
Dynamic and Temporal Answer Set Programming
on Linear (Finite) Traces

Pedro Cabalar and Torsten Schaub

University of Corunna, Spain

University of Potsdam, Germany

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 1 / 8

Introduction

Objective

Extend Answer Set Programming (ASP) with means for
representing and reasoning about dynamic knowledge

Approach

Extend the base logic of ASP, namely the logic of Here-and-There
(HT), with language elements from

Linear Temporal Logic (LTL)
Linear Dynamic Logic (LDL)

over a common semantic structure, namely, (finite) HT traces

Origin Temporal logic of Here-and-There (Cabalar and Pérez, 2007)
over infinite traces

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 2 / 8

Introduction

Objective

Extend Answer Set Programming (ASP) with means for
representing and reasoning about dynamic knowledge

Approach

Extend the base logic of ASP, namely the logic of Here-and-There
(HT), with language elements from

Linear Temporal Logic (LTL)
Linear Dynamic Logic (LDL)

over a common semantic structure, namely, (finite) HT traces

Origin Temporal logic of Here-and-There (Cabalar and Pérez, 2007)
over infinite traces

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 2 / 8

Introduction

Objective

Extend Answer Set Programming (ASP) with means for
representing and reasoning about dynamic knowledge

Approach

Extend the base logic of ASP, namely the logic of Here-and-There
(HT), with language elements from

Linear Temporal Logic (LTL)
Linear Dynamic Logic (LDL)

over a common semantic structure, namely, (finite) HT traces

Origin Temporal logic of Here-and-There (Cabalar and Pérez, 2007)
over infinite traces

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 2 / 8

The logic of Here-and-There

Origin

Three valued logic due to (Heyting, 1930; Gödel, 1932)

HT is based on Kripke semantics for intuitionistic logic

An HT model is a pair (H,T) such that H ⊆ T

Implication is a genuine connective

Discovery (Pearce, 1996)

— Equilibrium logic

Minimal HT models correspond to answer sets

, more precisely,
an answer set T of φ is

a total HT model (T ,T) of φ and
there is no H ⊂ T such that (H,T) is an HT model of φ

Such models are are called equilibrium models

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 3 / 8

The logic of Here-and-There

Origin

Three valued logic due to (Heyting, 1930; Gödel, 1932)

HT is based on Kripke semantics for intuitionistic logic

An HT model is a pair (H,T) such that H ⊆ T

Implication is a genuine connective, and
negation is defined in terms of implication: ¬ϕ = ϕ→ ⊥

Discovery (Pearce, 1996)

— Equilibrium logic

Minimal HT models correspond to answer sets

, more precisely,
an answer set T of φ is

a total HT model (T ,T) of φ and
there is no H ⊂ T such that (H,T) is an HT model of φ

Such models are are called equilibrium models

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 3 / 8

The logic of Here-and-There

Origin

Three valued logic due to (Heyting, 1930; Gödel, 1932)

HT is based on Kripke semantics for intuitionistic logic

An HT model is a pair (H,T) such that H ⊆ T

Implication is a genuine connective

Discovery (Pearce, 1996)

— Equilibrium logic

Minimal HT models correspond to answer sets

, more precisely,
an answer set T of φ is

a total HT model (T ,T) of φ and
there is no H ⊂ T such that (H,T) is an HT model of φ

Such models are are called equilibrium models

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 3 / 8

The logic of Here-and-There

Origin

Three valued logic due to (Heyting, 1930; Gödel, 1932)

HT is based on Kripke semantics for intuitionistic logic

An HT model is a pair (H,T) such that H ⊆ T

Implication is a genuine connective

Discovery (Pearce, 1996)

— Equilibrium logic

Minimal HT models correspond to answer sets

, more precisely,
an answer set T of φ is

a total HT model (T ,T) of φ and
there is no H ⊂ T such that (H,T) is an HT model of φ

Such models are are called equilibrium models

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 3 / 8

The logic of Here-and-There

Origin

Three valued logic due to (Heyting, 1930; Gödel, 1932)

