

Second-Order Know-How Strategies

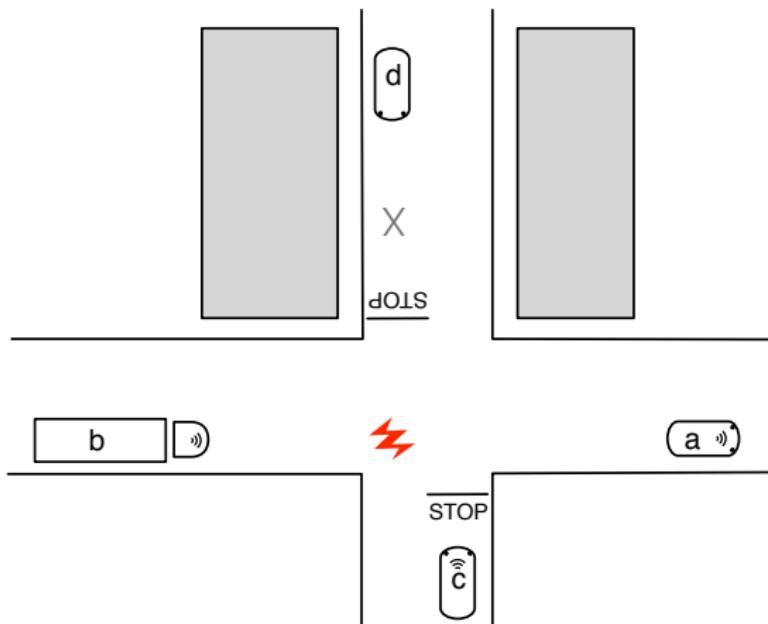
Pavel Naumov

Claremont McKenna College
Claremont, California, USA

Jia Tao

Lafayette College
Easton, Pennsylvania, USA

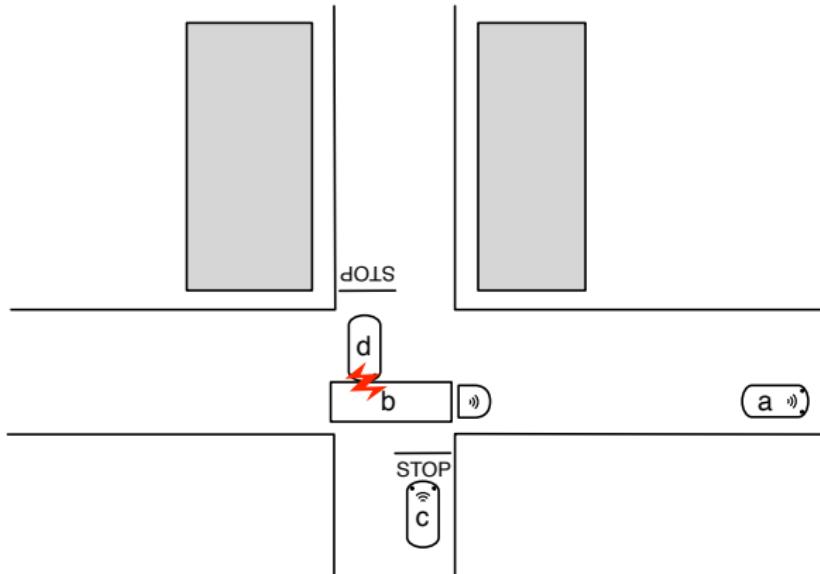
Consider the following traffic situation



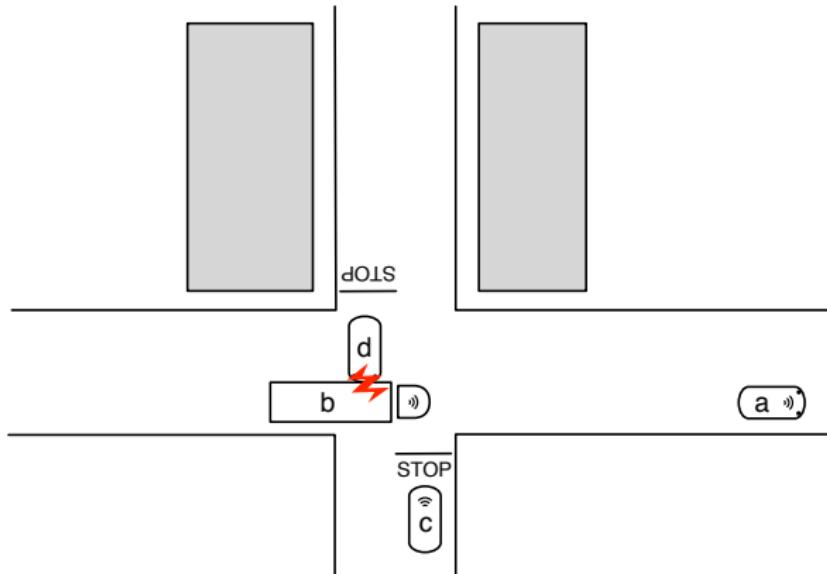
Assumption:

