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The Challenge

Abstract world and real world

While an agent can conveniently plan at the abstract level, it perceives
the world and acts in it through sensors and actuators that work with
data in a continuous world, typically represented with variables on real
numbers.
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Abstract world and real world

While an agent can conveniently plan at the abstract level, it perceives
the world and acts in it through sensors and actuators that work with
data in a continuous world, typically represented with variables on real
numbers.

Unexpected observations

There may be situations in which the agent perceives data which are not
compatible with any of the states of its abstract model.



Objective

A formal framework in which

(i) the agent can learn dynamically new states of the planning
domain;

(ii) the mapping between abstract states and the perception from
the real world, represented by continuous variables, is part of
the planning domain;

(iii) such mapping is learned and updated along the life of the
agent.
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A formal framework in which

e We model agent’s perception of the real world by a perception
function that returns the likelihood of observing some
continuous data being in a state of the domain.



The ldea

A formal framework in which

e We model agent’s perception of the real world by a perception
function that returns the likelihood of observing some
continuous data being in a state of the domain.

e We define an algorithm that interleaves planning, acting, and
learning. It is able to discover that the abstract model is not
coherent with the real world.



Planning Domains

Deterministic Planning Domain: D = (S, A,~)
State transition function: v: Sx A — S
Planning Problem: P = (D, s, Sg)

A Plan 7 is a policy: partial function from 7w : S — A.




Planning Domains with Perception Functions

e Deterministic Planning Domain: D = (5, A, )
e State transition function: v:Sx A— S
Planning Problem: P = (D, 59, S¢)

A Plan 7 is a policy: partial function from 7w : S — A.

Perception Function: f : R" x S — RT, where

f(x,s) = p(x|s) = plg’(‘s’i), with p(x,s) a joint PDF on R" x S

f(x,s) is the likelihood of observing x being in a state s.
03 F(x.5)
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Simple univariate perception function

Example

» S={s,%}
» f(x,s1) =N(n=2,0=0.21)
» f(x,s2) =N(p=10,0 =0.21)

03 f(x,s1) f(x,s)

0.2




The Planning, Acting, and Learning (PAL) Algorithm

Loop until goal reached:
1. generate a plan (if no plan exists, explore the domain)
2. execute the first action in the plan and observe x

3. decide in which state you are based on maximum likelihood. If
the likelihood is too low for all the existing states, create a
new state

4. update the transition function ()
5. update the perception function (f)
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Simple univariate perception function

Example
» S = {51,52}
> f(x.s1) = N = 2,0 = 0.21)
» f(x,5)=N(p=10,0 =0.21)
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Simple univariate perception function

Example
> S = {51,52}
> F(x,51) = N = 2,0 = 0.21)
» f(x,5)=N(u=10,0 =0.21)

03} f(x,s1) f(x,s)
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Simple univariate perception function

Example

> 52{51,52}
» f(x,s1) =N(p=20=0.21)
» f(x,s)=N(u=10,0 =0.21)
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Simple univariate perception function

Example

» S ={s1,%,Snew}

» f(x,51) =N(p=2,0=0.21)

» f(x,s) =N(p=10,0 =0.21)
> f(X,Spew) =N(u=7,0=0.21)

0.3 f(x,s1) f(X, Snew) f(x,52)

0.2}
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f(7.0,s) and (7,0, Spew) > (1 — €) - fmax
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The Planning, Acting, and Learning (PAL) Algorithm

Loop until goal reached:
1. generate a plan (if no plan exists, explore the domain)
2. execute the first action in the plan and observe x

3. decide in which state you are based on maximum likelihood. If
the likelihood is too low for all the existing states, create a
new state.

4. update the transition function ()
5. update the perception function (f)



The Planning, Acting, and Learning (PAL) Algorithm

Loop until goal reached:
1. generate a plan (if no plan exists, explore the domain)
2. execute the first action in the plan and observe x

3. decide in which state you are based on maximum likelihood. If
the likelihood is too low for all the existing states, create a
new state.

