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1. Reinforcement Learning (RL):
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e LTL formulas
e Reward Machines

3. Advice for Reinforcement Learning

4. Summary
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How does Reinforcement Learning work?

Environment

Based on diagram from Sutton and Barto (1998, Figure 3.1)

—————>| Transition Probabilities
Reward Function
reward
action RL Agent )
Policy state
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Two difficulties in applying RL

¢ Reward specification: It is really hard to define proper
reward functions for complex tasks.

e Sample efficiency: RL agents might require billions of
interactions with the environment to learn good policies.
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Example environment
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Example environment
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Example environment

Luigi can collect raw materials:

¥ M v

wood grass  iron gold gems

... and make new objects in:

factory toolshed  workbench

Make a bridge: get wood, iron, and use the factory
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Linear Temporal Logic (LTL) (Pnueli, 1977)

LTL augments propositional logic with the temporal operators
O (next), < (eventually), and U (until):

pri=p|lop| o1 Apa| Op | v | p1Ups

where p is an atomic symbol.
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Linear Temporal Logic (LTL) (Pnueli, 1977)

LTL augments propositional logic with the temporal operators
O (next), < (eventually), and U (until):

pi=pl=pler A2 | Op | Cp iU
where p is an atomic symbol.
Examples:

Ogot_wood

N

O(got_grass A Oused _factory)
Ogot_wood V Ogot_iron

N

Ogot_grass A Ogot_iron

~ —~ —~ —~
o1 w
~— ~— ~— ~— —

(isnight — at_shelter) U got_wood
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Instructing RL agents with co-safe LTL

General idea:
e Reward the agent when it satisfies the formula.

e Therefore, an optimal policy would satisfy the formula as
soon as possible.
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Instructing RL agents with co-safe LTL

General idea:
e Reward the agent when it satisfies the formula.

e Therefore, an optimal policy would satisfy the formula as
soon as possible.

Main advantage:
e Standard RL: The reward function is a black box.

e RL with LTL: The LTL formula exposes the task’s structure
to the agent.
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Example

Consider telling the agent to learn a policy for the following task:

¢ = <(got_iron A Gused_factory) A Ogot_gold
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Example

Consider telling the agent to learn a policy for the following task:
¢ = <(got_iron A Gused_factory) A Ogot_gold

Then, the agent knows that at some point it might have to satisfy
some of the following formulas:

p1 = <(got_iron A CGused factory)
p2 = Oused_factory A Ogot_gold
3 = Oused_factory

g = Ogot_gold

We proposed to combine this knowledge with off-policy (deep) RL
to learn optimal policies for the task and each subtask in parallel.
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Results

Minecraft World
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Our approach (red curve) finds better policies faster than standard
DRL (blue curve)
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Our approach (red curve) finds better policies faster than standard
DRL (blue curve) and Hierarchical DRL (yellow and cyan curves).

Paper: “Teaching Multiple Tasks to an RL Agent using LTL"
Code: https://bitbucket.org/RToroIcarte/lpopl
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Instructing RL agents with automata

Our ICML paper generalizes the previous idea to work over
automata representations of the reward function.
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Our ICML paper generalizes the previous idea to work over
automata representations of the reward function.
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Figure: A reward machine

11/16



Instructing RL agents with automata

Our ICML paper generalizes the previous idea to work over
automata representations of the reward function.

—/Ro
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Ozl/R3

Figure: A reward machine

In this case, our approach learns one policy for each node.
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More results
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Our approach (red curve) finds better policies faster than standard
DRL (blue curve) and Hierarchical DRL (yellow and cyan curves).

Paper: "Using Reward Machines for High-Level Task Specification
and Decomposition in Reinforcement Learning”
Code: https://bitbucket.org/RTorolcarte/qrm
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Outline

1. Reinforcement Learning (RL):

e What is RL?
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4. Summary
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LTL as an advice language

Advice suggests how to achieve rewards, but does not define the
rewards.

ldea:

e Use a model-based RL algorithm.

o Guide the exploration with a heuristic estimating what actions
will make progress towards satisfying the (finite) LTL advice.

e Good advice can reduce the amount of exploration required to
learn a good policy,
o Bad advice will eventually be recovered from.

Paper: “Advice-Based Exploration in Model-Based Reinforcement
Learning”
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Summary

Instructions:

e “Teaching Multiple Tasks to an RL Agent using LTL"
(AAMAS 2018)

e “Using Reward Machines for High-Level Task Specification
and Decomposition in Reinforcement Learning” (ICML 2018)
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Summary

Instructions:

e “Teaching Multiple Tasks to an RL Agent using LTL"
(AAMAS 2018)

e “Using Reward Machines for High-Level Task Specification
and Decomposition in Reinforcement Learning” (ICML 2018)

Advice:

e “Advice-Based Exploration in Model-Based Reinforcement
Learning” (Canadian Al 2018)
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