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Introduction and Motivations
Most automated planning techniques are based on abstract
representations of the real world, which are usually called
“planning domains”. A planning domain is most often for-
malized as a deterministic, nondeterministic, or stochastic
state transition system (Ghallab, Nau, and Traverso 2016).
The agent perceives the environment through sensors that
provide data in a continuous space. These perceptions are at
a different level from the abstract discrete state space. Most
of the works in planning and learning (see, e.g., (Sutton and
Barto 1998; Geffner and Bonet 2013))1 assume a fixed cor-
respondence between sensor data and abstract states. After
acting, the agent knows exactly the state it has reached. This
is a rather strong and unrealistic assumption, since it sup-
poses that the agents knows the environment in which it op-
erates, and that such an environment is immutable.

We should instead provide a formal framework where the
mapping between abstract states and the real world is part
of the model of the agent, it is explicitly represented in the
model, and it is learned and updated along the “life” of the
agent.

Reference Model
A deterministic planning domain2 is a triple D = 〈S,A, γ〉,
composed of a finite non empty set of states, a finite non
empty set of actions and a state transition function. A plan-
ning problem is a triple P = 〈D, s0, Sg〉 composed of a
planning domain, an initial state and a set of goal states.
A plan π for D is a partial function from S to A. A sim-
ple planning domain is shown in Figure 1.(a). domain. The
way in which an agent perceives the world is modeled by
a perception function, i.e., a function f : Rn × S → R+,
defined as f(xxx, s) = p(xxx|s) · p(s), where p(xxx, s) is a join
PDF on Rn × S. In other words f(xxx, s) is the likelihood
of observing xxx being in a state s. Figure 1.(b) shows an
example of perception function f(〈x, y〉, sij) for the ab-
stract planning domain 1.(a) in the real world 1.(c), where
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1In some works (see, e.g., (Co-Reyes et al. 2018)) the two levels
are collapsed, since planning is performed in a continuous space

2The model can be extended to stochastic domains.

p(〈x, y〉|sij) = N
(〈
i− 1

2 , j −
1
2

〉
,ΣΣΣ

)
, for some constant

covariance matrix ΣΣΣ and p(sij) = .25.
Notice that the agent’s abstract model of Figure 1 is not

coherent with the real world for two main reasons: First,
transition from and to s22 are not possible in the real world,
due to the presence of walls; second there are two missing
states, corresponding to the rightmost rooms in the building.
Intuitively the most coherent model is shown in Figure 2.
The planning, acting, and learning algorithm should be able
to learn a more coherent planning domain and perception
function as for instance the one shown in Figure 2.

Planning, Acting, and Learning Algorithm

Algorithm 1 PlanActLearn
Require: P = 〈〈S,A, γ〉 , s0, Sg〉 {A planning problem}
Require: f {a perception function}
T ← 〈〉 {The empty history of transitions}
O ← 〈〉 {The empty history of observations}
while s0 6∈ Sg do
π ← plan(P)
while π(s0) is defined do
xxx← act(π(s0))
s′0 ← argmaxs∈S f(xxx, s)
if f(xxx, s′0) < ε then
s′0 ← snew

S ← S ∪ {snew}
end if
T ← append(T, 〈s0, π(s0), s′0〉) {extend the transition
history with the last one}
O ← append(O, 〈s′0,xxx〉) {extend the observation history
with the last one}
γ ← update trans(γ, T )
f ← update perc(f,O)
s0 ← s′0

end while
end while

Algorithm 1 interleaves planning, acting, and learning.
We look for a plan (plan(P)), we execute the plan in the cur-
rent initial state s0, and perceive the data from the real world
in the vector of real numbers xxx . We get the state s′0 that
maximizes likelihood, and if it is below a given threshold ε,
we create a new state snew. The functions update trans and
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(a) Planning problem (b) Perception function (c) Real world

Figure 1: (a) A planning problem on a domain composed of 4 states, corresponding to 4 rooms, no walls between them, and 4
actions n, s, w, and e (go north, south, west, and east). (b) A perception function associated to the planning domain. (c) The
real world: the building has 6 (and no 4) rooms, and two walls

update perc update the transition function γ and the percep-
tion function f , respectively, depending on the data available
in T andO. The update functions take into account what has
been observed in the past, i.e., O and T , and what has been
just observed, i.e., 〈s0, π(s0), s′0〉 and 〈s′0,xxx〉. Update func-
tions can be defined in several different ways, depending on
whether we follow a cautious strategy, where changes are
made only if there are a certain number of evidences from
acting and perceiving the real world, or a more impulsive
reaction to what the agent has just observed. The update of
the perception function is based on the current preception
function f(〈x, y〉, s) for s ∈ S and the set of observations
O. We suppose that the perception function is parametric on
θθθ = 〈θ1, . . . , θk〉. In our example θθθ contains µ and Σ the
mean and the covariance matrix. Given a new observation
〈xxx, s〉 and a set of previous observations O, we have to up-
date the parameters θθθ in order to maximize the likelihood
of the entire set of observations extended with the new ob-
servation. A general procedure for sequential estimation is
described in (Bishop 2006). Like in the case of the revision
of the transition function, we should balance the update de-
pending on whether we are cautious or impulsive.

Challenges for Future Work
In this abstract we have provided some intuitions towards a
novel model for planning and learning. The formal frame-
work should be defined in detail, as well as its implemen-
tation and an experimental evaluation. Finally, we should
study the relation with Logic Tensor Flow (Donadello, Ser-
afini, and d’Avila Garcez 2017), where reasoning in the
model constrains the (deep) learning task.
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Figure 2: The new planning domain and perception function
is obtained by extending the initial domain of Figure 1, with
two new states, and the corresponding perception functions
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