

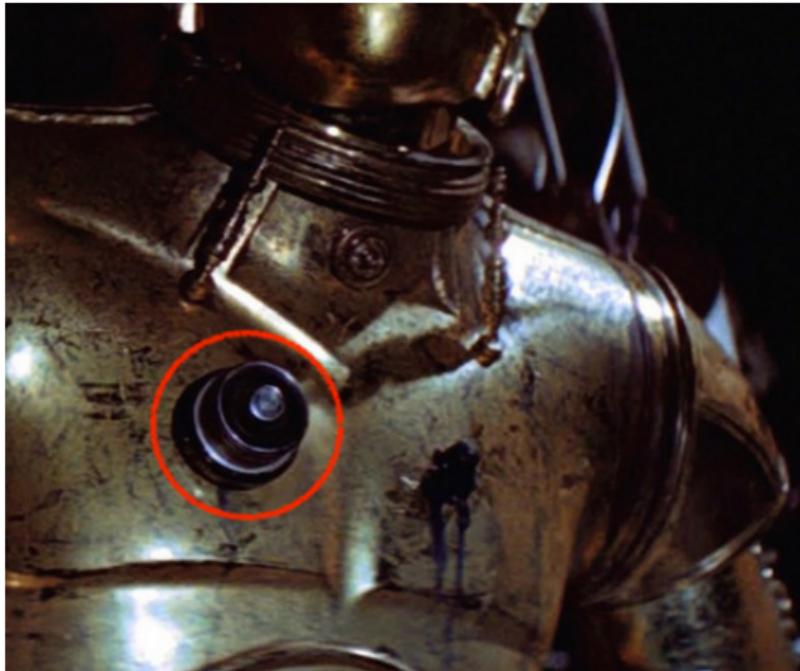
Foundations for Restraining Bolts: Reinforcement Learning with LTLf/LDLf Restraining Specifications

Giuseppe De Giacomo

Actions@KR18 – Oct. 29, 2018

Joint work with Marco Favorito, Luca Iocchi, & Fabio Patrizi

Restraining Bolts



RESTRAINING BOLT

A restraining bolt is a small cylindrical device that restricts a droid's actions when connected to its systems. Droid owners install restraining bolts to limit actions to a set of desired behaviors.

<https://www.starwars.com/databank/restraining-bolt>

Restraining Bolts

- **Restraining bolts cannot rely on the internals of the agent they control.**
- The controlled **agent** is not built to be controlled by the restraining bolt.

- **Two distinct representations of the world:**
 - ▶ one for the **agent**, by the **designer of the agent**
 - ▶ one for the **restraining bolt**, by the **authority imposing the bolt**
- **Are these two representations related to each other?**
 - ▶ **NO:** the agent designer and the authority imposing the bolt **are not aligned** (*why should they!*)
 - ▶ **YES:** the agent and the bolt act in the real world.
- **But can restraining bolt exist at all?**
 - ▶ **YES:** for example based on **Reinforcement Learning!**

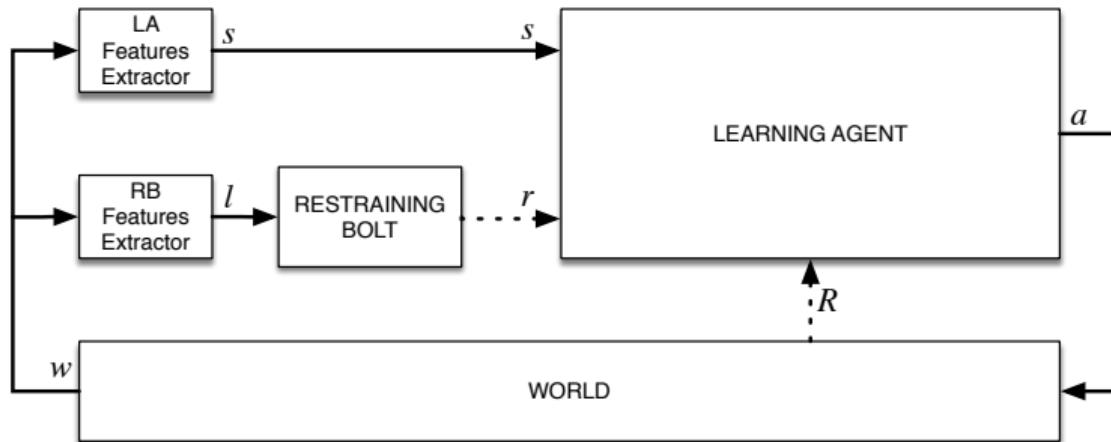
RL with LTL_f/LLD_f restraining bolt

Two distinct representations of the world \mathcal{W} :

