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The synthesis problem for LTL (linear temporal logic)
gets as input a specification in LTL and outputs a reactive
system that satisfies it — if such exists (Pnueli and Rosner
1989). The specification is over input signals, controlled by
the environment, and output signals, controlled by the sys-
tem. The system should satisfy the specification in all envi-
ronments. The environment with which the system interacts
is often composed of other systems. For example, the clients
interacting with a server are by themselves distinct entities
(which we call agents). In the traditional approach to syn-
thesis, the agents can be seen as if their only objective is to
conspire to fail the system. Hence the term “hostile environ-
ment” that is traditionally used in the context of synthesis. In
real life, however, many times agents have objectives of their
own, other than to fail the system. The approach taken in the
field of algorithmic game theory (Nisan et al. 2007) is to
assume that agents interacting with a computational system
are rational; i.e., agents act to achieve their own objectives.

In (Fisman, Kupferman, and Lustig 2010), Fisman et
al. introduced rational synthesis. The input to the rational-
synthesis problem consists of LTL formulas specifying the
objectives of the system and the agents that constitute the
environment. The signals over which the objectives are de-
fined are partitioned among the system and the agents, so
that each of them controls a subset of the signals. There are
two approaches to rational synthesis. In cooperative rational
synthesis, the desired output is a strategy profile such that
the objective of the system is satisfied in the computation
that is the outcome of the profile, and the agents that consti-
tute the environment have no incentive to deviate from the
strategies suggested to them; that is, the profile is a Nash
equilibrium (NE) (Nash 1950). Thus, in the cooperative set-
ting, we assume that once we suggest to the agents strategies
that constitute an equilibrium, they follow them. Then, in
non-cooperative rational synthesis, studied in (Kupferman,
Perelli, and Vardi 2016), the desired output is a strategy for
the system such that its objective is satisfied in all NE pro-
files in which the system follows this strategy. Thus, in the
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non-cooperative setting, the agents are rational, but need not
follow a suggested profile. The rational-synthesis problem
for LTL in the cooperative setting is 2EXPTIME-complete
(Fisman, Kupferman, and Lustig 2010), as is traditional LTL
synthesis. In the non-cooperative setting, the best known
complexity is 3EXPTIME (Kupferman, Perelli, and Vardi
2016).1

Traditional games in game theory are finite and their out-
come depends on the final position of the game (Nisan
and Ronen 1999; Nisan et al. 2007). In contrast, the sys-
tems we reason about maintain an on-going interaction with
their environment (Harel and Pnueli 1985), and reasoning
about their behavior refers not to their final state (in fact, we
considers non-terminating systems, with no final state) but
rather to the language of computations that they generate.
While LTL specifications enable the description of rich on-
going behaviors, the semantics of LTL is Boolean: a compu-
tation may satisfy a specification or it may not. As argued in
(Almagor, Boker, and Kupferman 2016), the Boolean nature
of LTL is a real obstacle in synthesis. Indeed, while many
systems may satisfy a specification, they may do so at differ-
ent levels of quality. Consequently, designers would be will-
ing to give up manual design only after being convinced that
the automatic procedure that replaces it generates systems
of comparable quality. As argued in (Kupferman, Perelli,
and Vardi 2016), the extension of the synthesis problem to
the rational setting makes the quantitative setting even more
appealing. Indeed, objectives in typical game-theory appli-
cations are quantitative, and interesting properties of games
often refer to their quantitative aspects.

We study the rational-synthesis problem for a very strong
quantitative formalism, namely LTL[F ]. The logic LTL[F ]
is a multi-valued logic that augments LTL with quality op-
erators (Almagor, Boker, and Kupferman 2016). The satis-
faction value of an LTL[F ] formula is a real value in [0, 1],
where the higher the value is, the higher is the quality in
which the computation satisfies the specification. The qual-
ity operators inF can prioritize different scenarios or reduce

1The complexity specified in (Kupferman, Perelli, and Vardi
2016) is actually 2EXPTIME-complete, yet the complexity anal-
ysis there misses one alternation between strategy quantifiers in
the strategy-logic formula to which the problem is reduced. Taking
this additional alternation into account, the complexity goes up to
3EXPTIME.



the satisfaction value of computations in which delays occur.
For example, as in earlier work on multi-valued extensions
of LTL (c.f., (Faella, Legay, and Stoelinga 2008)), the set F
may contain the min {x, y}, max {x, y}, and 1 − x func-
tions, which are the standard quantitative analogues of the
∧, ∨, and ¬ operators. The novelty of LTL[F ] is the ability
to manipulate values by arbitrary functions. For example, F
may contain the weighted-average function ⊕λ. The satis-
faction value of the formula ϕ⊕λψ is the weighted (accord-
ing to λ) average between the satisfaction values of ϕ and
ψ. This enables the specification of the quality of the system
to interpolate different aspects of it. As an example, consider
the LTL[F ] formula G(req → (grant⊕ 2

3
Xgrant)). The for-

mula states that we want requests to be granted immediately
and the grant to hold for two transactions. When this always
holds, the satisfaction value is 2

3 +
1
3 = 1. We are quite okay

with grants that are given immediately and last for only one
transaction, in which case the satisfaction value is 2

3 , and
less content when grants arrive with a delay, in which case
the satisfaction value is 1

3 .
The extension to LTL[F ] significantly strengthens the

framework of rational synthesis. In addition, we study the
stability of rational synthesis and additional game- and
social-choice theoretic aspects of it. We generalize the set-
ting to an arbitrary partition of the set of agents to control-
lable and uncontrollable ones. In particular, the case there
are no controllable agents corresponds to interactions with
no authority. We refine the stability-inefficiency measures of
price of stability (PoS) (Anshelevich et al. 2008) and price
of anarchy (PoA) (Koutsoupias and Papadimitriou 2009;
Papadimitriou 2001) to a setting where some of the agents
are controllable. Essentially, these notions measure how
much we lose from the absence of a central authority by
comparing the utility of a social-optimum profile (that is, a
profile that maximizes the profits of all agents together) with
that of NE profiles. Our refinement enables a distinction be-
tween cases where the behavior of the controllable agents is
fixed and cases it is not.

Studying the stability of rational synthesis, we prove that
a rational-synthesis game need not have an NE, and that
for some utility functions, the PoS and PoA may not be
bounded. We relate the cooperative and non-cooperative set-
tings with the two stability-inefficiency measures. In the co-
operative setting, we may suggest to the agents a best NE,
thus the cooperative setting corresponds to the PoS measure.
On the other hand, in the non-cooperative setting, the agents
may follow the worst NE, which corresponds to the PoA
measure. This settles a discussion in the community about
the necessity of both settings, and also implies that the profit
to the controllable components in the non-cooperative set-
ting may be unboundedly smaller than the profit in the co-
operative setting.

We solve decision problems for rational synthesis with
LTL[F ] objectives. Our algorithms make use of strategy
logic and decision procedures for it (Mogavero et al. 2012;
2014). Thus, we are able to handle the richer quantitative
setting using existing tools. In particular, we show that the
cooperative and non-cooperative versions of LTL[F ] ratio-
nal synthesis are 2EXPTIME-complete and in 3EXPTIME,

respectively, and that so are the problems of calculating the
various stability-inefficiency measures, and other measures
that quantify the game and its outcomes. Thus, the com-
plexity of rational synthesis in the quantitative setting is not
harder than the best known complexity in the Boolean set-
ting. Due to the lack of space, some of the proofs are omitted
and can be found in the full version, in the authors’ URLs.
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