- ▶ The driver of car *d* does not notice the stop sign.

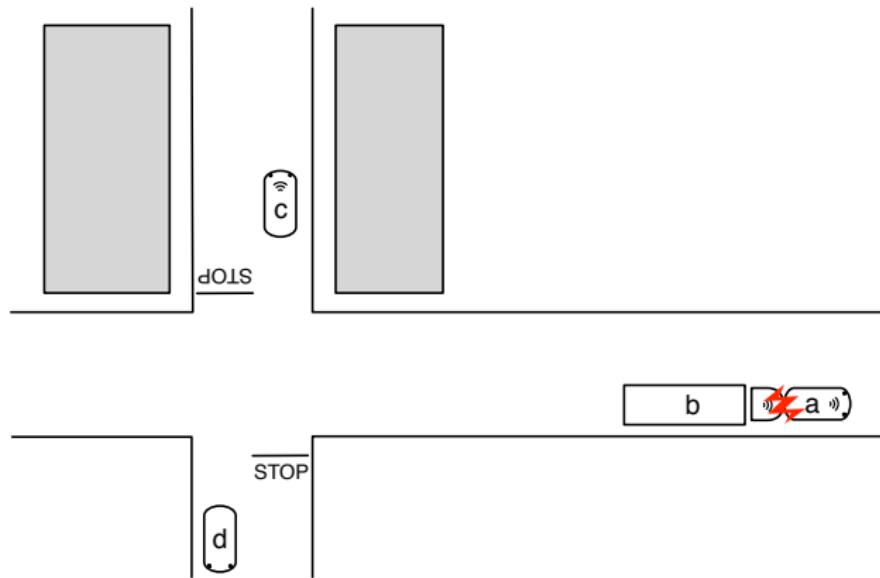
Truck *b* maintains the same speed



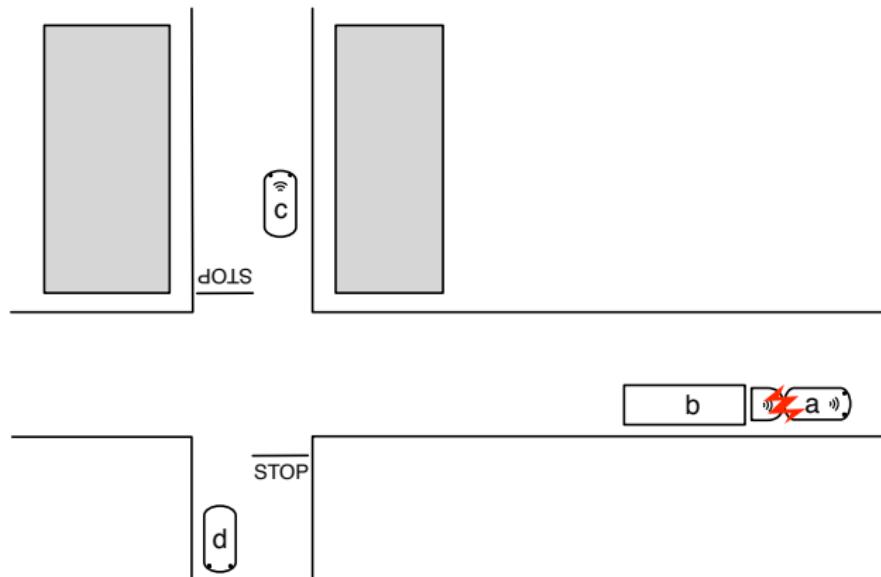
Truck *b* slows down



Truck *b* accelerates

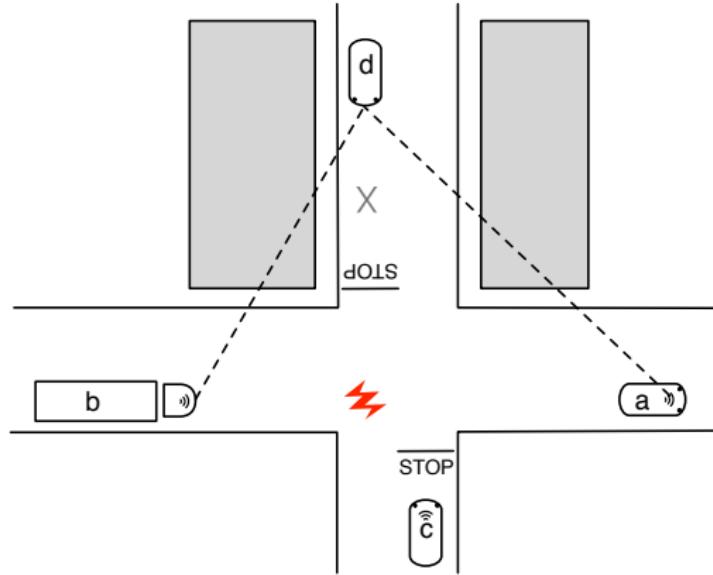


Truck *b* accelerates



