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Abstract: We can examine random sets as a basis to carry structures modeling towards a
competitive culmination problem where models “compete” based on modeling game
trees. Competitive game tree modeling and predictive game logic is briefed. The
techniques are developed on descriptive game models and compatibility is characterized.
Specific game models are presented to illustrate the techniques. A model rank is higher
when a on game trees with a higher game tree degree, satisfies goals, hence realizing
specific models where the plan goals are satisfied. Characterizing Competitive Model
Degrees on Random Sets is a basis area to explore. A model is a competing model iff at
each stage the model is compatible with the goal tree satisfiability criteria. Compatibility
is defined on Random Sets where the correspondence between compatibility on random
sets and game tree degrees are applied to present random model diagrams. Random
diagram game degrees are applied and model ranks based on satisfiability computability
to optimal ranks are examined.
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1. Introduction

Games play an important role as a basis to economic theories. Here the import is brought
forth onto decision tree planning with agents. The author had presented specific agent
decision tree computing theories since 1994. and can be applied to present precise
strategies and prove theorems on multiplayer games. Game tree degree with respect to
models is defined and applied to prove soundness and completeness. The game is viewed
as a multiplayer game with only perfect information between agent pairs. Upper bounds
on determined games were presented on first authors publications stated. A technique for
modeling game tress satisfiability is based on competitive models (Nourani 2008) and
section 2. The present paper is a preliminary basis to carry on competitive model
satisfiability as a basis to optimized decisions based on random sets (Martin Lof 1966 ).
Random sets are random elements taking values as subsets of some space, are a
mathematical model for set-valued observations and irregular geometrical patterns.
Random sets in stochastic geometry (Kendall 1974), are examples. Besides sampling
designs, confident regions, stochastic geometry and morphological problems, random sets
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appear in general as set-valued observed processes. The concept of random sets has been
carried onto random fuzzy sets to model perception-based information in social systems,
artificial intelligence problems such as intelligent control and decisions.

Our specific paper addresses the question: how to model competitive model computing
planning with random set. The paper develops a novel model diagram tchniques to carry
competitive model planning to reach specific goals or to carry on game tree objectives.
This section begins to develop competitive model game trees brief from the first authors
recent publications. Section 3 starts to characterize competitive model degrees based on
random sets, where on section form non-determinisitc diagrams are applied to
compatibility on models. Computations geometry on random algorithms is previewed to
projections on Boolean valued maps to product random sets. Model ranks are presented
based on random model diagrams. Section 5 defined random diagram game trees where
computability questions on model compatibly are addressed and model ranking
complexity is examined.

2. Competitive Models and Game TREES

Planning is based on goal satisfaction at models. We can examine random sets as a basis
to carry structures modeling as a competitive culmination problem where models
“compete” based on modeling game trees, where the model rank is higher when a on
game trees with a higher game tree degree, satisfies goals, hence realizing specific
models where the plan goals are satisfied. When a specific player group “wins” to satisfy
a goal the group has presented a model to the specific goal, presumably consistent with
an intended world model. For example, if there is a goal to put a spacecraft at a specific
planet’s orbit, there might be competing agents with alternate micro-plans to accomplish
the goal. While the galaxy model is the same, the specific virtual worlds where a plan is
carried out to accomplish a real goal at the galaxy via agents are not. Therefore, Plan goal
selections and objectives are facilitated with competitive agent learning. The intelligent
trees (Nourani 1994,1996) are ways to encode plans with agents and compare models on
goal satisfaction to examine and predict via model diagrams why one plan is better than
another or how it could fail. Virtual model planning is treated in the author’s
publications where plan comparison can be carried out at VR planning (Nourani 1999b).

3. Characterizing Competitive Model Degrees on Random Sets

Let us start with certain basic premises.

A model is a competing model iff at each stage the model is compatible with the goal tree
satisfiability criteria. Compatibility defined on Random Sets In computational geometry,
a standard technique to build a structure like a convex hull is to randomly permute the
input points and then insert them one by one into the existing structure. The
randomization ensures that the expected number of changes to the structure caused by an
insertion is small, and so the expected running time of the algorithm can be upper
bounded. This technique is called randomized incremental construction[3]. Graph
problems are another area that Randomized algorithms are applied, for example, a
randomized minimum cut algorithm:

find_min_cut(undirected graph G) { while there are more than 2 nodes in G do { pick an
edge (u,v) at random in G contract the edge, while preserving multi-edges remove all
loops } output the remaining edges } There are various notions of algorithmic