HT is based on Kripke semantics for intuitionistic logic

An HT model is a pair (H,T) such that H ⊆ T

Implication is a genuine connective

Discovery (Pearce, 1996)

— Equilibrium logic

Minimal HT models correspond to answer sets, more precisely,
an answer set T of φ is

a total HT model (T ,T) of φ and
there is no H ⊂ T such that (H,T) is an HT model of φ

Such models are are called equilibrium models

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 3 / 8

The logic of Here-and-There

Origin

Three valued logic due to (Heyting, 1930; Gödel, 1932)

HT is based on Kripke semantics for intuitionistic logic

An HT model is a pair (H,T) such that H ⊆ T

Implication is a genuine connective

Discovery (Pearce, 1996)

— Equilibrium logic

Minimal HT models correspond to answer sets, more precisely,
an answer set T of φ is

a total HT model (T ,T) of φ and
there is no H ⊂ T such that (H,T) is an HT model of φ

Such models are are called equilibrium models

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 3 / 8

The logic of Here-and-There

Origin

Three valued logic due to (Heyting, 1930; Gödel, 1932)

HT is based on Kripke semantics for intuitionistic logic

An HT model is a pair (H,T) such that H ⊆ T

Implication is a genuine connective

Discovery (Pearce, 1996) — Equilibrium logic

Minimal HT models correspond to answer sets, more precisely,
an answer set T of φ is

a total HT model (T ,T) of φ and
there is no H ⊂ T such that (H,T) is an HT model of φ

Such models are are called equilibrium models

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 3 / 8

The logic of Here-and-There

Origin (monotonic)

Three valued logic due to (Heyting, 1930; Gödel, 1932)

HT is based on Kripke semantics for intuitionistic logic

An HT model is a pair (H,T) such that H ⊆ T

Implication is a genuine connective

Discovery (Pearce, 1996) — Equilibrium logic (non-monotonic)

Minimal HT models correspond to answer sets, more precisely,
an answer set T of φ is

a total HT model (T ,T) of φ and
there is no H ⊂ T such that (H,T) is an HT model of φ

