On Module Checking and Strategies

Aniello Murano

Universita di1 Napoli “Federico 117

A long-standing ongoing project with Moshe Vardi,
Orna Kupferman, Laura Bozzelli, Benjamin Aminof, and Wojtek Jamroga

Actions@KR'18, Tempe, 29 October 2018

Aniello Murano - Module Checking

Model Checking

O Let S be a finite-state system and P its desired behavior

¢S - labelled state-transition graph M
L 2% = a temporal logic formula v

L We check whether S has the required behavior P by checking whether

ME vy

Aniello Murano - Module Checking

Classes of Models

O Closed Systems
» Behavior is fully characterized by system state

 Open Systems
> Behavior depends on the interaction with the environment

It must be
“reactive”

» Open System Model: +abeHed-State—+ansiionr-Craph—

» A solution for Open Finite-State Systems: Module Checking
[Kupferman, Vardi, Wolper 1996-2001]

Aniello Murano - Module Checking

Model checking

 Consider an ATM machine that

1. Displays a welcome screen

2. Makes an internal nondeterministic choice

3. Withdraws money or shows an advertisement (Ad)
O The machine is a closed system !

O M is a labeled-state transition graph modeling the machine

M; % =
O A desired behavior:
“It 1s always possible to show an ad”

¢ = V63F Show Ad

Aniello Murano - Module Checking

Model checking

 Consider an ATM machine that
1. Displays a welcome screen
2. Makes an internal nondeterministic choice
3. Withdraws money or shows an advertisement (Ad)

O The machine is a closed system !
O M is a labeled-state transition graph modeling the machine

O T is an infinite tree obtained by unwinding M

¢ = V63F Show Ad I::> Mg iff Tke

Aniello Murano - Module Checking

Model checking an open system

O Consider the ATM machine as an open system:
1. Displays a welcome screen
2. Lets the environment choose to view an Ad or withdraw money
3. Performs the requested operation and restarts from 1

\

Open
system

©Rass S

O The ATM can always eventually show an Ad iff

TEVG d

It may be impossible to show an ad!

Aniello Murano - Module Checking

Model checking an open system

L Consider the ATM machine as an open system:
1. Displays a welcome screen
2. Lets the environment choose to view an Ad or withdraw money
3. Performs the requested operation and restarts from 1

\

Open
system

©Rass S

 To model the ATM we need a Module: a labeled transition graph with a partition
Into system and environment states

O Let T be the unwinding of M.

O Let Exec(M) be the set of all trees obtained by pruning in T sub-trees rooted in
successors of environment nodes (but one).

a M @c\tively) satisfies ¢ iff @ holds in all trees of Exec(M).
Module checking M E. @

Aniello Murano - Module Checking

Solving CTL/CTL* Module Checking

O First, observe that
€ M =, ¢ implies M E ¢, while the convers may not be true.

® M #, ¢ iff there isatree T in Exec(M) such that T = - ¢

O An automata-theoretic solution:
1. Build a tree automaton Ag,.., that accepts all trees in exec(M)
2. Build a tree automaton A_ that accepts all tree models of —¢

3. Check whether M=, ¢ by checking L(Agyecovy) N L(A_) =D

Aniello Murano - Module Checking

Finite-state complexity results

Model Checking

Model Checking

Module Checking

Module Checking

Cless (formula comp.) (system comp.) (formula complexity) | (system complexity)
LTL | PSpace-Complete[4] | NLogSpace [4] PSpace-Complete [5] NLogSpace [5]
CTL Linear Time [1] NLogSpace[3] ExpTime-Complete [5] PTime [5]
CTL* | PSpace-Complete [2] | NLogSpace[3] 2ExpTime-Complete [5] PTime [5]

1. [Clarke, Emerson, Sistla 1986]
2. [Emerson and Lei 1985]
3. [Kupferman, Vardi, Wolper 1994 & 2000]

4,
S.

[Sistla and Clarke 1985]

[Kupferman,Vardi,Wolper 1996 & 2001]

Aniello Murano - Module Checking

Module Checking Milestones

d Timeline:
€ 1996-2001: CTL/CTL* two-players turn-based finite-state perfect information.
€ 1997: mu-calculus two-players concurrent finite-state imperfect information
€ 2002-2005: Abstraction refinement and implementation.
€ 2005-2010: two-players turn-based infinite-state perfect information
€ 2007-2013: two-players concurrent infinite-state imperfect information

€ And a number of other extensions in the last decade...

Aniello Murano - Module Checking

Pushdown Module Checking

L Consider an open ATM machine with the constraint
“I1t 1s not possible to make more withdraws than Ads viewed”
L We need a stack to count how many Ads remain to be shown

O APD is a labeled transition graph augmented with a stack.

