

Reasoning about Actions for Planning in Robotics

Shiqi Zhang
SUNY Binghamton

10/28/2018

The SUNY System

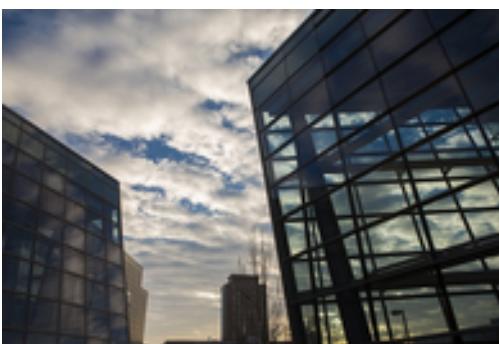
The State University
of New York

- 64 campuses
- Four PhD-granting
“University Centers”
 - Albany
 - **Binghamton –**
most selective SUNY
 - Buffalo
 - Stony Brook

Community — Greater Binghamton

- Located in New York state
- Birthplace of IBM (Endicott, NY)
- Home to several hi-tech companies.
- One of the safest U.S. midsized cities
- Low cost of living (12% below U.S. average)
- Close to major cities

Rankings



Binghamton University--SUNY

Binghamton, NY

#38 in Top Public Schools

#87 in National Universities (tie)

\$24,403 (out-of-state), \$9,523 (in-state) Tuition and Fees

13,632 Undergraduate Enrollment

2018 Rank	School
#25 Tie	Virginia Tech Blacksburg, VA
#29 Tie	University of Massachusetts—Amherst Amherst, MA
#33 Tie	Florida State University Tallahassee, FL
#33 Tie	Michigan State University East Lansing, MI
	Binghamton University—SUNY Binghamton, NY
#38 Tie	
#39 Tie	University of Colorado—Boulder Boulder, CO
#41	Stony Brook University—SUNY Stony Brook, NY
#41	University at Buffalo—SUNY Buffalo, NY

Computer Science Faculty

- 33 full-time faculty
 - 8 full professors
 - 8 associate professors
 - 11 assistant professors
 - 6 lecturers
- 4 adjunct lecturers
- 3 new faculty members in Robotics/AI, Computer Vision/Machine Learning, and Computer Architecture will join in Fall 2018.

Department also has close to 40 teaching Assistants

Reasoning about Actions for Planning in Robotics

Shiqi Zhang
SUNY Binghamton

Why planning in robotics?

- Complex tasks in the real world require more than one action
- Robot actions (perception and actuation) are unreliable, and sometimes costly

Robots need to plan actions
to accomplish goals under uncertainty

Why reasoning in robotics?

- Robot faces many objects (locations, people, tools, etc) and their properties
- World state estimation with incomplete (qualitative and quantitative) knowledge

*Robots need to reason
to understand the current world state*

Reasoning (declarative) and planning (probabilistic)

Declarative knowledge representation & reasoning

Correct and natural
Incomplete knowledge
Explanation (good for HRI)
Goal-independent
Transferability

Strengths

Non-deterministic action outcomes
Imperfect perception
Unspecified, long horizon
Learning from experience (RL)

Robotics
decision-making

**Probabilistic Planning &
Reinforcement learning (RL)**

***Logical-probabilistic reasoning for
probabilistic planning,
as illustrated in human-robot dialog***

Robot needs to identify <Coffee, Office 1, Bob>, through spoken dialog

Time: 9:00am
Rooms: Office 1, Office 2, ...
Persons: Alice, Bob, Carol, ...
Items: Coffee, Sandwich, ...

<Coffee, Office 1, Bob>

“I am a shopping robot, what item do you want?”

“Coffee, please”

“Toffee, please”

“Coffee, please”

“Do you want me to buy toffee?”

“Coffee, please”

[*Demo video: integrated P-log and POMDP*](#)

CORPP: commonsense reasoning and probabilistic planning, a complete example

defaults

$\neg \text{registered}(P) \leftarrow \text{not registered}(P), \text{ student}(P).$

Logical reasoner (LR)

possible
worlds

$W_0 = \{I = \text{coffee}, P = \text{alice}\}$

$W_1 = \{I = \text{toffee}, P = \text{alice}\}$

Probabilistic reasoner (PR)

possible worlds
with probabilities

$\{W_0 : 0.8, W_1 : 0.2\}$

facts

$\text{student}(\text{alice}). \text{ student}(\text{bob}).$
 $\text{registered}(\text{alice}).$