4. update the transition function ()

5. update the perception function (f)
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Updating transitions

e The update of transitions is based on the current model
v(s, a) and the set of transitions observed so far 7 : (s, a,s’)

e The agent can be more or less careful in the revision:
Parameter « € [0, 1] - the higher the value of « the more
careful the agent is in the revision.

current model observations

— ;
argmsax(a c Lyn(sa) HA—a)-{i|Ti=(s,a,5)}|)
s'e




The Planning, Acting, and Learning (PAL) Algorithm

Loop until goal reached:

1. generate a plan (if no plan exists explore the domain, e.g.,
with a random policy)

2. execute the first action in the plan and observe x through
sensors

3. decide in which state you are based on maximum likelihood. If
the likelihood is too low for all the existing states, create a
new state (Spew)

4. update the transition function (vy)
5. update the perception function (f)
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Updating the Perception Function: Example

The idea: We update the perception function f(x, s) to maximize
the likelihood of the entire set of observations extended with the
new observation.
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The idea: We update the perception function f(x, s) to maximize
the likelihood of the entire set of observations extended with the
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Updating the Perception Function

e The update of perception function is based on the current
perception function f(x,s) and the set of observations
O : (s,x).

e Also in this case the agent can be more or less careful in the
revision: Parameter 5 € [0, 1] - the higher the value of 3 the
more careful the agent is in the revision.



Model coherence

e Objective: to estimate the quality of the generated model

e Approach: to measure the coherence between an abstract
model with perception function and the real world.

e Idea: We introduce a measure called divergence.



Estimating the coherence
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Estimating the coherence of the model

(=)

031 F(x,7(a, 1))
0.2+
0.1
X0
0 ®
| | | | | | | | |

KL((x,7(a, 1))l pa(x[x0))

KL(p(x)||g(x)) is the Kullback-Leibler divergence (also called
relative entropy) is a measure of how one probability distribution
p(x) is different from a second one g(x).



Estimating the coherence of the model

03
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KL(p(x)||g(x)) is the Kullback-Leibler divergence (also called
relative entropy) is a measure of how one probability distribution
p(x) is different from a second one g(x).
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Abstract

Most of the works on planning and learning, e.g.. planning by (model based) reinforcement learning,
are based on two main assumptions: (i) the set of states of the planning domain is fixed: (i) the mapping
between the observations from the real word and the states is implicitly assumed, and is not part of the
planning domain. Consequently. the focus is on learning the transitions between states. Current approaches
address neither the problem of learning new states of the planning domain, nor the problem of representing
and updating the mapping between the real world perceptions and the states. In this paper, we drop such
assumptions. We provide a formal framework in which (i) the agent can learn dynamically new states of
the planning domain; (ii) the mapping between abstract states and the perception from the real world, rep-
resented by continuous variables, is part of the planning domain; (iii) such mapping is learned and updated
along the “life” of the agent. We define and develop an algorithm that interleaves planning, acting, and
learning. We provide a first experimental evaluation that shows how this novel framework can effectively
learn coherent abstract planning models.

Introduction and Motivations

Several automated planning techniques are based on abstract representations of the world, usually called
planning domains. A planning domain can be formalized by a finite state transition syslenﬂ i.e.. a finite set
of states, actions, and a transition relation [7.[8]. This abstract representation is both conceptually relevant
and practically convenient, since it allows a planner to reason and generate plans at a high level of abstraction.
For instance, in order to plan how to move a robot from a room to another room in a building, it may be
convenient to adopt a planning domain that encodes an abstract topological map of the building, such that
each state corresponds to (the fact that the robot is in) a given room, and transitions correspond to (complex)
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Future Challenges

Non-Deterministic/Probabilistic (MDP) planning domains

Partially Observable planning domains (POND and POMDP)

State merging and state elimination

From abstract states to state variables

Perception function with NN (e.g., Logic Tensor Network)

Scalability
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