Such models are are called equilibrium models

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 3 / 8

Dynamic and Temporal Logic of
Here-and-There

Structure An HT trace is a sequence (Hi ,Ti)
λ
i=0 of HT models

Satisfaction (H,T) = (Hi ,Ti)
λ
i=0

Something Boolean (H,T), k |= ϕ→ ψ if

(H′,T), k 6|= ϕ or (H′,T), k |= ψ, for all H′ ∈ {H,T}
Something Temporal

(H,T), k |= �ϕ if (H,T), i |= ϕ for any i = k..λ

(H,T), k |= ♦ϕ if (H,T), i |= ϕ for some i = k..λ

Something Dynamic (H,T), k |= [ρ]ϕ if

(H′,T), i |= ϕ for all i = 0..λ with (k, i) ∈ ‖ ρ ‖(H
′,T) and

H′ ∈ {H,T}

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 4 / 8

Dynamic and Temporal Logic of
Here-and-There

Structure An HT trace is a sequence (Hi ,Ti)
λ
i=0 of HT models

Satisfaction (H,T) = (Hi ,Ti)
λ
i=0

Something Boolean (H,T), k |= ϕ→ ψ if

(H′,T), k 6|= ϕ or (H′,T), k |= ψ, for all H′ ∈ {H,T}
Something Temporal

(H,T), k |= �ϕ if (H,T), i |= ϕ for any i = k..λ

(H,T), k |= ♦ϕ if (H,T), i |= ϕ for some i = k..λ

Something Dynamic (H,T), k |= [ρ]ϕ if

(H′,T), i |= ϕ for all i = 0..λ with (k, i) ∈ ‖ ρ ‖(H
′,T) and

H′ ∈ {H,T}

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 4 / 8

Dynamic and Temporal Logic of
Here-and-There

Structure An HT trace is a sequence (Hi ,Ti)
λ
i=0 of HT models

Satisfaction (H,T) = (Hi ,Ti)
λ
i=0

Something Boolean (H,T), k |= ϕ→ ψ if

(H′,T), k 6|= ϕ or (H′,T), k |= ψ, for all H′ ∈ {H,T}
Something Temporal

(H,T), k |= �ϕ if (H,T), i |= ϕ for any i = k ..λ

(H,T), k |= ♦ϕ if (H,T), i |= ϕ for some i = k..λ

Something Dynamic (H,T), k |= [ρ]ϕ if

(H′,T), i |= ϕ for all i = 0..λ with (k , i) ∈ ‖ ρ ‖(H
′,T) and

H′ ∈ {H,T}

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 4 / 8

Dynamic and Temporal Logic of
Here-and-There

Structure An HT trace is a sequence (Hi ,Ti)
λ
i=0 of HT models

Satisfaction (H,T) = (Hi ,Ti)
λ
i=0

Something Boolean (H,T), k |= ϕ→ ψ if

(H′,T), k 6|= ϕ or (H′,T), k |= ψ, for all H′ ∈ {H,T}

Something Temporal

(H,T), k |= �ϕ if (H,T), i |= ϕ for any i = k ..λ

(H,T), k |= ♦ϕ if (H,T), i |= ϕ for some i = k..λ

Something Dynamic (H,T), k |= [ρ]ϕ if

(H′,T), i |= ϕ for all i = 0..λ with (k , i) ∈ ‖ ρ ‖(H
′,T) and

H′ ∈ {H,T}

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 4 / 8

Dynamic and Temporal Logic of
Here-and-There

Structure An HT trace is a sequence (Hi ,Ti)
λ
i=0 of HT models

Satisfaction (H,T) = (Hi ,Ti)
λ
i=0

Something Boolean (H,T), k |= ϕ→ ψ if

(H′,T), k 6|= ϕ or (H′,T), k |= ψ, for all H′ ∈ {H,T}
Something Temporal

(H,T), k |= �ϕ if (H,T), i |= ϕ for any i = k ..λ

(H,T), k |= ♦ϕ if (H,T), i |= ϕ for some i = k..λ

Something Dynamic (H,T), k |= [ρ]ϕ if

(H′,T), i |= ϕ for all i = 0..λ with (k , i) ∈ ‖ ρ ‖(H
′,T) and

H′ ∈ {H,T}

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 4 / 8

Dynamic and Temporal Logic of
Here-and-There

Structure An HT trace is a sequence (Hi ,Ti)
λ
i=0 of HT models

Satisfaction (H,T) = (Hi ,Ti)
λ
i=0

Something Boolean (H,T), k |= ϕ→ ψ if

(H′,T), k 6|= ϕ or (H′,T), k |= ψ, for all H′ ∈ {H,T}
Something Temporal

(H,T), k |= �ϕ if (H,T), i |= ϕ for any i = k ..λ

(H,T), k |= ♦ϕ if (H,T), i |= ϕ for some i = k..λ

Something Dynamic (H,T), k |= [ρ]ϕ if

(H′,T), i |= ϕ for all i = 0..λ with (k , i) ∈ ‖ ρ ‖(H
′,T) and

H′ ∈ {H,T}

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 4 / 8

telingo

telingo

extends the full modeling language of clingo
with (past and future) temporal operators
relies on finite trace
implements an incremental translation

Primes allow for expressing (iterated) next and previous operators

•p(a) and ◦q(b) can be expressed by ’p(a) and q’(b)

Example “A robot cannot lift a box unless its capacity exceeds
the box’s weight plus that of all held objects”

:- lift(R,B), robot(R), capacity(R,C),

#sum { W : box(B,W);

V,O : ’holding(R,O,V) } > C.

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 5 / 8

telingo

telingo — https://github.com/potassco/telingo

extends the full modeling language of clingo
with (past and future) temporal operators
relies on finite trace
implements an incremental translation

Primes allow for expressing (iterated) next and previous operators

•p(a) and ◦q(b) can be expressed by ’p(a) and q’(b)

Example “A robot cannot lift a box unless its capacity exceeds
the box’s weight plus that of all held objects”

:- lift(R,B), robot(R), capacity(R,C),

#sum { W : box(B,W);

V,O : ’holding(R,O,V) } > C.