$\text{item}(\text{coffee}).$
 $\text{item}(\text{toffee}).$
 $\text{curr_time} = \text{morning}.$

$I = \text{coffee}.$

world

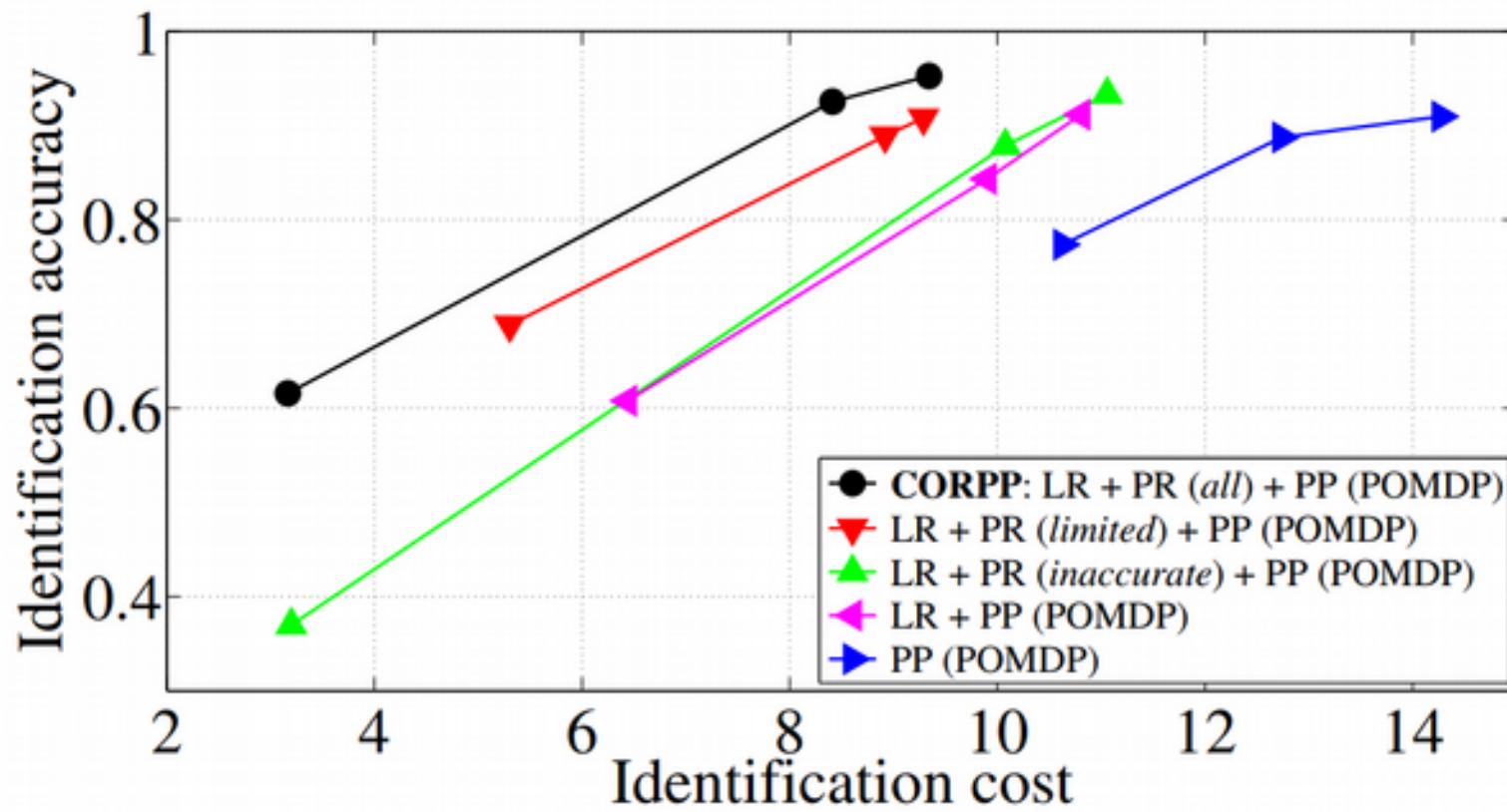
ask_item

$b_{t=0} = [0.8, 0.2]$

e.g., coffee > toffee!

