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Abstract: We can examine random sets as a basis to carry structures modeling towards a 

competitive culmination problem where models “compete” based on modeling game 

trees. Competitive game tree modeling and predictive game logic is briefed. The 

techniques are developed on descriptive game models and compatibility is characterized. 

Specific game models are presented to illustrate the techniques. A model rank is higher 

when a on game trees with a higher game tree degree, satisfies goals, hence realizing 

specific models where the plan goals are satisfied. Characterizing Competitive Model 

Degrees on Random Sets is a basis area to explore. A model is a competing model iff at 

each stage the model is compatible with the goal tree satisfiability criteria. Compatibility 

is defined on Random Sets where the correspondence between compatibility on random 

sets and game tree degrees are applied to present random model diagrams. Random 

diagram game degrees are applied and model ranks based on satisfiability computability 

to optimal ranks are examined. 
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1. Introduction 

Games play an important role as a basis to economic theories. Here the import is brought 

forth onto decision tree planning with agents. The author had presented specific agent 

decision tree computing theories since 1994. and can be applied to present precise 

strategies and prove theorems on multiplayer games. Game tree degree with respect to 

models is defined and applied to prove soundness and completeness. The game is viewed 

as a multiplayer game with only perfect information between agent pairs. Upper bounds 

on determined games were presented on first authors publications stated. A technique for 

modeling game tress satisfiability is based on competitive models (Nourani 2008) and 

section 2. The present paper is a preliminary basis to carry on competitive model 

satisfiability as a basis to optimized decisions based on random sets (Martin Lof 1966 ). 

Random sets are random elements taking values as subsets of some space, are a 

mathematical model for set-valued observations and irregular geometrical patterns. 

Random sets in stochastic geometry (Kendall 1974), are examples. Besides sampling 

designs, confident regions, stochastic geometry and morphological problems, random sets 
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appear in general as set-valued observed processes. The concept of random sets has been 

carried onto random fuzzy sets to model perception-based information in social systems, 

artificial intelligence problems such as intelligent control and decisions. 

Our specific paper addresses the question: how to model competitive model computing 

planning with random set.  The paper develops a novel model diagram tchniques to carry 

competitive model planning to reach specific goals or to carry on game tree objectives. 

This section begins to develop competitive model game trees brief from the first authors 

recent publications. Section 3 starts to characterize competitive model degrees based on 

random sets, where on section form non-determinisitc diagrams are applied to 

compatibility on models. Computations geometry on random algorithms is previewed to 

projections on Boolean valued maps to product random sets. Model ranks are presented 

based on random model diagrams. Section 5 defined random diagram game trees where 

computability questions on model compatibly are addressed and model ranking 

complexity is examined. 

2. Competitive Models and Game TREES 

Planning is based on goal satisfaction at models. We can examine random sets as a basis 

to carry structures modeling as a competitive culmination problem where models 

“compete” based on modeling game trees, where the model rank is higher when a on 

game trees with a higher game tree degree, satisfies goals, hence realizing specific 

models where the plan goals are satisfied. When a specific player group “wins” to satisfy 

a goal the group has presented a model to the specific goal, presumably consistent with 

an intended world model. For example, if there is a goal to put a spacecraft at a specific 

planet’s orbit, there might be competing agents with alternate micro-plans to accomplish 

the goal. While the galaxy model is the same, the specific virtual worlds where a plan is 

carried out to accomplish a real goal at the galaxy via agents are not. Therefore, Plan goal 

selections and objectives are facilitated with competitive agent learning. The intelligent 

trees (Nourani 1994,1996) are ways to encode plans with agents and compare models on 

goal satisfaction to examine and predict via model diagrams why one plan is better than 

another or how it could  fail. Virtual model planning is treated in the author’s 

publications where plan comparison can be carried out at VR planning (Nourani 1999b). 

 

 3. Characterizing Competitive Model Degrees on Random Sets  

 

Let us start with certain basic premises. 

A model is a competing model iff at each stage the model is compatible with the goal tree 

satisfiability criteria. Compatibility defined on Random Sets In computational geometry, 

a standard technique to build a structure like a convex hull is to randomly permute the 

input points and then insert them one by one into the existing structure. The 

randomization ensures that the expected number of changes to the structure caused by an 

insertion is small, and so the expected running time of the algorithm can be upper 

bounded. This technique is called randomized incremental construction[3]. Graph 

problems are another area that Randomized algorithms are applied, for example, a 

randomized minimum cut algorithm: 

find_min_cut(undirected graph G) { while there are more than 2 nodes in G do { pick an 

edge (u,v) at random in G contract the edge, while preserving multi-edges remove all 

loops } output the remaining edges } There are various notions of algorithmic 



randomness. Relativized randomness is where. A set is random if it is Martin-Löf random 

relative to (n-1). For example (Nielsen et all 2005) show that a set is 2-random if and 

only if there is a constant c such that infinitely many initial segments x of the set are c- 

incompressible. Let us develop model compatibility on random sets and game tree 

degrees. We begin with model computing on structures that are definable with certain 

basic functions and constants. That is an abstract computing that is carried on with 

functions that are computable, thus structures that are defined by computable functions. 

When you have such structures, you can check what is true on the structure with respect 

to statements stated with first order logic, equational, or Horn clauses, that can take free 

assignment to variables to logical formulas that can be stated on tree terms defined with 

the computable functions. That brings us to two definitions.  
 

Definition 3.1 A generic model diagram is a diagram with which a model is 

characterized with specific functions, e.g. specific Skolem functions. 