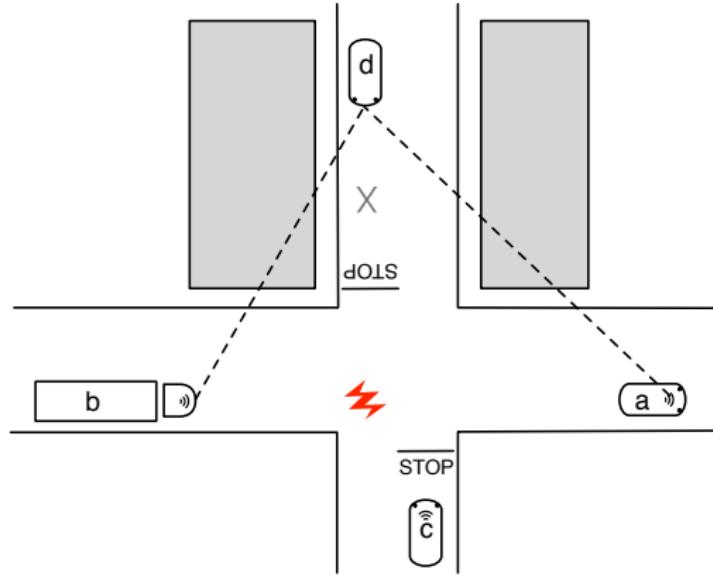
To prevent a collision, both truck *b* and car *a* must accelerate.

Second-order know-how strategies



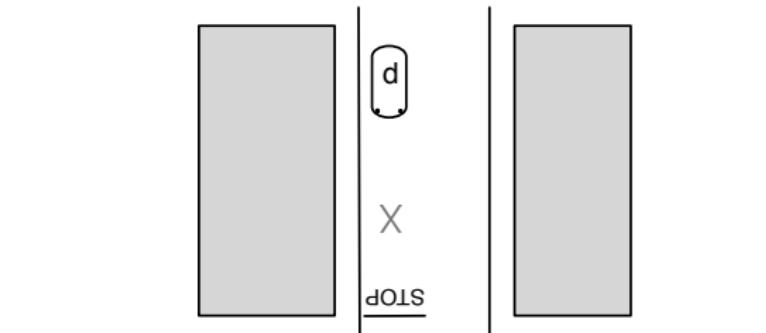
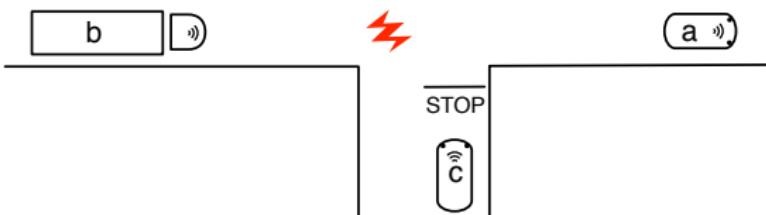
- ▶ Coalition $\{a, b\}$ has a *strategy* to prevent a collision.