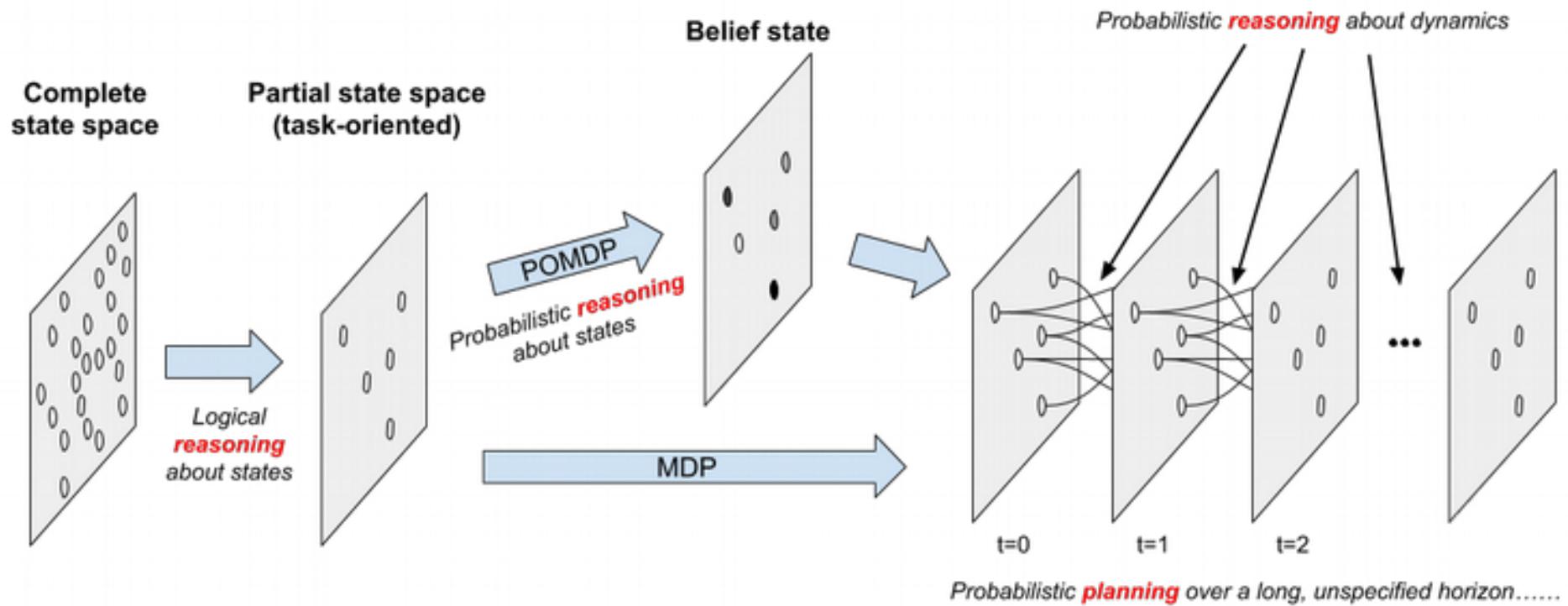
Probabilistic planner (PP)

delivery



CORPP reasons with logical and probabilistic knowledge, improving robot behaviors

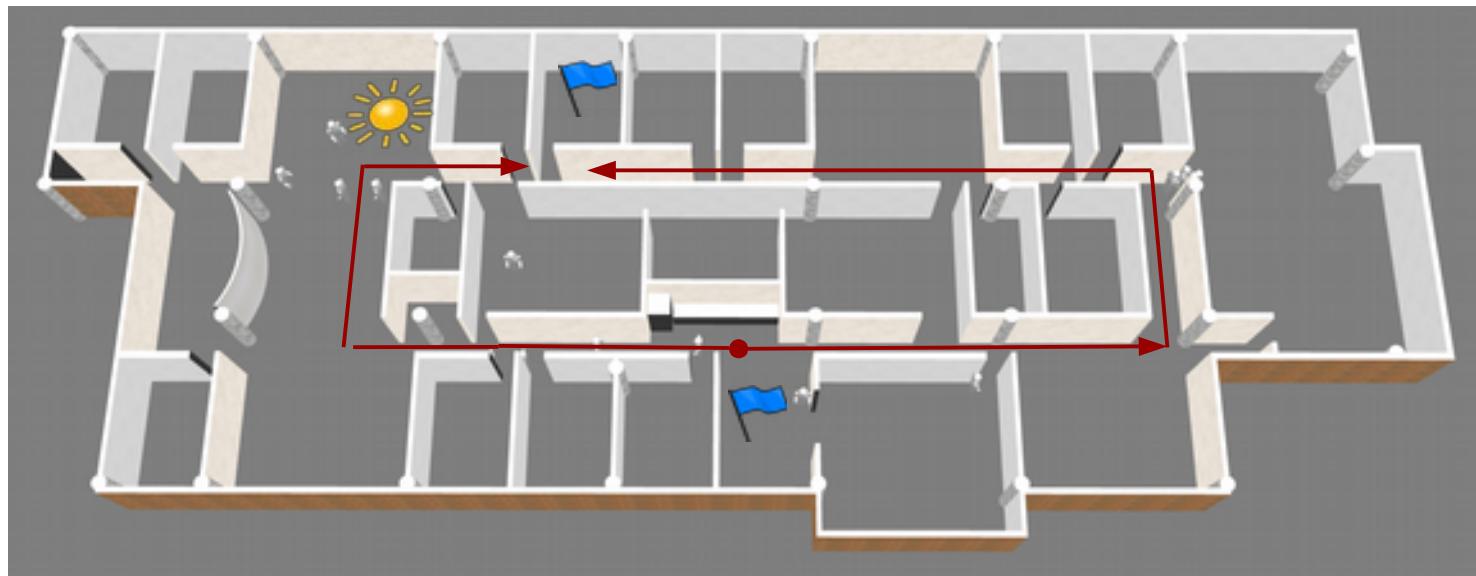
Interleaved CORPP (iCORPP)