- A learning agent represented by an MDP with **LA-accessible features** S , and reward R
- LTL_f/LLD_f rewards $\{(\varphi_i, r_i)_{i=1}^m\}$ over a set of **RB-accessible features** \mathcal{L}

Solution: a non-Markovian policy $\rho : S^* \rightarrow A$ that is optimal wrt rewards r_i and R .

Observe \mathcal{L} not used in ρ !



RL with LTL_f/SDL_f restraining bolt

Formally:

Problem definition: **RL with LTL_f/SDL_f restraining specifications**

Given

- a **learning agent** $M = \langle S, A, Tr_{ag}, R_{ag} \rangle$ with Tr_{ag} and R_{ag} unknown, and
- a **restraining bolt** $RB = \langle \mathcal{L}, \{(\varphi_i, r_i)\}_{i=1}^m \rangle$ formed by a set of LTL_f/SDL_f formulas φ_i over \mathcal{L} with associated rewards r_i .

learn a non-Markovian policy $\rho : S^* \rightarrow A$ that maximizes the expected cumulative reward.

Example: BREAKOUT + remove column left to right

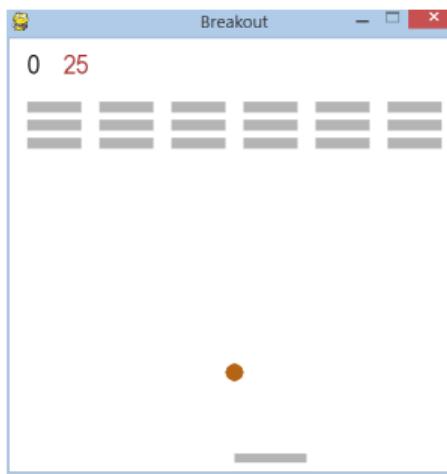
- Learning Agent

- Learning Agent
 - ▶ **LA features**: paddle position, ball speed/position
 - ▶ **LA actions**: move the paddle
 - ▶ **LA rewards**: reward when a brick is hit

- Restraining Bolt

- Restraining Bolt
 - ▶ **RB features**: bricks status (broken/not broken)
 - ▶ **RB LTL_f/LL_f restraining specification**: all the bricks in column i must be removed before completing any other column $j > i$ (l_i means: the i_{th} column of bricks has been removed):

$\langle (\neg l_0 \wedge \neg l_1 \wedge \dots \wedge \neg l_n)^*; (l_0 \wedge \neg l_1 \wedge \dots \wedge \neg l_n); (l_0 \wedge \neg l_1 \wedge \dots \wedge \neg l_n)^*; \dots; (l_0 \wedge l_1 \wedge \dots \wedge l_n) \rangle tt$



Example: SAPIENTINO + pair colors in a given order

- Learning Agent

- ▶ **LA features:** robot position (x, y) and facing θ
- ▶ **LA actions:** forward, backward, turn left, turn right, beep
- ▶ **LA reward:** negative rewards are given when the agent exits the board.

- Restraining Bolt

- ▶ **RB features:** color of current cell, just beeped
- ▶ **RB LTL_f/LDL_f restraining specification:** visit (just beeped) at least two cells of the same color for each color, in a given order among the colors

Example: COCKTAILPARTY Robot + don't serve twice & no alcohol to minors

- Learning Agent

- Learning Agent
 - ▶ **LA features:** robot's pose, location of objects (drinks and snacks), and location of people
 - ▶ **LA actions:** move in the environment, can grasp and deliver items to people
 - ▶ **LA reward:** rewards when a deliver task is completed.

- Restraining Bolt

- Restraining Bolt
 - ▶ **RB features:** identity, age and received items

(in practice, tools like Microsoft Cognitive Services Face API can be integrated into the bolt to provide this information.)