Second-order know-how strategies



- ▶ Coalition $\{a, b\}$ has a *strategy* to prevent a collision.
- ▶ Coalition $\{a, b\}$ does not know such a strategy exists.
- ▶ Car *c* knows what is the strategy of coalition $\{a, b\}$ to avoid a collision.

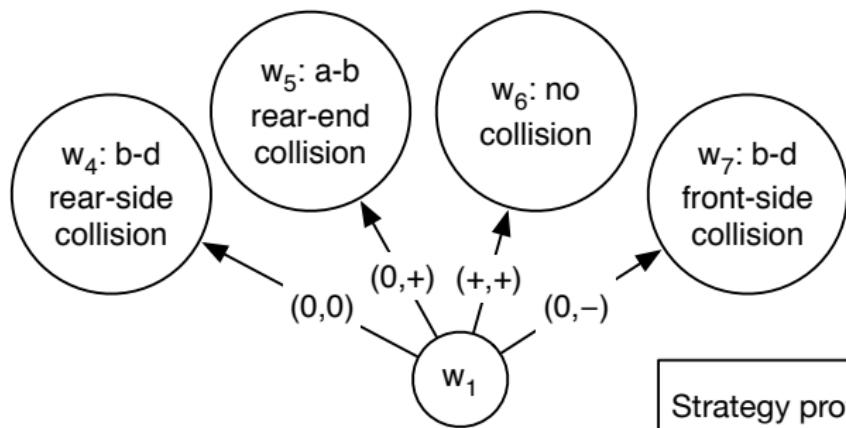
Second-order know-how strategies



$w_1 \Vdash H_{\{c\}}^{\{a,b\}}$ ("avoid a collision")

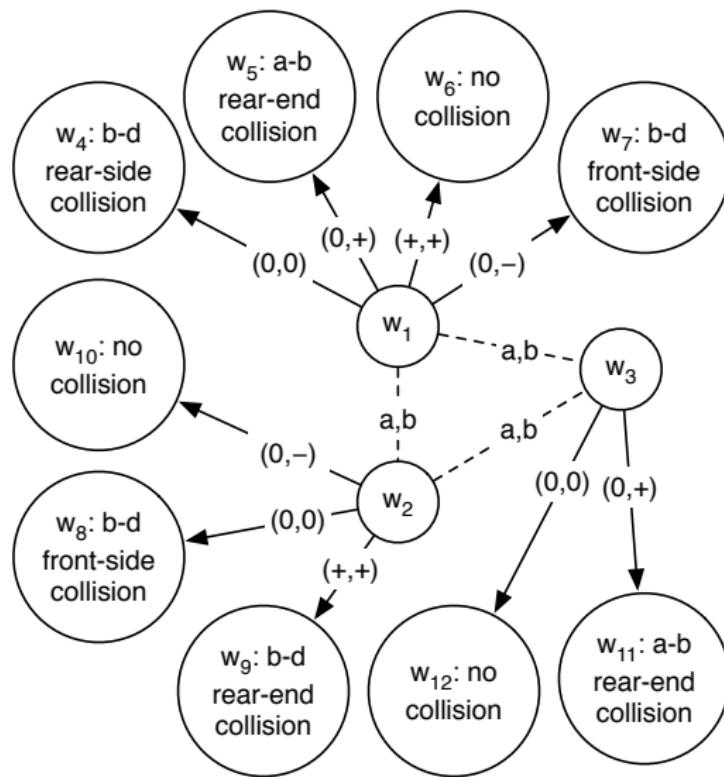
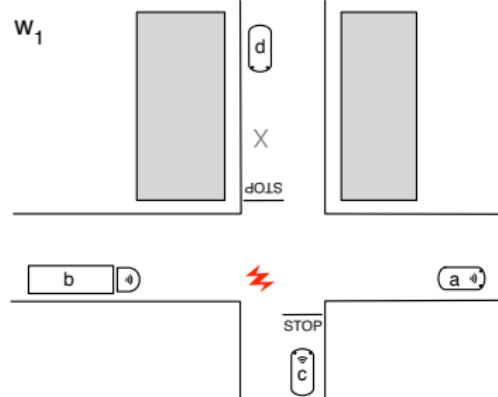
$w \Vdash H_C^D \varphi$: if coalition C has distributed knowledge of how coalition D can achieve outcome φ from state w .