[Zhang, Khandelwal, Stone, AAAI 2017]

Interleaved CORPP (iCORPP): Dynamically Constructed (PO)MDPs for Adaptive Robot Planning

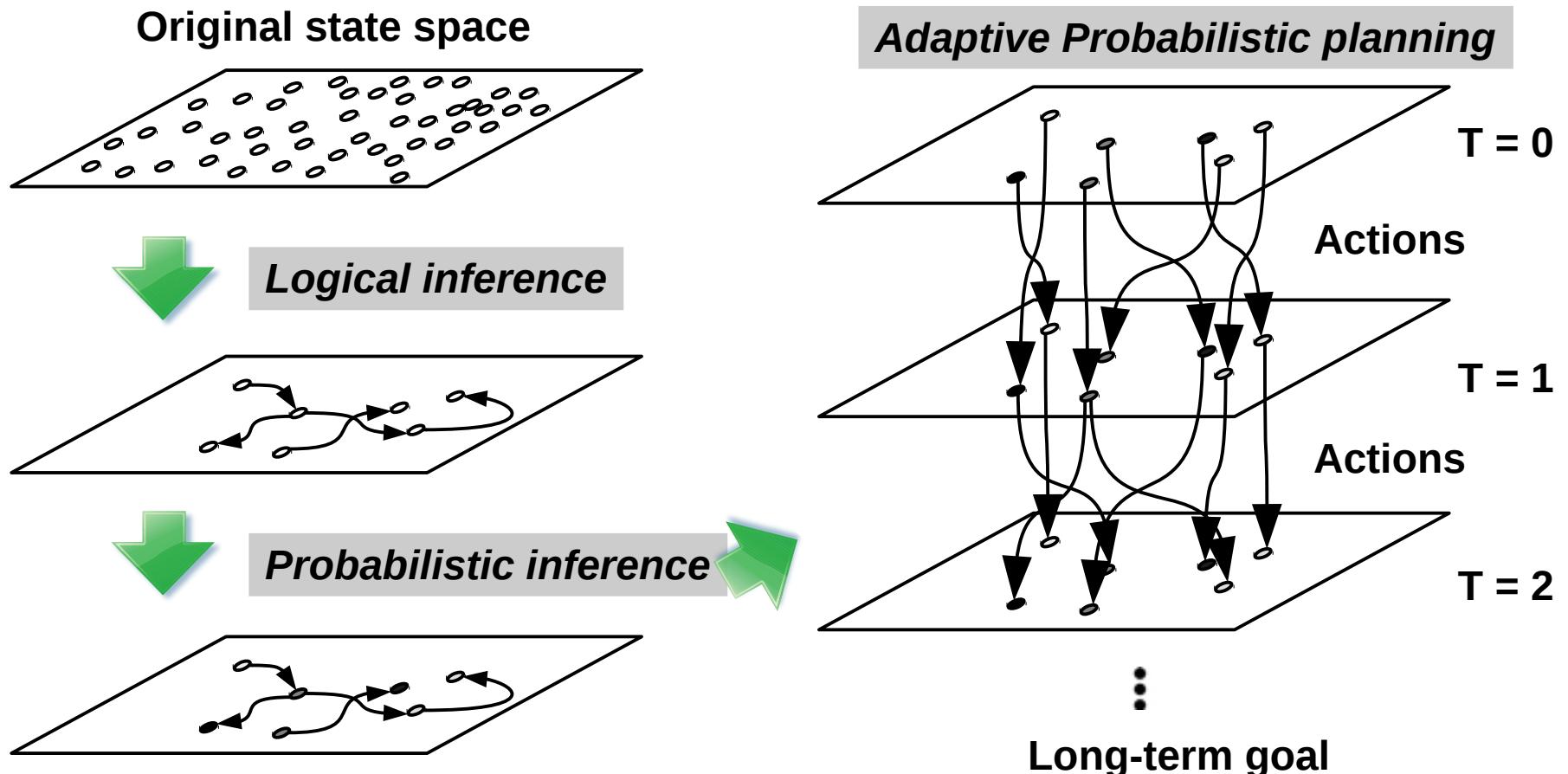
Example domain: *robot navigation*



Robot locations	Areas under sunlight	Areas blocked	Weather	Time
10	2^{10}	2^{10}	5	3

