Where am |7 Let me ask to the real world!

Luciano Serafini Paolo Traverso

Fondazione Bruno Kessler

Where am |7 Let me ask to the real world!

Learning abstract planning domains
and mappings to real world perceptions

Luciano Serafini Paolo Traverso

Fondazione Bruno Kessler

A simple example

Real world

()
()

Abstract model

(=)
(=)

A simple example

Real world Abstract model
ffffffff :L - ,., —_— - e
i

A simple

example

Real world

Abstract model

A simple example

Real world Abstract model
|
¥ ‘ e @
3 |
i |
~e | w
,,,,,,,, [n
: e
| e @
|
|
|
|
l

A simple example

Real world Abstract model

A simple example

Real world Abstract model

L % %
~e
,,,,,,,, T n

A simple example

Real world Abstract model

e

I
(] !
@i I
A |
g |
‘
Se ‘
iiiiiiii Lo n S
|
|
‘ e‘@
|
|
I
I
1

w

A simple example

Real world Abstract model

e

@

* &
A
-

S

b1

~

,,,,,,,, n S
I
I
| e‘@
I
I
I
I
1

w

A simple example

Real world Abstract model

A simple example

Real world Abstract model
,,,,,,,, n s
! e
a |
™
rQ’J | e.@
Se :
‘ w

A simple example

Real world Abstract model
,,,,,,,, n s
Y Y e
| . 447
: Se
w
l

A simple example

Real world Abstract model
,,,,,,,, n s
: e
| e
O F G
| ¥
: ~Se
w

A simple example

Real world Abstract model

A simple example

Real world Abstract model

() (=)

) sae B
N
2

(

A simple exa

mple

Real world

Abstract model

The Challenge

Abstract world and real world

While an agent can conveniently plan at the abstract level, it perceives
the world and acts in it through sensors and actuators that work with
data in a continuous world, typically represented with variables on real
numbers.

The Challenge

Abstract world and real world

While an agent can conveniently plan at the abstract level, it perceives
the world and acts in it through sensors and actuators that work with
data in a continuous world, typically represented with variables on real
numbers.

Unexpected observations

There may be situations in which the agent perceives data which are not
compatible with any of the states of its abstract model.

Objective

A formal framework in which

(i) the agent can learn dynamically new states of the planning
domain;

(ii) the mapping between abstract states and the perception from
the real world, represented by continuous variables, is part of
the planning domain;

(iii) such mapping is learned and updated along the life of the
agent.

The ldea

A formal framework in which

e We model agent’s perception of the real world by a perception
function that returns the likelihood of observing some
continuous data being in a state of the domain.

The ldea

A formal framework in which

e We model agent’s perception of the real world by a perception
function that returns the likelihood of observing some
continuous data being in a state of the domain.

e We define an algorithm that interleaves planning, acting, and
learning. It is able to discover that the abstract model is not
coherent with the real world.

Planning Domains

Deterministic Planning Domain: D = (S, A,~)
State transition function: v: Sx A — S
Planning Problem: P = (D, s, Sg)

A Plan 7 is a policy: partial function from 7w : S — A.

Planning Domains with Perception Functions

e Deterministic Planning Domain: D = (5, A,)
e State transition function: v:Sx A— S
Planning Problem: P = (D, 59, S¢)

A Plan 7 is a policy: partial function from 7w : S — A.

Perception Function: f : R" x S — RT, where

f(x,s) = p(x|s) = plg’(‘s’i), with p(x,s) a joint PDF on R" x S

f(x,s) is the likelihood of observing x being in a state s.
03 F(x.5)
0.2

0.1

Simple univariate perception function

Example

» S={s,%}
» f(x,s1) =N(n=2,0=0.21)
» f(x,s2) =N(p=10,0 =0.21)

03 f(x,s1) f(x,s)

0.2

The Planning, Acting, and Learning (PAL) Algorithm

Loop until goal reached:
1. generate a plan (if no plan exists, explore the domain)
2. execute the first action in the plan and observe x

3. decide in which state you are based on maximum likelihood. If
the likelihood is too low for all the existing states, create a
new state

4. update the transition function ()
5. update the perception function (f)

The Planning, Acting, and Learning (PAL) Algorithm

Loop until goal reached:
1. generate a plan (if no plan exists, explore the domain)
2. execute the first action in the plan and observe x

