

Dynamic and Temporal Answer Set Programming on Linear (Finite) Traces

Pedro Cabalar and Torsten Schaub

University of Corunna, Spain

University of Potsdam, Germany

Introduction

■ Objective

Extend Answer Set Programming (ASP) with means for representing and reasoning about dynamic knowledge

Introduction

■ Objective

Extend Answer Set Programming (ASP) with means for representing and reasoning about dynamic knowledge

■ Approach

Extend the base logic of ASP, namely the logic of Here-and-There (HT), with language elements from

- Linear Temporal Logic (LTL)
- Linear Dynamic Logic (LDL)

over a common semantic structure, namely, (finite) HT traces

Introduction

■ Objective

Extend Answer Set Programming (ASP) with means for representing and reasoning about dynamic knowledge

■ Approach

Extend the base logic of ASP, namely the logic of Here-and-There (HT), with language elements from

- Linear Temporal Logic (LTL)
- Linear Dynamic Logic (LDL)

over a common semantic structure, namely, (finite) HT traces

■ Origin Temporal logic of Here-and-There (Cabalar and Pérez, 2007) over infinite traces

The logic of Here-and-There

■ Origin

Three valued logic due to (Heyting, 1930; Gödel, 1932)

- HT is based on Kripke semantics for intuitionistic logic
- An HT model is a pair (H, T) such that $H \subseteq T$
- Implication is a genuine connective

The logic of Here-and-There

■ Origin

Three valued logic due to (Heyting, 1930; Gödel, 1932)

- HT is based on Kripke semantics for intuitionistic logic
- An HT model is a pair (H, T) such that $H \subseteq T$
- Implication is a genuine connective, and
negation is defined in terms of implication: $\neg\varphi = \varphi \rightarrow \perp$

The logic of Here-and-There

■ Origin

Three valued logic due to (Heyting, 1930; Gödel, 1932)

- HT is based on Kripke semantics for intuitionistic logic
- An HT model is a pair (H, T) such that $H \subseteq T$
- Implication is a genuine connective

The logic of Here-and-There

- Origin

Three valued logic due to (Heyting, 1930; Gödel, 1932)

- HT is based on Kripke semantics for intuitionistic logic
- An HT model is a pair (H, T) such that $H \subseteq T$
- Implication is a genuine connective
- Discovery (Pearce, 1996)

Minimal HT models correspond to answer sets

The logic of Here-and-There

- Origin

Three valued logic due to (Heyting, 1930; Gödel, 1932)

- HT is based on Kripke semantics for intuitionistic logic
- An HT model is a pair (H, T) such that $H \subseteq T$
- Implication is a genuine connective

- Discovery (Pearce, 1996)

Minimal HT models correspond to answer sets, more precisely, an answer set T of ϕ is

- a total HT model (T, T) of ϕ and
- there is no $H \subset T$ such that (H, T) is an HT model of ϕ

The logic of Here-and-There

- Origin

Three valued logic due to (Heyting, 1930; Gödel, 1932)

- HT is based on Kripke semantics for intuitionistic logic
- An HT model is a pair (H, T) such that $H \subseteq T$
- Implication is a genuine connective
- Discovery (Pearce, 1996)
 - Minimal HT models correspond to answer sets, more precisely, an answer set T of ϕ is
 - a total HT model (T, T) of ϕ and
 - there is no $H \subset T$ such that (H, T) is an HT model of ϕ
- Such models are called **equilibrium models**

The logic of Here-and-There

- Origin

Three valued logic due to (Heyting, 1930; Gödel, 1932)

- HT is based on Kripke semantics for intuitionistic logic
- An HT model is a pair (H, T) such that $H \subseteq T$
- Implication is a genuine connective
- Discovery (Pearce, 1996) — Equilibrium logic

Minimal HT models correspond to answer sets, more precisely, an answer set T of ϕ is

- a total HT model (T, T) of ϕ and
- there is no $H \subset T$ such that (H, T) is an HT model of ϕ
- Such models are called equilibrium models