More than 2^{27} states!

Interleaved CORPP (iCORPP): Dynamically Constructed (PO)MDPs for Adaptive Robot Planning



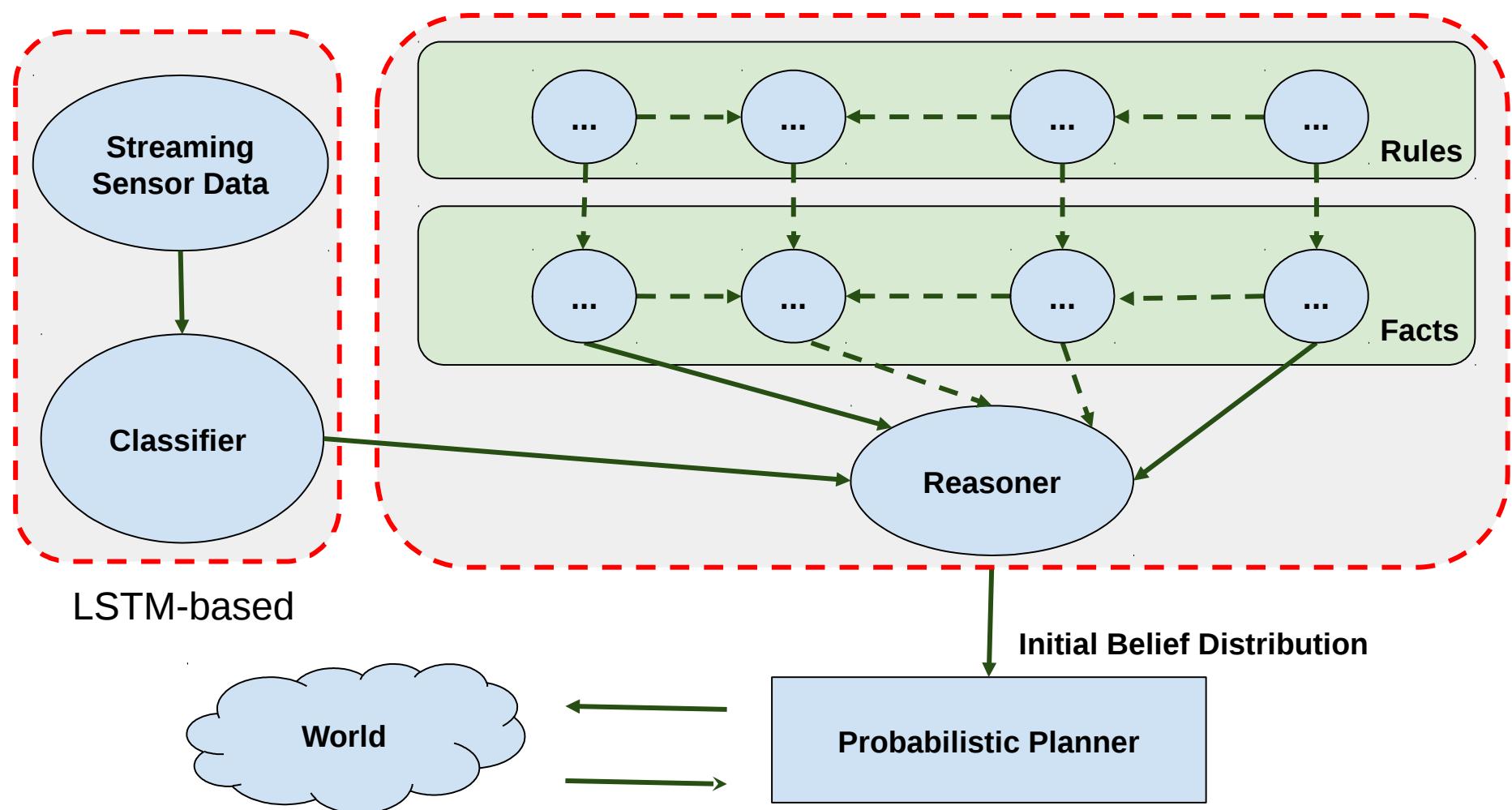
This work enables robot behaviors to **adapt** to exogenous domain changes **without including**₂₀ these exogenous attributes in probabilistic planning models

