Advising and Instructing
Reinforcement Learning Agents
with LTL and Automata

Toryn Q. Klassen
toryn@cs.toronto.edu

Department of Computer Science
University of Toronto

October 29, 2018



Credits

Rodrigo Toro Icarte Richard Valenzano Sheila A. Mcllraith

1/16



Credits

Rodrigo Toro Icarte Richard Valenzano Sheila A. Mcllraith

Papers appearing at
e Canadian Al (Toro lcarte et al., 2018b),
e AAMAS 2018 (Toro Icarte et al., 2018a),
e and ICML 2018 (Toro Icarte et al., 2018c)

1/16



Outline

1. Reinforcement Learning (RL):

e What is RL?
e Two difficulties in applying RL

2. Instructions for Reinforcement Learning

e LTL formulas
e Reward Machines

3. Advice for Reinforcement Learning

4. Summary

2/16



How does Reinforcement Learning work?

Environment

Based on diagram from Sutton and Barto (1998, Figure 3.1)

—————>| Transition Probabilities
Reward Function
reward
action RL Agent )
Policy state

3/16



Two difficulties in applying RL

¢ Reward specification: It is really hard to define proper
reward functions for complex tasks.

e Sample efficiency: RL agents might require billions of
interactions with the environment to learn good policies.

4/16



Outline

1. Reinforcement Learning (RL):

e What is RL?
e Two difficulties in applying RL

2. Instructions for Reinforcement Learning

e LTL formulas
e Reward Machines

3. Advice for Reinforcement Learning

4. Summary

5/16



Example environment

6/16



Example environment

Luigi can collect raw materials:

¥ M v

wood grass iron  gold gems

6/16



Example environment

Luigi can collect raw materials:

¥ M v

wood grass iron  gold gems

... and make new objects in:

factory toolshed  workbench

6/16



Example environment

Luigi can collect raw materials:

¥ M v

wood grass  iron gold gems

... and make new objects in:

factory toolshed  workbench

Make a bridge: get wood, iron, and use the factory

6/16



Linear Temporal Logic (LTL) (Pnueli, 1977)

LTL augments propositional logic with the temporal operators
O (next), < (eventually), and U (until):

pri=p|lop| o1 Apa| Op | v | p1Ups

where p is an atomic symbol.

7/16



Linear Temporal Logic (LTL) (Pnueli, 1977)

LTL augments propositional logic with the temporal operators
O (next), < (eventually), and U (until):

pi=pl=pler A2 | Op | Cp iU
where p is an atomic symbol.
Examples:

Ogot_wood

N

O(got_grass A Oused _factory)
Ogot_wood V Ogot_iron

N

Ogot_grass A Ogot_iron

~ —~ —~ —~
o1 w
~— ~— ~— ~— —

(isnight — at_shelter) U got_wood

7/16



Instructing RL agents with co-safe LTL

General idea:
e Reward the agent when it satisfies the formula.

e Therefore, an optimal policy would satisfy the formula as
soon as possible.

8/16



Instructing RL agents with co-safe LTL

General idea:
e Reward the agent when it satisfies the formula.

e Therefore, an optimal policy would satisfy the formula as
soon as possible.

Main advantage:
e Standard RL: The reward function is a black box.

e RL with LTL: The LTL formula exposes the task’s structure
to the agent.

8/16



Example

Consider telling the agent to learn a policy for the following task:

¢ = <(got_iron A Gused_factory) A Ogot_gold

9/16



Example

Consider telling the agent to learn a policy for the following task:
¢ = <(got_iron A Gused_factory) A Ogot_gold

Then, the agent knows that at some point it might have to satisfy
some of the following formulas:

p1 = <(got_iron A CGused factory)
p2 = Oused_factory A Ogot_gold
3 = Oused_factory

g = Ogot_gold

9/16



Example

Consider telling the agent to learn a policy for the following task:
¢ = <(got_iron A Gused_factory) A Ogot_gold

Then, the agent knows that at some point it might have to satisfy
some of the following formulas:

p1 = <(got_iron A CGused factory)
p2 = Oused_factory A Ogot_gold
3 = Oused_factory

g = Ogot_gold

We proposed to combine this knowledge with off-policy (deep) RL
to learn optimal policies for the task and each subtask in parallel.

