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The SUNY System

  64 campuses

  Four PhD-granting 
   “University Centers”

 Albany
 Binghamton – 

most selective SUNY 
 Buffalo
 Stony Brook
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Community — Greater Binghamton

   Located in New York 
     state

   Birthplace of IBM 
    (Endicott, NY)

   Home to several hi-tech
    companies.

   One of the safest 
     U.S. midsized cities 

   Low cost of living 
    (12% below U.S.         
    average)

  Close to major cities
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Rankings 2018 Rank School

#25Tie Virginia Tech 
Blacksburg, VA

#29Tie University of Massachusetts— Amherst 
Amherst, MA

#33Tie

#33Tie

#38Tie

Florida State University
Tallahassee, FL

Michigan State University
East Lansing, MI

Binghamton University— SUNY 
Binghamton, NY

#39Tie University of Colorado— Boulder 
Boulder, CO

#41Tie Stony Brook University— SUNY 
Stony Brook, NY

#41 University at Buffalo— SUNY 
Buffalo, NY

http://colleges.usnews.rankingsandreviews.com/best-colleges/virginia-tech-3754
http://colleges.usnews.rankingsandreviews.com/best-colleges/umass-amherst-2221
http://colleges.usnews.rankingsandreviews.com/best-colleges/suny-binghamton-2836
http://colleges.usnews.rankingsandreviews.com/best-colleges/suny-binghamton-2836
http://colleges.usnews.rankingsandreviews.com/best-colleges/suny-binghamton-2836
http://colleges.usnews.rankingsandreviews.com/best-colleges/suny-binghamton-2836
http://colleges.usnews.rankingsandreviews.com/best-colleges/cu-boulder-1370
http://colleges.usnews.rankingsandreviews.com/best-colleges/stony-brook--suny-2838
http://colleges.usnews.rankingsandreviews.com/best-colleges/stony-brook--suny-2838
http://colleges.usnews.rankingsandreviews.com/best-colleges/ub-9554
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Computer Science Faculty

 33 full-time faculty 
 8 full professors
 8 associate professors
 11 assistant professors
 6 lecturers

 4 adjunct lecturers
 3 new faculty members in Robotics/AI, Computer Vision/Machine 

Learning, and Computer Architecture will join in Fall 2018.

Department also has close to 40 teaching Assistants
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Why planning in robotics?

● Complex tasks in the real world require more than 
one action

● Robot actions (perception and actuation) are 
unreliable, and sometimes costly

Robots need to plan actions 
to accomplish goals under uncertainty 



8

Why reasoning in robotics?

● Robot faces many objects (locations, people, tools, 
etc) and their properties

● World state estimation with incomplete (qualitative 
and quantitative) knowledge

Robots need to reason 
to understand the current world state
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Reasoning (declarative) and planning (probabilistic)

Declarative knowledge
representation & reasoning

Probabilistic Planning & 
Reinforcement learning (RL)

Incomplete knowledge

Explanation (good for HRI)

Goal-independent

Unspecified, long horizon
Imperfect perception

Correct and natural

Learning from experience (RL)

Non-deterministic action outcomes

Robo`tics 
decision-making

Transferability
Strengths 
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Logical-probabilistic reasoning for 
probabilistic planning, 

as illustrated in human-robot dialog
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Time: 9:00am
Rooms: Office 1, Office 2, …
Persons: Alice, Bob, Carol, …
Items: Coffee, Sandwich, ...

<Coffee, Office 1, Bob>

Robot needs to identify <Coffee, Office 1, Bob>, through spoken dialog
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“I am a shopping robot, what item do you want?” “Coffee, please”
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“Coffee, please”“Toffee, please”
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“Coffee, please”“Do you want me to buy toffee?”
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Demo video: integrated P-log and POMDP

[Zhang, Stone, AAAI 2015]

file:///home/szhang/Dropbox/Shared_personal/slides/20181028%20kr%20action/corpp_short.mov
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Logical reasoner (LR)Logical reasoner (LR)

Probabilistic reasoner (PR)Probabilistic reasoner (PR)

Probabilistic planner (PP)Probabilistic planner (PP)

world

 

 

 

delivery

CORPP: commonsense reasoning and probabilistic 
planning, a complete example

defaults

possible
worlds

possible worlds
with probabilities

facts

e.g., coffee > toffee! 

