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The Challenge

Abstract world and real world
While an agent can conveniently plan at the abstract level, it perceives
the world and acts in it through sensors and actuators that work with
data in a continuous world, typically represented with variables on real
numbers.

Unexpected observations
There may be situations in which the agent perceives data which are not
compatible with any of the states of its abstract model.
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Objective

A formal framework in which

(i) the agent can learn dynamically new states of the planning
domain;

(ii) the mapping between abstract states and the perception from
the real world, represented by continuous variables, is part of
the planning domain;

(iii) such mapping is learned and updated along the life of the
agent.



The Idea

A formal framework in which

• We model agent’s perception of the real world by a perception
function that returns the likelihood of observing some
continuous data being in a state of the domain.

• We define an algorithm that interleaves planning, acting, and
learning. It is able to discover that the abstract model is not
coherent with the real world.
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Planning Domains

• Deterministic Planning Domain: D = 〈S ,A, γ〉
• State transition function: γ : S × A→ S

• Planning Problem: P = 〈D, s0, Sg 〉
• A Plan π is a policy: partial function from π : S ⇀ A.

• Perception Function: f : Rn × S → R+, where
f (xxx , s) = p(xxx |s) = p(xxx ,s)

p(s) , with p(xxx , s) a joint PDF on Rn × S

f (xxx , s) is the likelihood of observing xxx being in a state s.
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Simple univariate perception function

Example

I S = {s1, s2}
I f (x , s1) = N (µ = 2, σ = 0.21)

I f (x , s2) = N (µ = 10, σ = 0.21)
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The Planning, Acting, and Learning (PAL) Algorithm

Loop until goal reached:

1. generate a plan (if no plan exists, explore the domain)

2. execute the first action in the plan and observe xxx

3. decide in which state you are based on maximum likelihood. If
the likelihood is too low for all the existing states, create a
new state

4. update the transition function (γ)

5. update the perception function (f )
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s1 = argmaxs∈{s1,s2} f (1.0, s) and f (1.0, s1) ≥ (1− ε) · fmax
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Simple univariate perception function

Example

I S = {s1, s2, snew}
I f (x , s1) = N (µ = 2, σ = 0.21)

I f (x , s2) = N (µ = 10, σ = 0.21)

I f (x , snew ) = N (µ = 7, σ = 0.21)
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f (x , snew )

snew = argmaxs∈{s1,s2,snew} f (7.0, s) and f (7, 0, snew ) ≥ (1− ε) · fmax



The Planning, Acting, and Learning (PAL) Algorithm

Loop until goal reached:

1. generate a plan (if no plan exists, explore the domain)

2. execute the first action in the plan and observe xxx

3. decide in which state you are based on maximum likelihood. If
the likelihood is too low for all the existing states, create a
new state.

4. update the transition function (γ)

5. update the perception function (f )
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Updating Transitions: Example
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Updating transitions

• The update of transitions is based on the current model
γ(s, a) and the set of transitions observed so far T : 〈s, a, s ′〉

• The agent can be more or less careful in the revision:
Parameter α ∈ [0, 1] - the higher the value of α the more
careful the agent is in the revision.

argmax
s′∈S

(α ·
current model︷ ︸︸ ︷
1s′=γ(s,a) +(1− α) ·

observations︷ ︸︸ ︷
|{i | Ti =

〈
s, a, s ′

〉
} |)



The Planning, Acting, and Learning (PAL) Algorithm

Loop until goal reached:

1. generate a plan (if no plan exists explore the domain, e.g.,
with a random policy)

2. execute the first action in the plan and observe xxx through
sensors

3. decide in which state you are based on maximum likelihood. If
the likelihood is too low for all the existing states, create a
new state (snew )

4. update the transition function (γ)

5. update the perception function (f )
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Updating the Perception Function: Example

The idea: We update the perception function f (xxx , s) to maximize
the likelihood of the entire set of observations extended with the
new observation.
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Updating the Perception Function

• The update of perception function is based on the current
perception function f (xxx , s) and the set of observations
O : 〈s,xxx〉.

• Also in this case the agent can be more or less careful in the
revision: Parameter β ∈ [0, 1] - the higher the value of β the
more careful the agent is in the revision.



Model coherence

• Objective: to estimate the quality of the generated model

• Approach: to measure the coherence between an abstract
model with perception function and the real world.

• Idea: We introduce a measure called divergence.



Estimating the coherence of the model
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KL(p(xxx)||q(xxx)) is the Kullback-Leibler divergence (also called
relative entropy) is a measure of how one probability distribution
p(xxx) is different from a second one q(xxx).
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Future Challenges

• Non-Deterministic/Probabilistic (MDP) planning domains

• Partially Observable planning domains (POND and POMDP)

• State merging and state elimination

• From abstract states to state variables

• Perception function with NN (e.g., Logic Tensor Network)

• Scalability
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