randomness. Relativized randomness is where. A set is random if it is Martin-L6f random
relative to (n-1). For example (Nielsen et all 2005) show that a set is 2-random if and
only if there is a constant ¢ such that infinitely many initial segments x of the set are c-
incompressible. Let us develop model compatibility on random sets and game tree
degrees. We begin with model computing on structures that are definable with certain
basic functions and constants. That is an abstract computing that is carried on with
functions that are computable, thus structures that are defined by computable functions.
When you have such structures, you can check what is true on the structure with respect
to statements stated with first order logic, equational, or Horn clauses, that can take free
assignment to variables to logical formulas that can be stated on tree terms defined with
the computable functions. That brings us to two definitions.

Definition 3.1 A generic model diagram is a diagram with which a model is
characterized with specific functions, e.g. specific Skolem functions.

The computing specifics are based on creating models from generic model diagram
functions where basic models can be piece-meal designed and diagrams completed
starting from incomplete descriptions at times. Models uphold to a deductive closure of
the axioms modeled and some rules of inference, depending on the theory. By the
definition of a diagram they are a set of atomic and negated

4. Random Sets and Nonderminism
4.1 Computational Model Specifics

The computing specifics are based on creating models from generic model diagram
functions where basic models can be piece-meal designed and diagrams completed
starting from incomplete descriptions at times. Models uphold to a deductive closure of
the axioms modeled and some rules of inference, depending on the theory. By the
definition of a diagram they are a set of atomic and negated atomic sentences. Thus, the
diagram might be considered as basic for a model, provided we can by algebraic
extension, define the truth value of arbitrary formulas instantiated with arbitrary terms.
Thus all compound sentences build out of atomic sentences then could be assigned a
truth-value, handing over a model. This will be made clearer in the following
subsections. The following examples would run throughout the paper.

Computing models are structures where certain computation properties stated on a logic
with the functions defining the structures can be ascertained true or false. Let us consider
computing on structures on a specific signature that can take assignments to variables
from a random set. We can rank formulas with ranking based on a measure rank:
Formulas with ranking less than a specific value would be assigned 'T' and the other
formulas would be assigned 'F." Corresponding to Possible Worlds we can define
Random worlds where we can consider a formula to be true iff it is true with all such
random assignments. The first author had defined the notion of a plausible diagram,
which can be constructed to define plausible models for revised theories. In practice, one
may envision planning with plausible diagrams such that certain propositions are
deliberately left indeterminate to allow flexibility in planning. Such extensions to the
usual notion of diagram in model theory are put forth around 1987. That approach was



one method of avoiding the computational complexity and computability problems of
having complete diagrams. Truth maintenance and model revision can all be done by a
simple reassignment to the diagram. The canonical model of the world is defined directly
from the diagram. Corresponding to the above we have: Random Model diagrams.

4.2 Competitive Models and Compatibility

Now let us examine the definition of situation and view it in the present formulation.

Definition 4.1 A situation consists of a nonempty set D, the domain of the situation, and
two mappings: g,h. g is a mapping of function letters into functions over the domain as in
standard model theory. h maps each predicate letter, pn, to a function from Dn to a subset
of {t,f}, to determine the truth value of atomic formulas as defined below. The logic has
four truth values: the set of subsets of {tf}.{{t}{f}, {t,f},0}. the latter two is
corresponding to inconsistency, and lack of knowledge of whether it is true or

false.

Due to the above truth values, the number of situations exceeds the number of possible
worlds. The possible worlds being those situations with no missing information and no
contradictions. From the above definitions the mapping of terms and predicate models
extend as in standard model theory. Next, a compatible set of situations is a set of
situations with the same domain and the same mapping of function letters to functions. In
other words, definition 5.2 has a proper definition by specific function symbols. Remark:
The functions above are those by which a standard model could be defined by inductive
definitions. What it takes to have an algebra and model theory of epistemic states, as
defined by generalized diagram of possible worlds is exactly what (Nourani 98, 91) had
accomplished To decide compatibility of two situations we compare their generalized
diagrams. Thus, we have the following Theorem.

Theorem 4.1 Two situations are compatible iff their corresponding generalized diagrams
are compatible with respect to the Boolean structure of the set to which formulas are
mapped (by the function h above, defining situations).

Proof e.g. (Nourani 2015).

The generic diagrams, definitions above encode possible worlds and since we can define
a one- one correspondence between possible worlds and truth sets for situations,
computability is definable by the generic-diagrams.