Q (q,&) is a configuration if g is a node of G and & is a stack content

O An open PD (OPD) has environment and system configurations

O An OPD induces a Module M where nodes are Pushdown Configurations

PD Module Checking: decide whether M E, ¢
d For example: M E,VG3F Show Ad but M i, VG3IF Withdraw

Aniello Murano - Module Checking

Pushdown Complexity Results

Class System PD Model Checking PD Module Checking
LTL finite-state Pspace-Complete PSpace-Complete
CTL finite-state Linear Time [1] EXPTime-Complete[3]

CTL* finite-state PSpace-Complete [2] 2EXPTime-Complete[3]
LTL | Pushdown System Exptime-Complete Exptime-Complete
CTL | Pushdown System EXPTime-Complete[4] 2EXPTime-Complete[5]

CTL* | Pushdown System | 2EXPTIME-Complete[4] 3EXPTime-Complete[5]

1. [Clarke, Emerson, Sistla 1986]
2. [Emerson and Lei 1985]

3. [Kupferman, Vardi, Wolper 2001]
4. [Walukiewicz 2000]
5. [Bozzelli, Murano, Peron, 2005-2010]

Exptime-Complete w.r.t the system (fixed formula)

Aniello Murano -

Module Checking

(PD) Module Checking with Imperfect Information

O The environment can have imperfect information (hidden information) regarding the
(control) state and the stack content.

T %o, O

Welcome Choose
receipt y/n receipt y/n

The environment does not see the full picture!
...but must act independently of the missing information...

Withdraw
receipt y/n

Show Ad
receipt y/n

U

Not all the trees in EXEC(M) correspond to an actual environment .
M reactively satisfies ¢ iff ¢ holds in all consisteat (uniform) trees of Exec(M).

Checking this consistency is the main difficulty here.

Clgh 555

[Aminof, Murano, Vardi] Using alternating state PD tree automata, we have proved
decidability if the imperfect information resides only in the control states.

Aniello Murano - Module Checking 13

From Two Players to Multi Players

O In 1997, module checking “took™ also another direction to deal with
multi-player concurrent games

Alternating-Time Temporal Logic

Aniello Murano - Module Checking

Alternating-Time Temporal Logic

O ATL generalizes CTL: temporal operators are indexed by coalitions of agents.

¢:=true|[p oA Q|| KADy y=XoloUo[pRo
O «<A> y means that the team of agents A has a (collective) strategy to enforce .

O ATL formulas are generally interpreted over Concurrent Game Structures
(CGS): a Kripke structure whose transitions are labeled with agents’ decisions.

O ATL is a story of success with several applications in MAS!

Aniello Murano - Module Checking

A (refuted) common belief

O Since its definition, there has been a common belief:
ATL® model checking subsumes CTL® module checking!!!
Q In Murano and Jamroga AAMAS 2014 it has been showed that it is not the case!

€ In module checking environment’s strategies are nondeterministic and irrevocable.
€ In ATL® agents can only use deterministic and revocable strategies.

€ ATL® model checking does not have the distinguishing and expressive power of CTL®
module checking

€ To subsume CTL(*) module checking we have introduced the logic MNIATL(*)

Aniello Murano - Module Checking

ATL module checking

O In Murano and Jamroga - AAMAS 2015, finally a new framework that combines
and extends the features of the two methodologies has been introduced:

€ The environment is a special agent acting as in classic module checking: it has
nondeterministic irrevocable strategies, possibly acting under imperfect information

€ The other agents act as in classic ATL.

Aniello Murano - Module Checking

Conclusion

O Model checking has been conceived in the 1980s to check closed systems
€ Model behavior determined by internal states.
€ One source of nondeterminism: the unwinding returns an infinite computation tree
€ Model checking amounts checking whether this unigue tree satisfies the specification

O Module checking is a powerful method proposed in 1990s for open systems:
€ Open systems adapt their behavior to the input received from the environment
€ Two sources of nondeterminism: an additional external one from the environment
@ All possible interactions system-environment induce an infinite set of trees (Exec(M))
€ Module checking amounts checking whether all these trees satisfy the specification

O In the last 20 years, Module checking has been investigated in several settings:
€ Turn-based/concurrent, perfect/imperfect information, finite/infinite state, etc. ©

O Little work has been done on the connection with other methodologies in open
system verification and little investigation of its application in Al! © ©

Aniello Murano - Module Checking

References

U

Kuperman, Vardi, Wolper. Module Checking. Information and Computation 2001. Vol 164(2): 322-344
Kuperman, Vardi. Module Checking Revisited. CAV 1997, LNCS 1254, pages 36-47

Bozzelli, Murano, Peron. Pushdown Module Checking. Formal Methods in System Design 2010. vol.
36 (1), 65-95

O Ferrante, Murano, Parente. Enriched p-Calculi Module Checking. LOGICAL METHODS IN
COMPUTER SCIENCE 2008. Vol. 4 (3:1), 1-21

O Aminof, Legay, Murano, Serre, Vardi. Pushdown Module Checking with Imperfect Information.
Information and Computation 2013. Vol. 223, 1-17

O Aminof, Murano, Vardi. Pushdown Module Checking with Imperfect Information. CONCUR 2007,
460-475

O Murano, Parente, Napoli. Program Complexity in Hierarchical Module Checking. LPAR 2008,
LNCS 4330, 318-332

O Alur, Henzinger, Kupferman. Alternating-Time Temporal Logic. J. of ACM 2002. Vol 49(5): 672-713

Q Agotnes, Goranko, Jamroga. Alternating-Time Temporal Logics with Irrevocable Strategies. TARK
2007, 15-24

O Jamroga, Murano: On module checking and strategies. AAMAS 2014, pages 701-708
O Jamroga, Murano: Module Checking of Strategic Ability. AAMAS 2015, pages 227-235

(.

Aniello Murano - Module Checking