9/16



Results

Minecraft World

%* 0.8

] Legend:

‘%’, 0.6 — DQN-L
;‘é HRL-E
B 0.4 — HRL-L
-Té7 02 — LPOPL
é

L L L
20,000 40,000 60,000 80,000 1 -
Number of training steps

0

Our approach (red curve) finds better policies faster than standard
DRL (blue curve)

10/16



Results

Minecraft World

%* 0.8

] Legend:

‘57 0.6 — DQN-L
é HRL-E
B y( 04 — HRL-L
'757 02 — LPOPL
é

L L L 0
20,000 40,000 60,000 80,000 1 105
Number of training steps

Our approach (red curve) finds better policies faster than standard
DRL (blue curve) and Hierarchical DRL (yellow and cyan curves).

Paper: “Teaching Multiple Tasks to an RL Agent using LTL"
Code: https://bitbucket.org/RToroIcarte/lpopl

10/16



Instructing RL agents with automata

Our ICML paper generalizes the previous idea to work over
automata representations of the reward function.

11/16



Instructing RL agents with automata

Our ICML paper generalizes the previous idea to work over
automata representations of the reward function.

—/Ro

—0 /Ry —1/Ro

Ozl/R3

Figure: A reward machine

11/16



Instructing RL agents with automata

Our ICML paper generalizes the previous idea to work over
automata representations of the reward function.

—/Ro

—0 /Ry —1/Ro

Ozl/R3

Figure: A reward machine

In this case, our approach learns one policy for each node.

11/16



More results

Water World
‘ ‘ ‘ 1
Q g
O L :
g
@ &@ 3 Legend:
Q s — DDQN
Q @ DHRL
@@ ;: — DHRL-RM
% — DQRM
o E
o
Q 2
2 0
0  5.105 1-10°5 1.5-10° 2-10°

Number of training steps

Our approach (red curve) finds better policies faster than standard
DRL (blue curve) and Hierarchical DRL (yellow and cyan curves).

Paper: "Using Reward Machines for High-Level Task Specification
and Decomposition in Reinforcement Learning”
Code: https://bitbucket.org/RTorolcarte/qrm

12/16



Outline

1. Reinforcement Learning (RL):

e What is RL?
e Two difficulties in applying RL

2. Instructions for Reinforcement Learning

e LTL formulas
e Reward Machines

3. Advice for Reinforcement Learning

4. Summary

13/16



LTL as an advice language

Advice suggests how to achieve rewards, but does not define the
rewards.

ldea:

e Use a model-based RL algorithm.

o Guide the exploration with a heuristic estimating what actions
will make progress towards satisfying the (finite) LTL advice.

e Good advice can reduce the amount of exploration required to
learn a good policy,
o Bad advice will eventually be recovered from.

Paper: “Advice-Based Exploration in Model-Based Reinforcement
Learning”

14/16



Summary

Instructions:

e “Teaching Multiple Tasks to an RL Agent using LTL"
(AAMAS 2018)

e “Using Reward Machines for High-Level Task Specification
and Decomposition in Reinforcement Learning” (ICML 2018)

15/16



Summary

Instructions:

e “Teaching Multiple Tasks to an RL Agent using LTL"
(AAMAS 2018)

e “Using Reward Machines for High-Level Task Specification
and Decomposition in Reinforcement Learning” (ICML 2018)

Advice:

e “Advice-Based Exploration in Model-Based Reinforcement
Learning” (Canadian Al 2018)

15/16



References

Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, pages 46-57,
1977. doi: 10.1109/SFCS.1977.32.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, and Sheila A.
Mcllraith. Teaching multiple tasks to an RL agent using LTL. In

Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS), pages 452-461, 2018a.

Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, and Sheila A.

Mcllraith. Advice-based exploration in model-based reinforcement learning.

In Proceedings of the 31st Canadian Conference on Artificial Intelligence,
pages 72-83, 2018b.

Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, and Sheila A.
Mcllraith. Using reward machines for high-level task specification and
decomposition in reinforcement learning. In Proceedings of the 35th
International Conference on Machine Learning (ICML), pages 2112-2121,
2018c.

16 /16