3. decide in which state you are based on maximum likelihood. If
the likelihood is too low for all the existing states, create a
new state

4. update the transition function ()
5. update the perception function (f)

Simple univariate perception function

Example
» S = {51,52}
> f(x.s1) = N = 2,0 = 0.21)
» f(x,5)=N(p=10,0 =0.21)

03| f(x,s1) f(x,s2)
0.2
o1l (17 €) - fnax
0 i | | | | | | | | |

14

Simple univariate perception function

Example
> S = {51,52}
> Fx,51) = N = 2,0 = 0.21)
» f(x,s) =N(p=10,0 =0.21)

03} f(x,s1) f(x,s)
0.2
0.1 07 frer
0 | —* | | | | | |

-2 0 2 4 6 8 10 12 14
S1 = argmaxee (s, 5} F(1.0,5) and £(1.0,51) > (1 — €) - frnax

Simple univariate perception function

Example
> S = {51,52}
> F(x,51) = N = 2,0 = 0.21)
» f(x,5)=N(u=10,0 =0.21)

03} f(x,s1) f(x,s)
0.2} ‘
0.1] A7)t
0 | | | | | —* | |

-2 0 2 4 6 8 10 12 14
Sy = argmaxseys, 5} 1(9.0,5) and £(9.0,) > (1 —€) - fmax

Simple univariate perception function

Example

> 52{51,52}
» f(x,s1) =N(p=20=0.21)
» f(x,s)=N(u=10,0 =0.21)

0.3} f(x,s1) f(x,s)
0.2}
0.1

| Ny

-2 0 2 4 6 8 10 12 14
Sy = argmaxeeys, 5} F(7.0,5) and £(7.0,52) < (1 —€) - fmax

Simple univariate perception function

Example

» S ={s1,%,Snew}

» f(x,51) =N(p=2,0=0.21)

» f(x,s) =N(p=10,0 =0.21)
> f(X,Spew) =N(u=7,0=0.21)

0.3 f(x,s1) f(X, Snew) f(x,52)

0.2}
0.1 7 AZ
O [

f(7.0,s) and (7,0, Spew) > (1 — €) - fmax

Snew = ArEMaAXsc (s 5 spew}

The Planning, Acting, and Learning (PAL) Algorithm

Loop until goal reached:
1. generate a plan (if no plan exists, explore the domain)
2. execute the first action in the plan and observe x

3. decide in which state you are based on maximum likelihood. If
the likelihood is too low for all the existing states, create a
new state.

4. update the transition function ()
5. update the perception function (f)

The Planning, Acting, and Learning (PAL) Algorithm

Loop until goal reached:
1. generate a plan (if no plan exists, explore the domain)
2. execute the first action in the plan and observe x

3. decide in which state you are based on maximum likelihood. If
the likelihood is too low for all the existing states, create a
new state.

4. update the transition function ()

5. update the perception function (f)

Updating Transitions: Example
-

iter Source action Target

Updating Transitions: Example
-

iter Source action Target

T1 S0 a s1

Updating Transitions: Example
-

iter Source action Target

T1 S0 a s1
T2 s1 b)

Updating Transitions: Example

T

iter Source action Target
T 0 a s1
T2 s1 b $2

T3 S b 3

Updating Transitions: Example

T

iter Source action Target
T1 S0 a s1
T2 s1 b S
T3 S b S3
Ta s3 b S

Updating Transitions: Example

T

iter Source action Target
T1 S0 a s1
T2 s1 b)
T3 S b S3
Ta s3 b S
Ts S4 b S5

Updating Transitions: Example

T

iter Source action Target
T S0 a s1
T2 s1 b)
T3) b S3
Ta s3 b S4
Ts S4 b S5
Te S5 c S0

Updating Transitions: Example

T
iter Source action Target
T1 S0 a s1
51 b So
S> b S3
S3 b S
S4 b S5
S5 c S0
So a 52

Updating Transitions: Example

T

iter Source action Target
T S0 a s1
T2 s1 b)
T3) b S3
Ta s3 b S4
Ts S4 b S5
Te S5 c S0
Tz S0 a 2
Ts) b S3
To S3 b S4