The logic of Here-and-There

- Origin (**monotonic**)

Three valued logic due to (Heyting, 1930; Gödel, 1932)

- HT is based on Kripke semantics for intuitionistic logic
- An HT model is a pair (H, T) such that $H \subseteq T$
- Implication is a genuine connective
- Discovery (Pearce, 1996) — Equilibrium logic (**non-monotonic**)

Minimal HT models correspond to answer sets, more precisely, an answer set T of ϕ is

- a total HT model (T, T) of ϕ and
- there is no $H \subset T$ such that (H, T) is an HT model of ϕ
- Such models are called equilibrium models

Dynamic and Temporal Logic of Here-and-There

Dynamic and Temporal Logic of Here-and-There

- Structure An HT trace is a sequence $(H_i, T_i)_{i=0}^{\lambda}$ of HT models

Dynamic and Temporal Logic of Here-and-There

- Structure An HT trace is a sequence $(H_i, T_i)_{i=0}^{\lambda}$ of HT models
- Satisfaction $(\mathbf{H}, \mathbf{T}) = (H_i, T_i)_{i=0}^{\lambda}$

Dynamic and Temporal Logic of Here-and-There

- Structure An HT trace is a sequence $(H_i, T_i)_{i=0}^{\lambda}$ of HT models
- Satisfaction $(\mathbf{H}, \mathbf{T}) = (H_i, T_i)_{i=0}^{\lambda}$
 - Something Boolean $(\mathbf{H}, \mathbf{T}), k \models \varphi \rightarrow \psi$ if $(\mathbf{H}', \mathbf{T}), k \not\models \varphi$ or $(\mathbf{H}', \mathbf{T}), k \models \psi$, for all $\mathbf{H}' \in \{\mathbf{H}, \mathbf{T}\}$

Dynamic and Temporal Logic of Here-and-There

- Structure An HT trace is a sequence $(H_i, T_i)_{i=0}^{\lambda}$ of HT models
- Satisfaction $(\mathbf{H}, \mathbf{T}) = (H_i, T_i)_{i=0}^{\lambda}$
 - Something Boolean $(\mathbf{H}, \mathbf{T}), k \models \varphi \rightarrow \psi$ if $(\mathbf{H}', \mathbf{T}), k \not\models \varphi$ or $(\mathbf{H}', \mathbf{T}), k \models \psi$, for all $\mathbf{H}' \in \{\mathbf{H}, \mathbf{T}\}$
 - Something Temporal
 - $(\mathbf{H}, \mathbf{T}), k \models \Box \varphi$ if $(\mathbf{H}, \mathbf{T}), i \models \varphi$ for any $i = k.. \lambda$
 - $(\mathbf{H}, \mathbf{T}), k \models \Diamond \varphi$ if $(\mathbf{H}, \mathbf{T}), i \models \varphi$ for some $i = k.. \lambda$

Dynamic and Temporal Logic of Here-and-There

- Structure An HT trace is a sequence $(H_i, T_i)_{i=0}^{\lambda}$ of HT models
- Satisfaction $(\mathbf{H}, \mathbf{T}) = (H_i, T_i)_{i=0}^{\lambda}$
 - Something Boolean $(\mathbf{H}, \mathbf{T}), k \models \varphi \rightarrow \psi$ if $(\mathbf{H}', \mathbf{T}), k \not\models \varphi$ or $(\mathbf{H}', \mathbf{T}), k \models \psi$, for all $\mathbf{H}' \in \{\mathbf{H}, \mathbf{T}\}$
 - Something Temporal
 - $(\mathbf{H}, \mathbf{T}), k \models \Box \varphi$ if $(\mathbf{H}, \mathbf{T}), i \models \varphi$ for any $i = k.. \lambda$
 - $(\mathbf{H}, \mathbf{T}), k \models \Diamond \varphi$ if $(\mathbf{H}, \mathbf{T}), i \models \varphi$ for some $i = k.. \lambda$
 - Something Dynamic $(\mathbf{H}, \mathbf{T}), k \models [\rho] \varphi$ if $(\mathbf{H}', \mathbf{T}), i \models \varphi$ for all $i = 0.. \lambda$ with $(k, i) \in \parallel \rho \parallel^{(\mathbf{H}', \mathbf{T})}$ and $\mathbf{H}' \in \{\mathbf{H}, \mathbf{T}\}$

