
Advising and Instructing
Reinforcement Learning Agents

with LTL and Automata

Toryn Q. Klassen
toryn@cs.toronto.edu

Department of Computer Science
University of Toronto

October 29, 2018

Credits

Rodrigo Toro Icarte Richard Valenzano Sheila A. McIlraith

Papers appearing at

• Canadian AI (Toro Icarte et al., 2018b),

• AAMAS 2018 (Toro Icarte et al., 2018a),

• and ICML 2018 (Toro Icarte et al., 2018c)

1 / 16

Credits

Rodrigo Toro Icarte Richard Valenzano Sheila A. McIlraith

Papers appearing at

• Canadian AI (Toro Icarte et al., 2018b),

• AAMAS 2018 (Toro Icarte et al., 2018a),

• and ICML 2018 (Toro Icarte et al., 2018c)

1 / 16

Outline

1. Reinforcement Learning (RL):
• What is RL?
• Two difficulties in applying RL

2. Instructions for Reinforcement Learning
• LTL formulas
• Reward Machines

3. Advice for Reinforcement Learning

4. Summary

2 / 16

How does Reinforcement Learning work?

Environment

Transition Probabilities

Reward Function

RL Agent

Policy

reward

action

state

Based on diagram from Sutton and Barto (1998, Figure 3.1)

3 / 16

Two difficulties in applying RL

• Reward specification: It is really hard to define proper
reward functions for complex tasks.

• Sample efficiency: RL agents might require billions of
interactions with the environment to learn good policies.

4 / 16

Outline

1. Reinforcement Learning (RL):
• What is RL?
• Two difficulties in applying RL

2. Instructions for Reinforcement Learning
• LTL formulas
• Reward Machines

3. Advice for Reinforcement Learning

4. Summary

5 / 16

Example environment

Luigi can collect raw materials:

wood grass iron gold gems

... and make new objects in:

factory toolshed workbench

Make a bridge: get wood, iron, and use the factory

6 / 16

Example environment

Luigi can collect raw materials:

wood grass iron gold gems

... and make new objects in:

factory toolshed workbench

Make a bridge: get wood, iron, and use the factory

6 / 16

Example environment

Luigi can collect raw materials:

wood grass iron gold gems

... and make new objects in:

factory toolshed workbench

Make a bridge: get wood, iron, and use the factory

6 / 16

Example environment

Luigi can collect raw materials:

wood grass iron gold gems

... and make new objects in:

factory toolshed workbench

Make a bridge: get wood, iron, and use the factory

6 / 16

Linear Temporal Logic (LTL) (Pnueli, 1977)

LTL augments propositional logic with the temporal operators
(next), 3 (eventually), and U (until):

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | #ϕ | 3ϕ | ϕ1 Uϕ2

where p is an atomic symbol.

Examples:

3got wood (1)

3(got grass ∧3used factory) (2)

3got wood ∨3got iron (3)

3got grass ∧3got iron (4)

(is night→ at shelter) U got wood (5)

7 / 16

Linear Temporal Logic (LTL) (Pnueli, 1977)

LTL augments propositional logic with the temporal operators
(next), 3 (eventually), and U (until):

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | #ϕ | 3ϕ | ϕ1 Uϕ2

where p is an atomic symbol.

Examples:

3got wood (1)

3(got grass ∧3used factory) (2)

3got wood ∨3got iron (3)

3got grass ∧3got iron (4)

(is night→ at shelter) U got wood (5)

7 / 16

Instructing RL agents with co-safe LTL

General idea:

• Reward the agent when it satisfies the formula.

• Therefore, an optimal policy would satisfy the formula as
soon as possible.

Main advantage:

• Standard RL: The reward function is a black box.

• RL with LTL: The LTL formula exposes the task’s structure
to the agent.

8 / 16

Instructing RL agents with co-safe LTL

General idea:

• Reward the agent when it satisfies the formula.

• Therefore, an optimal policy would satisfy the formula as
soon as possible.

Main advantage:

• Standard RL: The reward function is a black box.

• RL with LTL: The LTL formula exposes the task’s structure
to the agent.

8 / 16

Example

Consider telling the agent to learn a policy for the following task:

ϕ = 3(got iron ∧3used factory) ∧3got gold

Then, the agent knows that at some point it might have to satisfy
some of the following formulas:

ϕ1 = 3(got iron ∧3used factory)

ϕ2 = 3used factory ∧3got gold

ϕ3 = 3used factory

ϕ4 = 3got gold

We proposed to combine this knowledge with off-policy (deep) RL
to learn optimal policies for the task and each subtask in parallel.

9 / 16

Example

Consider telling the agent to learn a policy for the following task:

ϕ = 3(got iron ∧3used factory) ∧3got gold

Then, the agent knows that at some point it might have to satisfy
some of the following formulas:

ϕ1 = 3(got iron ∧3used factory)

ϕ2 = 3used factory ∧3got gold

ϕ3 = 3used factory

ϕ4 = 3got gold

We proposed to combine this knowledge with off-policy (deep) RL
to learn optimal policies for the task and each subtask in parallel.