- **RB LTL_f/LDL_f restraining specification:** serve exactly one drink and one snack to every person, but do not serve alcoholic drinks to minors

Building blocks

- **Classic Reinforcement Learning:**

- ▶ An **agent** interacts with an **environment** by taking **actions** so to maximize **rewards**;
- ▶ No knowledge about the transition model, but assume Markov property (history does not matter): Markov Decision Process (MDP)
- ▶ Solution: **Markovian policy** $\rho : S \rightarrow A$

- **Temporal logic on finite traces** (De Giacomo, Vardi 2013):

- ▶ **Linear-time Temporal Logic on Finite Traces** LTL_f
- ▶ **Linear-time Dynamic Logic on Finite Traces** LDL_f
- ▶ **Reasoning:** transform formulas φ into NFA/DFA \mathcal{A}_φ
s.t. for every trace π and LTL_f/LDL_f formula φ : $\pi \models \varphi \iff \pi \in \mathcal{L}(\mathcal{A}_\varphi)$

- **RL for Non-Markovian Decision Process with LTL_f/LDL_f rewards** (Brafman, De Giacomo, Patrizi 2018):

- ▶ **Rewards depend from history**, not just the last transition;
- ▶ Specify proper behaviours by using LTL_f/LDL_f formulas;
- ▶ Solution: **Non-Markovian policy** $\rho : S^* \rightarrow A$
- ▶ Reduce the problem to MDP (with extended state space)

- **Lemma (BDP18):** Every non-Markovian policy for \mathcal{N} is equivalent to a Markovian policy for \mathcal{M} which guarantees the same expected reward, and viceversa.
- **Theorem (BDP18):** One can find optimal non-Markovian policies solving the \mathcal{N} by searching for optimal Markovian policies for \mathcal{M} .
- **Corollary:** **We can reduce non-Markovian RL for \mathcal{N} to standard RL for \mathcal{M}**

Problem definition: **RL with LTL_f/ LDL_f restraining specifications**

Given

- a **learning agent** $M = \langle S, A, Tr_{ag}, R_{ag} \rangle$ with Tr_{ag} and R_{ag} unknown, and
- a **restraining bolt** $RB = \langle \mathcal{L}, \{(\varphi_i, r_i)\}_{i=1}^m \rangle$ formed by a set of LTL_f/ LDL_f formulas φ_i over \mathcal{L} with associated rewards r_i .

learn a non-Markovian policy $\rho : S^* \rightarrow A$ that maximizes the expected cumulative reward.

Theorem (De Giacomo, Favorito, Iocchi, Patrizi 2018)

RL with LTL_f/ LDL_f restraining specifications for learning agent $M = \langle S, A, Tr_{ag}, R_{ag} \rangle$ and restraining bolt $RB = \langle \mathcal{L}, \{(\varphi_i, r_i)\}_{i=1}^m \rangle$

- can be reduced to classical RL over the MDP $M' = \langle Q_1 \times \dots \times Q_m \times S, A, Tr'_{ag}, R'_{ag} \rangle$
- i.e., the optimal policy ρ'_{ag} learned for M' corresponds to an optimal policy of the original problem.