Epistemic Transition System



Strategy profile (s_a, s_b)
Domain of actions:
+: to accelerate
-: to slow down
0: to maintain speed

Epistemic Transition System



w₂: car d is at the spot X

w₃: car d is not present at the scene

Strategy profile (s_a, s_b)

Domain of actions:

- +: to accelerate
- : to slow down
- 0: to maintain speed

Definition 1

A tuple $(W, \{\sim_a\}_{a \in \mathcal{A}}, \Delta, M, \pi)$ is an (epistemic) transition system, if

1. W is a set (of epistemic states),
2. \sim_a is an indistinguishability equivalence relation on set W for each $a \in \mathcal{A}$,
3. Δ is a nonempty set, called the domain of actions,
4. $M \subseteq W \times \Delta^{\mathcal{A}} \times W$ is an aggregation mechanism,
5. π is a function from propositional variables to subsets of W .

Definition 1

A tuple $(W, \{\sim_a\}_{a \in \mathcal{A}}, \Delta, M, \pi)$ is an (epistemic) transition system, if

1. W is a set (of epistemic states),
2. \sim_a is an indistinguishability equivalence relation on set W for each $a \in \mathcal{A}$,
3. Δ is a nonempty set, called the domain of actions,
4. $M \subseteq W \times \Delta^{\mathcal{A}} \times W$ is an aggregation mechanism,
5. π is a function from propositional variables to subsets of W .

For any states $w_1, w_2 \in W$ and any coalition C , let $w_1 \sim_C w_2$ if $w_1 \sim_a w_2$ for each agent $a \in C$.

Definition 1

A tuple $(W, \{\sim_a\}_{a \in \mathcal{A}}, \Delta, M, \pi)$ is an (epistemic) transition system, if

1. W is a set (of epistemic states),
2. \sim_a is an indistinguishability equivalence relation on set W for each $a \in \mathcal{A}$,
3. Δ is a nonempty set, called the domain of actions,
4. $M \subseteq W \times \Delta^{\mathcal{A}} \times W$ is an aggregation mechanism,
5. π is a function from propositional variables to subsets of W .

For any states $w_1, w_2 \in W$ and any coalition C , let $w_1 \sim_C w_2$ if $w_1 \sim_a w_2$ for each agent $a \in C$.

A *strategy profile of a coalition C* is a tuple of values from Δ indexed by set C . A *complete strategy profile* is a strategy profile of the coalition \mathcal{A} .

Definition 2

Let Φ be the minimal set of formulae such that

1. $p \in \Phi$ for each propositional variable p ,
2. $\neg\varphi, \varphi \rightarrow \psi \in \Phi$ for all formulae $\varphi, \psi \in \Phi$,
3. $K_C\varphi, H_C^D\varphi \in \Phi$ for each coalition C , each finite coalition D , and each formula $\varphi \in \Phi$.

Definition 3

For any epistemic state $w \in W$ of a transition system

$(W, \{\sim_a\}_{a \in \mathcal{A}}, V, M, \pi)$ and any formula $\varphi \in \Phi$, let relation $w \Vdash \varphi$ be defined as follows:

1. $w \Vdash p$ if $w \in \pi(p)$, where p is a propositional variable,
2. $w \Vdash \neg\varphi$ if $w \not\Vdash \varphi$,
3. $w \Vdash \varphi \rightarrow \psi$ if $w \not\Vdash \varphi$ or $w \Vdash \psi$,
4. $w \Vdash K_C \varphi$ if $w' \Vdash \varphi$ for each $w' \in W$ such that $w \sim_C w'$,
5. $w \Vdash H_C^D \varphi$ if there is a strategy profile $s \in V^D$ such that for any two states $w', u \in W$ and any complete strategy profile s' , if $w \sim_C w'$, $s =_D s'$, and $(w', s', u) \in M$, then $u \Vdash \varphi$.

