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Outline

1. Reinforcement Learning (RL):
• What is RL?
• Two difficulties in applying RL

2. Instructions for Reinforcement Learning
• LTL formulas
• Reward Machines

3. Advice for Reinforcement Learning

4. Summary
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How does Reinforcement Learning work?

Environment

Transition Probabilities

Reward Function

RL Agent

Policy

reward

action

state

Based on diagram from Sutton and Barto (1998, Figure 3.1)

3 / 16



Two difficulties in applying RL

• Reward specification: It is really hard to define proper
reward functions for complex tasks.

• Sample efficiency: RL agents might require billions of
interactions with the environment to learn good policies.
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Example environment

Luigi can collect raw materials:

wood grass iron gold gems

... and make new objects in:

factory toolshed workbench

Make a bridge: get wood, iron, and use the factory
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Linear Temporal Logic (LTL) (Pnueli, 1977)

LTL augments propositional logic with the temporal operators
# (next), 3 (eventually), and U (until):

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | #ϕ | 3ϕ | ϕ1 Uϕ2

where p is an atomic symbol.

Examples:

3got wood (1)

3(got grass ∧3used factory) (2)

3got wood ∨3got iron (3)

3got grass ∧3got iron (4)

(is night→ at shelter) U got wood (5)
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Instructing RL agents with co-safe LTL

General idea:

• Reward the agent when it satisfies the formula.

• Therefore, an optimal policy would satisfy the formula as
soon as possible.

Main advantage:

• Standard RL: The reward function is a black box.

• RL with LTL: The LTL formula exposes the task’s structure
to the agent.
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Example

Consider telling the agent to learn a policy for the following task:

ϕ = 3(got iron ∧3used factory) ∧3got gold

Then, the agent knows that at some point it might have to satisfy
some of the following formulas:

ϕ1 = 3(got iron ∧3used factory)

ϕ2 = 3used factory ∧3got gold

ϕ3 = 3used factory

ϕ4 = 3got gold

We proposed to combine this knowledge with off-policy (deep) RL
to learn optimal policies for the task and each subtask in parallel.
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Results
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Our approach (red curve) finds better policies faster than standard
DRL (blue curve)

and Hierarchical DRL (yellow and cyan curves).

Paper: “Teaching Multiple Tasks to an RL Agent using LTL”
Code: https://bitbucket.org/RToroIcarte/lpopl
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Instructing RL agents with automata

Our ICML paper generalizes the previous idea to work over
automata representations of the reward function.

u0

u1u2

α0/R1

¬α0/R0

α1/R3

¬α1/R2¬α2/R4

α2/R5

Figure: A reward machine

In this case, our approach learns one policy for each node.
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More results
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Our approach (red curve) finds better policies faster than standard
DRL (blue curve) and Hierarchical DRL (yellow and cyan curves).

Paper: “Using Reward Machines for High-Level Task Specification
and Decomposition in Reinforcement Learning”
Code: https://bitbucket.org/RToroIcarte/qrm
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LTL as an advice language

Advice suggests how to achieve rewards, but does not define the
rewards.

Idea:

• Use a model-based RL algorithm.

• Guide the exploration with a heuristic estimating what actions
will make progress towards satisfying the (finite) LTL advice.

• Good advice can reduce the amount of exploration required to
learn a good policy,

• Bad advice will eventually be recovered from.

Paper: “Advice-Based Exploration in Model-Based Reinforcement
Learning”
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Summary

Instructions:

• “Teaching Multiple Tasks to an RL Agent using LTL”
(AAMAS 2018)

• “Using Reward Machines for High-Level Task Specification
and Decomposition in Reinforcement Learning” (ICML 2018)

Advice:

• “Advice-Based Exploration in Model-Based Reinforcement
Learning” (Canadian AI 2018)
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