) plus the

5There is in fact a small displacement between the head and the camera
frames.
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Fig. 9. Second experiment. Head position: comparison between filter
estimate and ground truth.
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Fig. 10. Second experiment. Head position: built-in NAO odometry.
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Fig. 11. Second experiment. Head position error norm: comparison between
filter estimate and built-in NAO odometry.

IMU (torso orientation) and their expected values. The filter
is made aware of the current placement of the support foot
by an asynchronous update mechanism triggered by the foot
pressure sensors. Experimental results on a NAO humanoid
have been presented to show the satisfactory performance of
the method, in spite of the use of a single low-cost camera.

Even better results can be expected, e.g., if a stereo camera
system is available on the robot.

Future work will be aimed at several objectives, including:
• bringing the whole localization system on-board by

implementing a lightweight version of PTAM (e.g.,
see [13]), as well as trying other off-the-shelf V-SLAM
algorithms for estimating the pose of the head (for ex-
ample, the multiple mapping capability of PTAMM [15]
may be beneficial for long-range localization);

• accurately characterizing the noise associated to PTAM,
and incorporating into the EKF the resulting variable
uncertainty;

• performing experiments with variable elevation, such as
walking up slopes or stairs;

• using the odometric localization data to close the control
loop and achieve a robust navigation behavior.
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