Integrated *learning*, *reasoning*, and *planning*
for robot sequential decision-making

Human Intention Estimation problem

Robot needs to identify human intention (e.g., interested to interact or not) as accurate and early as possible

LSTM-CORPP



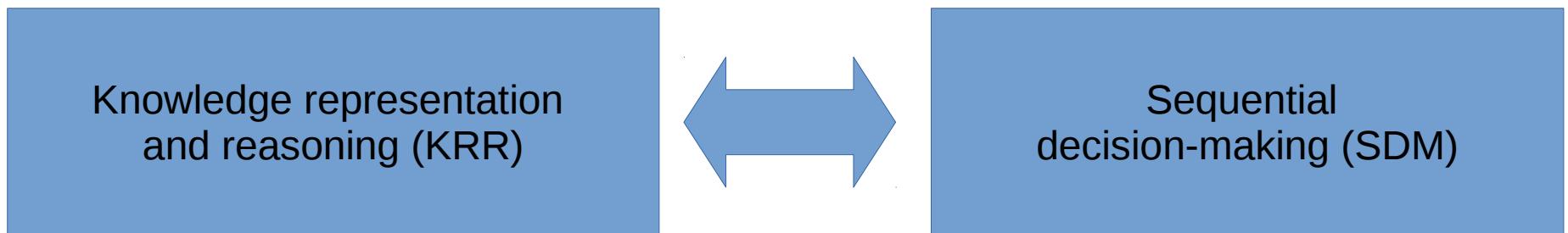
LSTM-CORPP: preliminary results

	Accuracy	Precision	Recall	F1 Score	Cost
Learning	0.61	0.56	0.30	0.39	N/A
Reasoning	0.60	0.54	0.62	0.58	N/A
Learning + Reasoning	0.58	0.51	0.72	0.60	N/A
Reasoning + Planning (CORPP)	0.79	0.67	0.94	0.78	21.6
LSTM-CORPP (Ours)	0.83	0.74	0.86	0.80	13.1

AAAI'19 Tutorial

Knowledge-based Sequential Decision-Making under Uncertainty

(1/4 day tutorial)



Papers

- Shiqi Zhang and Peter Stone, **CORPP: Commonsense Reasoning and Probabilistic Planning, as Applied to Dialog with a Mobile Robot**, AAAI 2015
- Shiqi Zhang, Mohan Sridharan and Jeremy Wyatt, **Mixed Logical Inference and Probabilistic Planning for Robots in Unreliable Worlds**, IEEE Transactions on Robotics (TRO), 31 (3): 699-713, 2015
- Shiqi Zhang, Piyush Khandelwal and Peter Stone, **Dynamically Constructed (PO)MDPs for Adaptive Robot Planning**, AAAI 2017
- Saeid Amiri, Mohammad Shirazi, and Shiqi Zhang, **Leveraging Supervised Learning and Automated Reasoning for Robot Sequential Decision-Making**, KR'18 R2K Workshop, 2018
- Keting Lu, Shiqi Zhang, Peter Stone, and Xiaoping Chen, **Robot Representation and Reasoning with Knowledge from Reinforcement Learning**, arXiv preprint: 1809.11074, 2018

How to integrate?

Declarative knowledge representation & reasoning

Correct and natural
Incomplete knowledge
Explanation (good for HRI)
Goal-independent
Transferability

Robotics decision-making

Non-deterministic action outcomes
Imperfect perception
Unspecified, long horizon
Learning from experience (RL)

Probabilistic Planning & Reinforcement learning (RL)

Credits:

Mohan Sridharan, Peter Stone, Michael Gelfond, Jeremy Wyatt
Saeid Amiri, Piyush Khandelwal

Thank you!