T1o S4 b S5

Updating Transitions: Example

T
iter Source action Target
T S0 a s1
T2 s1 b)
T3) b S3
Ta s3 b S4
Ts S4 b S5
Te S5 c S0
Tz S0 a 2
Ts) b S3
To S3 b S4
T1o S4 b S5
T11 S5 c S0

Updating Transitions: Example

T
iter Source action Target
T1 S0 a s1
T2 s1 b)
T3 S b S3
Ta 3 b sS4
Ts S4 b S5
Te S5 c So
Tz S0 a 52
Ts S b s3
To S3 b S4
T1o S4 b S5
T11 S5 c S0
T12 S0 a 2

Updating Transitions: Example

T

iter Source action Target
T S0 a s1
T2 s1 b)
T3) b S3
Ta s3 b S4
Ts S4 b S5
Te S5 c S0
Tz S0 a 2
Ts) b S3
To S3 b S4
T1o S4 b S5
T11 S5 c S0
a S2

T2 S0

50 a)

Updating Transitions: Example

T

iter Source action Target
T S0 a s1
T2 s1 b)
T3) b S3
Ta s3 b S4
Ts S4 b S5
Te S5 c S0
Tz S0 a 2
Ts) b S3
To S3 b S4
T1o S4 b S5
T11 S5 c S0
a S2

T2 S0

50 a)

Updating Transitions: Example

T

iter Source action Target
T S0 a s1
T2 s1 b)
T3) b S3
Ta s3 b S4
Ts S4 b S5
Te S5 c S0
Tz S0 a 2
Ts) b S3
To S3 b S4
T1o S4 b S5
T11 S5 c S0
a S2

T2 S0

50 a)

Updating transitions

e The update of transitions is based on the current model
v(s, a) and the set of transitions observed so far 7 : (s, a,s’)

e The agent can be more or less careful in the revision:
Parameter « € [0, 1] - the higher the value of « the more
careful the agent is in the revision.

current model observations

— ;
argmsax(a c Lyn(sa) HA—a)-{i|Ti=(s,a,5)}|)
s'e

The Planning, Acting, and Learning (PAL) Algorithm

Loop until goal reached:

1. generate a plan (if no plan exists explore the domain, e.g.,
with a random policy)

2. execute the first action in the plan and observe x through
sensors

3. decide in which state you are based on maximum likelihood. If
the likelihood is too low for all the existing states, create a
new state (Spew)

4. update the transition function (vy)
5. update the perception function (f)

The Planning, Acting, and Learning (PAL) Algorithm

Loop until goal reached:

1. generate a plan (if no plan exists explore the domain, e.g.,
with a random policy)

2. execute the first action in the plan and observe x through
sensors

3. decide in which state you are based on maximum likelihood. If
the likelihood is too low for all the existing states, create a
new state (Spew)

4. update the transition function (vy)
5. update the perception function (f)

Updating the Perception Function: Example

The idea: We update the perception function f(x, s) to maximize
the likelihood of the entire set of observations extended with the
new observation.

Updating the Perception Function: Example

The idea: We update the perception function f(x, s) to maximize
the likelihood of the entire set of observations extended with the
new observation.

Updating the Perception Function: Example

The idea: We update the perception function f(x, s) to maximize
the likelihood of the entire set of observations extended with the
new observation.

Updating the Perception Function: Example

The idea: We update the perception function f(x, s) to maximize
the likelihood of the entire set of observations extended with the
new observation.

Updating the Perception Function: Example

The idea: We update the perception function f(x, s) to maximize
the likelihood of the entire set of observations extended with the
new observation.

Updating the Perception Function: Example

The idea: We update the perception function f(x, s) to maximize
the likelihood of the entire set of observations extended with the
new observation.

0.3

0.2

Updating the Perception Function: Example

The idea: We update the perception function f(x, s) to maximize
the likelihood of the entire set of observations extended with the
new observation.

0.3

0.2

Updating the Perception Function: Example

The idea: We update the perception function f(x, s) to maximize
the likelihood of the entire set of observations extended with the
new observation.

0.3

0.2

Updating the Perception Function: Example

The idea: We update the perception function f(x, s) to maximize
the likelihood of the entire set of observations extended with the
new observation.

0.3

0.2

Updating the Perception Function: Example

The idea: We update the perception function f(x, s) to maximize
the likelihood of the entire set of observations extended with the
new observation.