Proposition 4.1 Computational geometry with random sets can be characterized as a
projection to a Boolean valued function on random diagrams on the corresponding
geometry to a product random set.

4.3 Predictive Competitive Model Game Trees

Minimal prediction is a technique defined since the authors model- theoretic planning
project. It is a cumulative nonmonotonic approximation attained with completing model
diagrams on what might be true in a model or knowledge base. A predictive diagram for
a theory T is a diagram D (M), where M is a model for T, and for any formula g in M,



either the function f: ¢ — 0,1 is defined, or there exists a formula p in D(M), such that T
U p proves q; or that T proves g by minimal prediction. A generalized predictive diagram
is a predictive diagram with D (M) defined from a minimal set of functions. The
predictive diagram could be minimally represented by a set of functions f1,...,fn that
inductively define the model. The free trees we had defined by the notion of provability
implied by the definition, could consist of some extra Skolem functions g1,...,gl that
appear at free trees. The f terms and g terms, tree congruences, and predictive diagrams
then characterize fragment deduction with free trees. The predictive diagrams are applied
to discover models for game trees.

Theorem A set of first order definable game tree goals G is attainable iff there exists a
predictive diagram for the logical consequences to G on the game tree model.

5. Ranks, Models, and Random Diagrams

Based on game trees on competitive models : AND/OR trees Nilsson(1969) are game
trees defined to solve a game from a player's standpoint. Formally a node problem is said
to be solved if one of the following conditions hold. 1. The node is the set of terminal
nodes (primitive problem- the node has no successor). 2. The node has AND nodes as
successors and the successors are solved. 3. The node has OR nodes as successors and
any one of the successors is solved.

A solution to the original problem is given by the subgraph of AND/OR graph sufficient
to show that the node is solved. A program which can play a theoretically perfect game
would have task like searching and AND/OR tree for a solution to a one-person problem
to a two-person game. An intelligent AND/OR tree is and AND/OR tree where the tree
branches are intelligent trees. The branches compute a Boolean function via agents. The
Boolean function is what might satisfy a goal formula on the tree. An intelligent
AND/OR tree is solved iff the corresponding Boolean functions solve the AND/OR trees
named by intelligent functions on the trees.

Thus node m might be f(al,a2,a3) & g(b1,b2), where f and g are Boolean functions of
three and two variables, respectively, and ai's and bi's are Boolean valued agents
satisfying goal formulas for f and g.

g is on OR agent
I
I

fis an AND agent
al a2 a3

bl |b2 f

Figure 1 Agent and/or trees
The chess game trees can be defined by agent augmenting AND/OR trees (Nilsson 69).
For the intelligent game trees and the problem-solving techniques defined, the same
model can be applied to the game trees in the sense of two-person games and to the state
space from the single agent view. The two-person game tree is obtained from the
intelligent tree model, as is the state space tree for agents. To obtain the two-person game
tree the cross-board-cupboard agent computation is depicted on a tree. Whereas the sate-



space trees for each agent is determined by the computation sequence on its side of the
board-cupboard. Thus a tree node m might be f(al,a2,a3) & g(b1,b2), where f and g are
Boolean functions of three and two variables, respectively, and ai's and bi's are Boolean
valued agents satisfying goal formulas for f and g. A tree game degree is the game state a
tree is at with respect to a model truth assignment, e.g. to the parameters to the Boolean
functions above. Let generic diagram or G-diagrams be diagrams definable by specific
functions. We can then rank models based on game-tree satisfiability on a specific game
tree degree. Thus we have the model closest to a win when ranks higher on satisfiability.

Definition 5.1 A random diagram game tree is a game tree where assignments to
variables is defined on a Boolean function on a specified random set. We can then rank
models based on game-tree satisfiability on a specific game tree degree. Thus we have
the model closest to a win when ranks higher on satisfiability. Based on the above we can
state basic theorems that

Proposition 5.1 A model has optimal rank ifff the model satisfies every plan goal and has
the lowest highest game tree degree.

Theorem 5.1 There are computable models where optimal ranks can be determined.

Theorem 5.2 Based on computable models with computable diagrams model
compatibility is effectively computable.