■ telingo

- extends the full modeling language of **clingo** with (past and future) temporal operators
- relies on finite trace
- implements an incremental translation

- **telingo** — <https://github.com/potassco/telingo>
 - extends the full modeling language of **clingo** with (past and future) temporal operators
 - relies on finite trace
 - implements an incremental translation

- **telingo** — <https://github.com/potassco/telingo>
 - extends the full modeling language of **clingo** with (past and future) temporal operators
 - relies on finite trace
 - implements an incremental translation
- Primes allow for expressing (iterated) next and previous operators
 - $\bullet p(a)$ and $\circ q(b)$ can be expressed by ' $p(a)$ ' and ' q' (b)

- **telingo** — <https://github.com/potassco/telingo>
 - extends the full modeling language of **clingo** with (past and future) temporal operators
 - relies on finite trace
 - implements an incremental translation
- Primes allow for expressing (iterated) next and previous operators
 - $\bullet p(a)$ and $\circ q(b)$ can be expressed by ' $p(a)$ ' and ' q' (b)
- Example “*A robot cannot lift a box unless its capacity exceeds the box’s weight plus that of all held objects*”

```
:- lift(R,B), robot(R), capacity(R,C),  
  #sum { W : box(B,W);  
        V,O : 'holding'(R,O,V) } > C.
```

Wolf, sheep, and cabbage

```
#program always.

item(w;s;c).
opp(l,r). opp(r,l).
eats(w,s). eats(s,c).

#program initial.

at(b,1).
at(X,1) :- item(X).                                     % everything at the left bank

#program dynamic.

at(X,A) :- 'at(X,B), m(X), opp(A,B).                  % effect axiom for moving item X
at(b,A) :- 'at(b,B), opp(A,B).                         % boat is always moving
at(X,A) :- 'at(X,A), not at(X,B), opp(A,B).           % inertia
0 { m(X) : item(X) } 1.                                % choose moving at most one item

#program always.

:- m(X), 'at(b,A), 'at(X,B), opp(A,B).                % we cannot move item X if at the opposite bank
:- eats(X,Y), at(X,A), at(Y,A), opp(A,B), at(b,B).    % we cannot leave them alone

#program final.

:- at(X,1).

#show m/1.
```

telingo's solution

```
$ telingo version 1.0
Reading from wolf.tel
Solving...
Answer: 1
  State 0:
  State 1: m(s)
  State 2:
  State 3: m(w)
  State 4: m(s)
  State 5: m(c)
  State 6:
  State 7: m(s)
Answer: 2
  State 0:
  State 1: m(s)
  State 2:
  State 3: m(c)
  State 4: m(s)
  State 5: m(w)
  State 6:
  State 7: m(s)
SATISFIABLE

Models      : 2
Calls       : 8
Time        : 0.156s (Solving: 0.00s)
CPU Time    : 0.028s
```


Summary

- **ASP + Temporal and Dynamic Logic**

- via extending HT over the common semantic structure of HT traces

Summary

- **ASP + Temporal and Dynamic Logic**
via extending HT over the common semantic structure of HT traces
- Interested? JANCL'13, ICLP'18, KR'18

Summary

- **ASP + Temporal and Dynamic Logic**

- via extending HT over the common semantic structure of HT traces

- Interested? JANCL'13, ICLP'18, KR'18

- Playful? <https://github.com/potassco/telingo>

Summary

- **ASP + Temporal and Dynamic Logic**

- via extending HT over the common semantic structure of HT traces

- Interested? JANCL'13, ICLP'18, KR'18

- Playful?¹ <https://github.com/potassco/telingo>

¹Classical logic is obtained in ASP by adding choices;
eg., '{a}' stands for ' $a \vee \neg a$ '.