0.3

0.2

Updating the Perception Function

e The update of perception function is based on the current
perception function f(x,s) and the set of observations
O : (s,x).

e Also in this case the agent can be more or less careful in the
revision: Parameter 5 € [0, 1] - the higher the value of 3 the
more careful the agent is in the revision.

Model coherence

e Objective: to estimate the quality of the generated model

e Approach: to measure the coherence between an abstract
model with perception function and the real world.

e Idea: We introduce a measure called divergence.

Estimating the coherence

0.3
0.2
0.1
X0
0+ °
| | |

of the model

Estimating the coherence of the model

03 f(x,s1)
0.2}
0.1}
X0
0+ °
| | | | | | | | |

Estimating the

03|
0.2

0.1

coherence of the model

Oan0

f(x;7(a 1))

Estimating the coherence of the model

0.3

0.2

0.1

f(x;7(a 1))

Estimating the coherence of the model

(=)

031 F(x,7(a, 1))
0.2+
0.1
X0
0 ®
| | | | | | | | |

KL((x,7(a, 1))l pa(x[x0))

KL(p(x)||g(x)) is the Kullback-Leibler divergence (also called
relative entropy) is a measure of how one probability distribution
p(x) is different from a second one g(x).

Estimating the coherence of the model

03
0.2
0.1}
X0
0r e
| | | | | | | | |

ZZKL x,7(a, 5:))|pa(x[x7))

i=1 acA

KL(p(x)||g(x)) is the Kullback-Leibler divergence (also called
relative entropy) is a measure of how one probability distribution
p(x) is different from a second one g(x).

Reference

1810.07096v1 [cs.Al] 16 Oct 2018

arXiv

Learning abstract planning domains and mappings to real
world perceptions

Luciano Serafini and Paolo Traverso
Fondazione Bruno Kessler
Trento, Italy
serafini|traverso@fbk.eu

October 17, 2018

Abstract

Most of the works on planning and learning, e.g.. planning by (model based) reinforcement learning,
are based on two main assumptions: (i) the set of states of the planning domain is fixed: (i) the mapping
between the observations from the real word and the states is implicitly assumed, and is not part of the
planning domain. Consequently. the focus is on learning the transitions between states. Current approaches
address neither the problem of learning new states of the planning domain, nor the problem of representing
and updating the mapping between the real world perceptions and the states. In this paper, we drop such
assumptions. We provide a formal framework in which (i) the agent can learn dynamically new states of
the planning domain; (ii) the mapping between abstract states and the perception from the real world, rep-
resented by continuous variables, is part of the planning domain; (iii) such mapping is learned and updated
along the “life” of the agent. We define and develop an algorithm that interleaves planning, acting, and
learning. We provide a first experimental evaluation that shows how this novel framework can effectively
learn coherent abstract planning models.

Introduction and Motivations

Several automated planning techniques are based on abstract representations of the world, usually called
planning domains. A planning domain can be formalized by a finite state transition syslenﬂ i.e.. a finite set
of states, actions, and a transition relation [7.[8]. This abstract representation is both conceptually relevant
and practically convenient, since it allows a planner to reason and generate plans at a high level of abstraction.
For instance, in order to plan how to move a robot from a room to another room in a building, it may be
convenient to adopt a planning domain that encodes an abstract topological map of the building, such that
each state corresponds to (the fact that the robot is in) a given room, and transitions correspond to (complex)

Reference

divergence

divergence

dvergence

g
g

-
g

28
2
8 8

g

nrof states

H

]

0 200 400 600 800
time (s)

e=05

200

200 600
time is)

e=03

800

nr of states
8]

B

10

time (s)
e=1

0

50 80
time {s)

e=1

T o states

1.04

102

100

0.8

0.96

2 4 6 8 10
time (s)

time is)

Figure 3: Experiments with 5 x 5 building. a, b, and e stand for o 2. and . respectively .

11

Future Challenges

Non-Deterministic/Probabilistic (MDP) planning domains

Partially Observable planning domains (POND and POMDP)

State merging and state elimination

From abstract states to state variables

Perception function with NN (e.g., Logic Tensor Network)

Scalability

THANK YOU FOR YOUR ATTENTION!