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 5 / 8

https://github.com/potassco/telingo

telingo

telingo — https://github.com/potassco/telingo

extends the full modeling language of clingo
with (past and future) temporal operators
relies on finite trace
implements an incremental translation

Primes allow for expressing (iterated) next and previous operators

•p(a) and ◦q(b) can be expressed by ’p(a) and q’(b)

Example “A robot cannot lift a box unless its capacity exceeds
the box’s weight plus that of all held objects”

:- lift(R,B), robot(R), capacity(R,C),

#sum { W : box(B,W);

V,O : ’holding(R,O,V) } > C.

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 5 / 8

https://github.com/potassco/telingo

telingo

telingo — https://github.com/potassco/telingo

extends the full modeling language of clingo
with (past and future) temporal operators
relies on finite trace
implements an incremental translation

Primes allow for expressing (iterated) next and previous operators

•p(a) and ◦q(b) can be expressed by ’p(a) and q’(b)

Example “A robot cannot lift a box unless its capacity exceeds
the box’s weight plus that of all held objects”

:- lift(R,B), robot(R), capacity(R,C),

#sum { W : box(B,W);

V,O : ’holding(R,O,V) } > C.

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 5 / 8

https://github.com/potassco/telingo

Wolf, sheep, and cabbage

#program always.

item(w;s;c).
opp(l,r). opp(r,l).
eats(w,s). eats(s,c).

#program initial.

at(b,l).
at(X,l) :- item(X). % everything at the left bank

#program dynamic.

at(X,A) :- ’at(X,B), m(X), opp(A,B). % effect axiom for moving item X

at(b,A) :- ’at(b,B), opp(A,B). % boat is always moving

at(X,A) :- ’at(X,A), not at(X,B), opp(A,B). % inertia

0 { m(X) : item(X) } 1. % choose moving at most one item

#program always.

:- m(X), ’at(b,A), ’at(X,B), opp(A,B). % we cannot move item X if at the opposite bank

:- eats(X,Y), at(X,A), at(Y,A), opp(A,B), at(b,B). % we cannot leave them alone

#program final.

:- at(X,l).

#show m/1.

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 6 / 8

telingo’s solution
$ telingo version 1.0

Reading from wolf.tel

Solving ...

Solving ...

Solving ...

Solving ...

Solving ...

Solving ...

Solving ...

Solving ...

Answer: 1

State 0:

State 1: m(s)

State 2:

State 3: m(w)

State 4: m(s)

State 5: m(c)

State 6:

State 7: m(s)

Answer: 2

State 0:

State 1: m(s)

State 2:

State 3: m(c)

State 4: m(s)

State 5: m(w)

State 6:

State 7: m(s)

SATISFIABLE

Models : 2

Calls : 8

Time : 0.156s (Solving: 0.00s)

CPU Time : 0.028s

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 7 / 8

Summary

ASP + Temporal and Dynamic Logic

via extending HT over the common semantic structure of HT traces

Interested? JANCL’13, ICLP’18, KR’18

Playful? https://github.com/potassco/telingo

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 8 / 8

https://github.com/potassco/telingo

Summary

ASP + Temporal and Dynamic Logic

via extending HT over the common semantic structure of HT traces

Interested? JANCL’13, ICLP’18, KR’18

Playful? https://github.com/potassco/telingo

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 8 / 8

https://github.com/potassco/telingo

Summary

ASP + Temporal and Dynamic Logic

via extending HT over the common semantic structure of HT traces

Interested? JANCL’13, ICLP’18, KR’18

Playful? https://github.com/potassco/telingo

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 8 / 8

https://github.com/potassco/telingo

Summary

ASP + Temporal and Dynamic Logic

via extending HT over the common semantic structure of HT traces

Interested? JANCL’13, ICLP’18, KR’18

Playful?1 https://github.com/potassco/telingo

1Classical logic is obtained in ASP by adding choices;
eg., ‘{a}.’ stands for ‘a ∨ ¬a’.

Torsten Schaub (KRR@UP) Dynamic and Temporal ASP 8 / 8

https://github.com/potassco/telingo