Axioms

1. Truth: $K_C\varphi \rightarrow \varphi$,
2. Negative Introspection: $\neg K_C\varphi \rightarrow K_C\neg K_C\varphi$,
3. Distributivity: $K_C(\varphi \rightarrow \psi) \rightarrow (K_C\varphi \rightarrow K_C\psi)$,
4. Monotonicity: $K_C\varphi \rightarrow K_D\varphi$, if $C \subseteq D$,

Axioms

1. Truth: $K_C\varphi \rightarrow \varphi$,
2. Negative Introspection: $\neg K_C\varphi \rightarrow K_C\neg K_C\varphi$,
3. Distributivity: $K_C(\varphi \rightarrow \psi) \rightarrow (K_C\varphi \rightarrow K_C\psi)$,
4. Monotonicity: $K_C\varphi \rightarrow K_D\varphi$, if $C \subseteq D$,
5. Cooperation: $H_{C_1}^{D_1}(\varphi \rightarrow \psi) \rightarrow (H_{C_2}^{D_2}\varphi \rightarrow H_{C_1 \cup C_2}^{D_1 \cup D_2}\psi)$, where $D_1 \cap D_2 = \emptyset$.

Axioms

1. Truth: $K_C\varphi \rightarrow \varphi$,
2. Negative Introspection: $\neg K_C\varphi \rightarrow K_C\neg K_C\varphi$,
3. Distributivity: $K_C(\varphi \rightarrow \psi) \rightarrow (K_C\varphi \rightarrow K_C\psi)$,
4. Monotonicity: $K_C\varphi \rightarrow K_D\varphi$, if $C \subseteq D$,
5. Cooperation: $H_{C_1}^{D_1}(\varphi \rightarrow \psi) \rightarrow (H_{C_2}^{D_2}\varphi \rightarrow H_{C_1 \cup C_2}^{D_1 \cup D_2}\psi)$, where $D_1 \cap D_2 = \emptyset$.
6. Strategic Introspection: $H_C^D\varphi \rightarrow K_C H_C^D\varphi$,

Axioms

1. Truth: $K_C\varphi \rightarrow \varphi$,
2. Negative Introspection: $\neg K_C\varphi \rightarrow K_C\neg K_C\varphi$,
3. Distributivity: $K_C(\varphi \rightarrow \psi) \rightarrow (K_C\varphi \rightarrow K_C\psi)$,
4. Monotonicity: $K_C\varphi \rightarrow K_D\varphi$, if $C \subseteq D$,
5. Cooperation: $H_{C_1}^{D_1}(\varphi \rightarrow \psi) \rightarrow (H_{C_2}^{D_2}\varphi \rightarrow H_{C_1 \cup C_2}^{D_1 \cup D_2}\psi)$, where $D_1 \cap D_2 = \emptyset$.
6. Strategic Introspection: $H_C^D\varphi \rightarrow K_C H_C^D\varphi$,
7. Empty Coalition: $K_\emptyset\varphi \rightarrow H_\emptyset^\emptyset\varphi$.

Axioms

1. Truth: $K_C\varphi \rightarrow \varphi$,
2. Negative Introspection: $\neg K_C\varphi \rightarrow K_C\neg K_C\varphi$,
3. Distributivity: $K_C(\varphi \rightarrow \psi) \rightarrow (K_C\varphi \rightarrow K_C\psi)$,
4. Monotonicity: $K_C\varphi \rightarrow K_D\varphi$, if $C \subseteq D$,
5. Cooperation: $H_{C_1}^{D_1}(\varphi \rightarrow \psi) \rightarrow (H_{C_2}^{D_2}\varphi \rightarrow H_{C_1 \cup C_2}^{D_1 \cup D_2}\psi)$, where $D_1 \cap D_2 = \emptyset$.
6. Strategic Introspection: $H_C^D\varphi \rightarrow K_C H_C^D\varphi$,
7. Empty Coalition: $K_\emptyset\varphi \rightarrow H_\emptyset^\emptyset\varphi$.
8. Knowledge of Unavoidability: $K_A H_B^\emptyset\varphi \rightarrow H_A^\emptyset\varphi$.

Inference Rules

1. Necessitation: $\frac{\varphi}{K_C\varphi}$
2. Strategic Necessitation: $\frac{\varphi}{H_C^D\varphi}$
3. Modus Ponens: $\frac{\varphi, \varphi \rightarrow \psi}{\psi}$

Conclusion

AAMAS (International Conference on Autonomous Agents and Multiagent Systems) 2018

- ▶ A language for modeling an interplay between the distributed knowledge modality and the second-order coalition know-how modality.
- ▶ A sound and complete logical framework.