[Zhang, Stone, AAAI 2015]
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CORPP reasons with logical and probabilistic knowledge, 
improving robot behaviors
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Interleaved CORPP (iCORPP)

[Zhang, Khandelwal, Stone, AAAI 2017]
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Example domain: robot navigation

Robot locations

10

Weather 

5

Time 

3

Areas under sunlight

2^10

Areas blocked

2^10

Interleaved CORPP (iCORPP): Interleaved CORPP (iCORPP): 
Dynamically Constructed (PO)MDPs for Adaptive Robot PlanningDynamically Constructed (PO)MDPs for Adaptive Robot Planning

More than 2^27 states!



20This work enables robot behaviors to adapt to exogenous domain changes without including 
these exogenous attributes in probabilistic planning models

Logical inference

Probabilistic inference

Adaptive Probabilistic planning

T = 0

T = 1

T = 2

Actions

Actions

Long-term goal

Original state space

Interleaved CORPP (iCORPP): Interleaved CORPP (iCORPP): 
Dynamically Constructed (PO)MDPs for Adaptive Robot PlanningDynamically Constructed (PO)MDPs for Adaptive Robot Planning
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Integrated learning, reasoning, and planning
for robot sequential decision-making
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Human Intention Estimation problem

Robot needs to identify human intention (e.g., interested to 
interact or not) as accurate and early as possible
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LSTM-CORPP

Probabilistic Planner

Initial Belief Distribution

World

Classifier 

Streaming 
Sensor Data

Reasoner

   Rules
............

...
   Facts

...... ...

LSTM-based

[Amiri, Shirazi, Zhang, R2K Workshop with KR, 2018]
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LSTM-CORPP: preliminary results

Accuracy Precision Recall F1 Score Cost

Learning 0.61 0.56 0.30 0.39 N/A

Reasoning 0.60 0.54 0.62 0.58 N/A

Learning + Reasoning 0.58 0.51 0.72 0.60 N/A

Reasoning + Planning 
(CORPP) 0.79 0.67 0.94 0.78 21.6

LSTM-CORPP 
(Ours) 0.83 0.74 0.86 0.80 13.1
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AAAI’19 Tutorial

Knowledge-based Sequential Decision-Making 
under Uncertainty 

(1/4 day tutorial)

Knowledge representation 
and reasoning (KRR)

Sequential 
decision-making (SDM)
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Papers

● Shiqi Zhang and Peter Stone, CORPP: Commonsense Reasoning and 
Probabilistic Planning, as Applied to Dialog with a Mobile Robot, AAAI 
2015

● Shiqi Zhang, Mohan Sridharan and Jeremy Wyatt, Mixed Logical Inference 
and Probabilistic Planning for Robots in Unreliable Worlds, IEEE 
Transactions on Robotics (TRO), 31 (3): 699-713, 2015

● Shiqi Zhang, Piyush Khandelwal and Peter Stone, Dynamically Constructed 
(PO)MDPs for Adaptive Robot Planning, AAAI 2017

● Saeid Amiri, Mohammad Shirazi, and Shiqi Zhang, Leveraging Supervised 
Learning and Automated Reasoning for Robot Sequential Decision-
Making, KR'18 R2K Workshop, 2018

● Keting Lu, Shiqi Zhang, Peter Stone, and Xiaoping Chen, Robot 
Representation and Reasoning with Knowledge from Reinforcement 
Learning, arXiv preprint: 1809.11074, 2018
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Declarative knowledge
representation & reasoning

Probabilistic Planning & 
Reinforcement learning (RL)

Incomplete knowledge

Explanation (good for HRI)

Goal-independent

Unspecified, long horizon
Imperfect perception

Correct and natural

Learning from experience (RL)

Non-deterministic action outcomes

Robotics 
decision-making

Transferability

How to integrate? 
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Thank you! 

Credits: 
Mohan Sridharan, Peter Stone, Michael Gelfond, Jeremy Wyatt

Saeid Amiri, Piyush Khandelwal
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