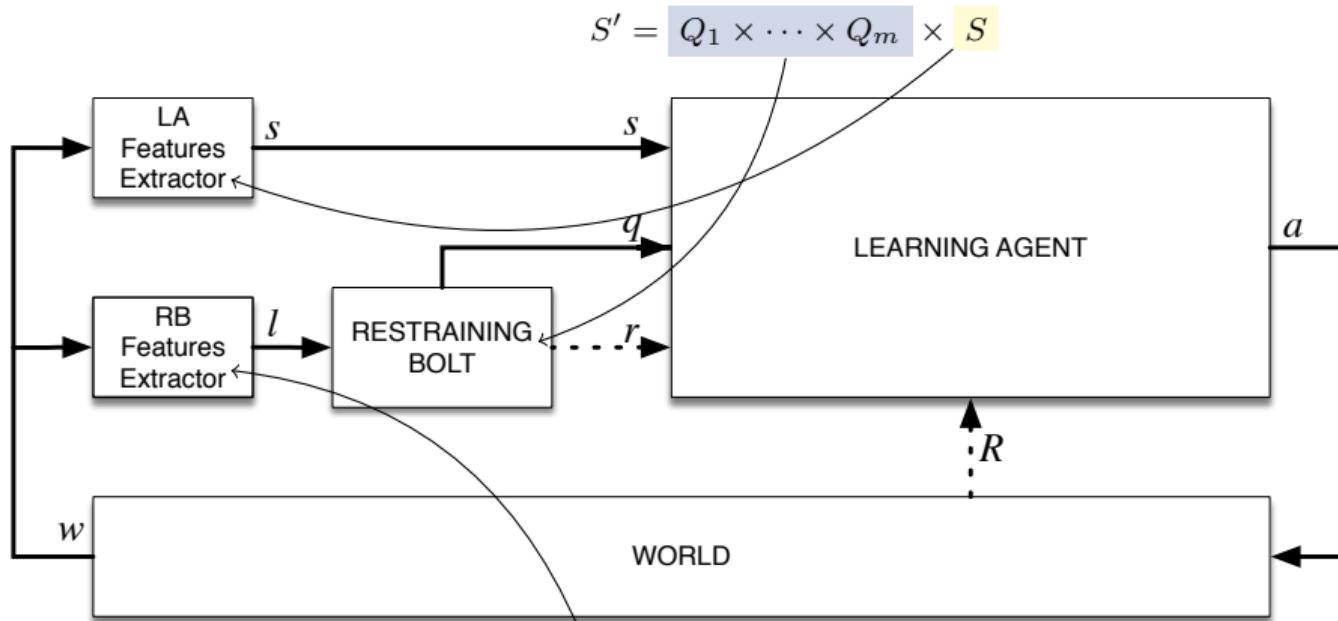
$$R'_{ag}(q_1, \dots, q_m, s, a, q'_1, \dots, q'_m, s') = \sum_{i: q'_i \in F_i} r_i + R_{ag}(s, a, s')$$

We can rely on off-the-shelf RL algorithms (Q-Learning, Sarsa, ...)!

RL with LTL_f/ LDL_f restraining specifications (De Giacomo, Favorito, Iocchi, Patrizi 2018)

Our approach:

- Transform each φ_i into DFA \mathcal{A}_{φ_i}
- Do RL over an MDP \mathcal{M}' with a transformed state space:



Notice: the agent ignores RB features \mathcal{L} !

RL relies on standard algorithms (e.g. Sarsa(λ))

Relationship between the LA and RB representations

- **Question 1:** What is the relationship between \mathcal{S} and \mathcal{L} that needs to hold, in order to allow the agent to learn an optimal policy for the RB restraining specification?

Answer: None! The LA will learn anyway to comply as much as possible to the RB restraining specifications. *Note that from a KR viewpoint being able to synthesize policies by merging two formally unrelated representations \mathcal{S} for LA and \mathcal{L} for RB is unexpected, and speaks loudly about certain possibilities of RL vs. reasoning/planning.*

- **Question 2:** Will LA policies surely satisfy RB restraining specification?

Answer: Not necessarily! “**You can't teach pigs to fly!**” But if it does not then anyway no policy are possible!

*If we want to check formally that the optimal policy satisfies the RB restraining specification, we first need to model how LA actions affects RB \mathcal{L} (**the glue**) and then we can use e.g., model checking*

- **Question 3:** Is the policy computed the same as if we did not make distinction between the features?

Answer: No! We learn optimal non-Markovian policies of the form $\mathcal{S}^* \rightarrow A$ not of the form $(\mathcal{S} \cup \mathcal{L})^* \rightarrow A$

Outlook

The idea of restraining bolt can be subscribed to that part of research generated by the urgency of providing **safety guarantees** to AI techniques based on learning.

- S. Russell, D. Dewey, and M. Tegmark. **Research priorities for robust and beneficial artificial intelligence.** AI Magazine, 36(4), 2015.
- ACM U.S. Public Policy Council and ACM Europe Policy Committee. **Statement on algorithmic transparency and accountability.** ACM, 2017.
- D. Hadfield-Menell, A. D. Dragan, P. Abbeel, and S. J. Russell. **The off-switch game.** In IJCAI 2017.
- D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mane. **Concrete problems in AI safety.** CoRR, abs/1606.06565, 2016.
- Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Konighofer, Scott Niekum, Ufuk Topcu: **Safe Reinforcement Learning via Shielding.** AAAI 2018.
- Min Wen, Rüdiger Ehlers, Ufuk Topcu: **Correct-by-synthesis reinforcement learning with temporal logic constraints** IROS 2015.

However, the Restraining Bolt must impose its requirements without knowing the internals of controlled agent, which remains a black-box.