9 / 16

Example

Consider telling the agent to learn a policy for the following task:

ϕ = 3(got iron ∧3used factory) ∧3got gold

Then, the agent knows that at some point it might have to satisfy
some of the following formulas:

ϕ1 = 3(got iron ∧3used factory)

ϕ2 = 3used factory ∧3got gold

ϕ3 = 3used factory

ϕ4 = 3got gold

We proposed to combine this knowledge with off-policy (deep) RL
to learn optimal policies for the task and each subtask in parallel.

9 / 16

Results

0 20,000 40,000 60,000 80,000 1 · 105
0

0.2

0.4

0.6

0.8

1

Number of training steps
N
or
m
al
iz
ed

di
sc
ou
nt
ed

re
w
ar
d

Minecraft World

Legend:
DQN-L
HRL-E
HRL-L
LPOPL

Our approach (red curve) finds better policies faster than standard
DRL (blue curve)

and Hierarchical DRL (yellow and cyan curves).

Paper: “Teaching Multiple Tasks to an RL Agent using LTL”
Code: https://bitbucket.org/RToroIcarte/lpopl

10 / 16

Results

0 20,000 40,000 60,000 80,000 1 · 105
0

0.2

0.4

0.6

0.8

1

Number of training steps
N
or
m
al
iz
ed

di
sc
ou
nt
ed

re
w
ar
d

Minecraft World

Legend:
DQN-L
HRL-E
HRL-L
LPOPL

Our approach (red curve) finds better policies faster than standard
DRL (blue curve) and Hierarchical DRL (yellow and cyan curves).

Paper: “Teaching Multiple Tasks to an RL Agent using LTL”
Code: https://bitbucket.org/RToroIcarte/lpopl

10 / 16

Instructing RL agents with automata

Our ICML paper generalizes the previous idea to work over
automata representations of the reward function.

u0

u1u2

α0/R1

¬α0/R0

α1/R3

¬α1/R2¬α2/R4

α2/R5

Figure: A reward machine

In this case, our approach learns one policy for each node.

11 / 16

Instructing RL agents with automata

Our ICML paper generalizes the previous idea to work over
automata representations of the reward function.

u0

u1u2

α0/R1

¬α0/R0

α1/R3

¬α1/R2¬α2/R4

α2/R5

Figure: A reward machine

In this case, our approach learns one policy for each node.

11 / 16

Instructing RL agents with automata

Our ICML paper generalizes the previous idea to work over
automata representations of the reward function.

u0

u1u2

α0/R1

¬α0/R0

α1/R3

¬α1/R2¬α2/R4

α2/R5

Figure: A reward machine

In this case, our approach learns one policy for each node.

11 / 16

More results

0 5 · 105 1 · 106 1.5 · 106 2 · 106
0

0.2

0.4

0.6

0.8

1

Number of training steps

N
or
m
al
iz
ed

di
sc
ou
nt
ed

re
w
ar
d

Water World

Legend:
DDQN
DHRL
DHRL-RM
DQRM

Our approach (red curve) finds better policies faster than standard
DRL (blue curve) and Hierarchical DRL (yellow and cyan curves).

Paper: “Using Reward Machines for High-Level Task Specification
and Decomposition in Reinforcement Learning”
Code: https://bitbucket.org/RToroIcarte/qrm

12 / 16

Outline

1. Reinforcement Learning (RL):
• What is RL?
• Two difficulties in applying RL

2. Instructions for Reinforcement Learning
• LTL formulas
• Reward Machines

3. Advice for Reinforcement Learning

4. Summary

13 / 16

LTL as an advice language

Advice suggests how to achieve rewards, but does not define the
rewards.

Idea:

• Use a model-based RL algorithm.

• Guide the exploration with a heuristic estimating what actions
will make progress towards satisfying the (finite) LTL advice.

• Good advice can reduce the amount of exploration required to
learn a good policy,

• Bad advice will eventually be recovered from.

Paper: “Advice-Based Exploration in Model-Based Reinforcement
Learning”

14 / 16

Summary

Instructions:

• “Teaching Multiple Tasks to an RL Agent using LTL”
(AAMAS 2018)

• “Using Reward Machines for High-Level Task Specification
and Decomposition in Reinforcement Learning” (ICML 2018)

Advice:

• “Advice-Based Exploration in Model-Based Reinforcement
Learning” (Canadian AI 2018)

15 / 16

Summary

Instructions:

• “Teaching Multiple Tasks to an RL Agent using LTL”
(AAMAS 2018)

• “Using Reward Machines for High-Level Task Specification
and Decomposition in Reinforcement Learning” (ICML 2018)

Advice:

• “Advice-Based Exploration in Model-Based Reinforcement
Learning” (Canadian AI 2018)

15 / 16

References

Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, pages 46–57,
1977. doi: 10.1109/SFCS.1977.32.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, and Sheila A.
McIlraith. Teaching multiple tasks to an RL agent using LTL. In
Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS), pages 452–461, 2018a.

Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, and Sheila A.
McIlraith. Advice-based exploration in model-based reinforcement learning.
In Proceedings of the 31st Canadian Conference on Artificial Intelligence,
pages 72–83, 2018b.

Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, and Sheila A.
McIlraith. Using reward machines for high-level task specification and
decomposition in reinforcement learning. In Proceedings of the 35th
International Conference on Machine Learning (ICML), pages 2112–2121,
2018c.

16 / 16