5.1 Random Models and Big Data Heuristics

Let us now view the deductive methods, for example the proof- theoretic example
:SLDNF- resolution, a well-known deductive heuristic. A SLDNF-proof can be
considered as the unfolding of an AND/OR-tree, which is rooted in the formula to be
proven, whose branches are determined by formulas of the theory, and whose leaves are
determined by atomic formulas which are true in a world. Partial deduction from our
view point (Nourani-Hoppe 1995) usually computes from a formula and a theory an
existential quantified diagram. In these papers and (Nourani 1995,2005) we also
instantiate proof tree leaves with free Skolemized trees, where free trees are substituted
for the leaves. By a free Skolemized tree we intend a term built with constant symbols
and Skolem functions terms. Dropping the assumption that proof-tree leaves get
instantiated with atomic formulas only yields an abstract and general notion of proof
trees. The mathematical formalization that allows us to apply the method of free proof
trees is based on the first author’s 1995-2005. In the present approach, as we shall further
define, leaves could be free Skolemized trees. By a free Skolemized tree we intend a term
made of constant symbols and Skolem function terms. Like models and diagrams, which
where generalized above in different ways, we can generalize the notion of a proof.

First author had developed free proof tree techniques since projects at TU Berlin,
1994. Free proof trees allow us to carry on Skolemized tress on game tree computing
models, for example, that can have unassigned variables. The techniques allow us to
carry on predictive model diagrams. Reverse Skolemization (Nourani 1986) that can be
carried on with generic model diagrams corresponding to what since Genesereth (2011) is



applying on game tree “stratified” recursion to check game tree computations. The free
trees defined by the notion of provability implied by the definition, could consist of some
extra Skolem functions{gl,...,gm}that appear at free trees. The f terms and g terms, tree
congruences, and predictive diagrams then characterize partial deduction with free trees.
To compare recursive stratification on game trees on what Geneserth calls recursive
stratification we carry on models that are recursive on generic diagram functions where
goal satisfaction is realized on plans with free proof trees (Nourani 1994-2007).

Thus essentially the basic heurstics here is satisfying nodes on agent AND./OR game
trees. The general heuristics to accomplish that are a game tree deductive technique based
on computing game tree unfoldings projected onto predictive model diagrams. The
soundness and completeness of these techniques, e,g, heuristics as a computing logic is
published since (Nourani 1994) at several events e.g. AISB 1995, and Systems and
Cybernectics 2005), (Nourani 2015). In computer science, specifically in algorithms
related to pathfinding, a heuristic function is said to be admissible if it never
overestimates the cost of reaching the goal, i.e. the cost it estimates to reach the goal is
not higher than the lowest possible cost from the current point in the path. An admissible
heuristic is also known as an optimistic heuristic.

An admissible heuristic is used to estimate the cost of reaching the goal state in an
informed search algorithm. In order for a heuristic to be admissible to the search problem,
the estimated cost must always be lower than or equal to the actual cost of reaching the
goal state. The search algorithm uses the admissible heuristic to find an estimated optimal
path to the goal state from the current node.

An admissible heuristic can be derived from a relaxed version of the problem, or by
information from pattern databases that store exact solutions to subproblems of the
problem, or by using inductive learning methods. Here we apply the techniques on goal
satisfiability on competive models brifed on the preceding section. While all consistent
heuristics are admissible, not all admissible heuristics are consistent. For tree search
problems, if an admissible heuristic is used, the A* search algorithm will never return a
suboptimal goal node.

The heuristic nomenclature indicates that a heuristic function is called an admissible-
heuristic if it never overestimates the cost of reaching the goal, i.e. the cost it estimates to
reach the goal is not higher than the lowest possible cost from the current point in the
path. An admissible heuristic is also known as an optimistic heuristic (Russell and Norvig
2002). What is the cost estimate on satisfying a goal on an unfolding projection to model
diagrams, for example with SLNDF, to satisfy a goal? Our heuristics are based on
satisfying nondeterministic Skolemized trees. The heuristics aims to decrease the
unknown assignments on the trees. Since at least one path on the tree must have all
assignments defined to T, or F, and at most one such assignment closes the search, the
“cost estimate,” is no more than the lowest.

6. Areas to further Explore
Practical Al systems are designed by modeling Al with facts, rules, goals,
strategies, knowledge bases. Patterns, schemas, Al frames and viewpoints are the
micro to aggregate glimpses onto the database and knowledge bases were masses
of data and their relashionships-represenations, respectively, are stored. Schemas
and frames are what might be defined with objects, the object classes, the object
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class inheritances, user-defined inheritance relations, and specific restrictions on
the object, class, or frame slot types and behaviors to design analytics interfaces.

Example Scheme: Intelligent Forecasting

IS-A Stock Forecasting Technique
Portfolios Stock, bonds, corporate assets
Member Management Science Techniques
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