 

The computing specifics are based on creating models from generic model diagram 

functions where basic models can be piece-meal designed and diagrams completed 

starting from incomplete descriptions at times. Models uphold to a deductive closure of 

the axioms modeled and some rules of inference, depending on the theory. By the 

definition of a diagram they are a set of atomic and negated 

 

 4. Random Sets and Nonderminism  

4.1 Computational Model Specifics   

 

The computing specifics are based on creating models from generic model diagram 

functions where basic models can be piece-meal designed and diagrams completed 

starting from incomplete descriptions at times. Models uphold to a deductive closure of 

the axioms modeled and some rules of inference, depending on the theory. By the 

definition of a diagram they are a set of atomic and negated atomic sentences. Thus, the 

diagram might be considered as basic for a model, provided we can by algebraic 

extension, define the truth value of arbitrary formulas instantiated with arbitrary terms. 

Thus all compound sentences build out of atomic sentences then could be assigned a 

truth-value, handing over a model. This will be made clearer in the following 

subsections. The following examples would run throughout the paper.  

Computing models are structures where certain computation properties stated on a logic 

with the functions defining the structures can be ascertained true or false. Let us consider 

computing on structures on a specific signature that can take assignments to variables 

from a random set. We can rank formulas with ranking based on a measure rank: 

Formulas with ranking less than a specific value would be assigned 'T' and the other 

formulas would be assigned `F.' Corresponding to Possible Worlds we can define 

Random worlds where we can consider a formula to be true iff it is true with all such 

random assignments. The first author had defined the notion of a plausible diagram, 

which can be constructed to define plausible models for revised theories. In practice, one 

may envision planning with plausible diagrams such that certain propositions are 

deliberately left indeterminate to allow flexibility in planning. Such extensions to the 

usual notion of diagram in model theory are put forth around 1987. That approach was 



one method of avoiding the computational complexity and computability problems of 

having complete diagrams. Truth maintenance and model revision can all be done by a 

simple reassignment to the diagram. The canonical model of the world is defined directly 

from the diagram. Corresponding to the above we have: Random Model diagrams. 

4.2 Competitive Models and Compatibility 

 

Now let us examine the definition of situation and view it in the present formulation.  
 

Definition 4.1 A situation consists of a nonempty set D, the domain of the situation, and 

two mappings: g,h. g is a mapping of function letters into functions over the domain as in 

standard model theory. h maps each predicate letter, pn, to a function from Dn to a subset 

of {t,f}, to determine the truth value of atomic formulas as defined below. The logic has 

four truth values: the set of subsets of {t,f}.{{t},{f}, {t,f},0}. the latter two is 

corresponding to inconsistency, and lack of knowledge of whether it is true or 

false.  

 

Due to the above truth values, the number of situations exceeds the number of possible 

worlds. The possible worlds being those situations with no missing information and no 

contradictions. From the above definitions the mapping of terms and predicate models 

extend as in standard model theory. Next, a compatible set of situations is a set of 

situations with the same domain and the same mapping of function letters to functions. In 

other words, definition 5.2 has a proper definition by specific function symbols.  Remark: 

The functions above are those by which a standard model could be defined by inductive 

definitions. What it takes to have an algebra and model theory of epistemic states, as 

defined by generalized diagram of possible worlds is exactly what (Nourani 98, 91) had 

accomplished To decide compatibility of two situations we compare their generalized 

diagrams. Thus, we have the following Theorem.  

 

Theorem 4.1 Two situations are compatible iff their corresponding generalized diagrams 

are compatible with respect to the Boolean structure of the set to which formulas are 

mapped (by the function h above, defining situations). 

Proof e.g. (Nourani 2015). 

 

 The generic diagrams, definitions above encode possible worlds and since we can define 

a one- one correspondence between possible worlds and truth sets for situations, 

computability is definable by the generic-diagrams. 

 

Proposition 4.1 Computational geometry with random sets can be characterized as a 

projection to a Boolean valued function on random diagrams on the corresponding 

geometry to a product random set. 

 

4.3 Predictive Competitive Model Game Trees 

Minimal prediction is a technique defined since the authors model- theoretic planning 

project. It is a cumulative nonmonotonic approximation attained with completing model 

diagrams on what might be true in a model or knowledge base. A predictive diagram for 

a theory T is a diagram D (M), where M is a model for T, and for any formula q in M, 



either the function f: q → 0,1 is defined, or there exists a formula p in D(M), such that T 

∪ p proves q; or that T proves q by minimal prediction. A generalized predictive diagram 

is a predictive diagram with D (M) defined from a minimal set of functions. The 

predictive diagram could be minimally represented by a set of functions f1,...,fn that 

inductively define the model. The free trees we had defined by the notion of provability 

implied by the definition, could consist of some extra Skolem functions g1,...,gl that 

appear at free trees. The f terms and g terms, tree congruences, and predictive diagrams 

then characterize fragment deduction with free trees. The predictive diagrams are applied 

to discover models for game trees. 

 

Theorem A set of first order definable game tree goals G is attainable iff there exists a 

predictive diagram for the logical consequences to G on the game tree model. 

 

5. Ranks, Models, and Random Diagrams 

Based on game trees on competitive models : AND/OR trees Nilsson(1969) are game 

trees defined to solve a game from a player's standpoint. Formally a node problem is said 

to be solved if one of the following conditions hold. 1. The node is the set of terminal 

nodes (primitive problem- the node has no successor). 2. The node has AND nodes as 

successors and the successors are solved. 3. The node has OR nodes as successors and 

any one of the successors is solved. 

A solution to the original problem is given by the subgraph of AND/OR graph sufficient 

to show that the node is solved. A program which can play a theoretically perfect game 

would have task like searching and AND/OR tree for a solution to a one-person problem 

to a two-person game. An intelligent AND/OR tree is and AND/OR tree where the tree 

branches are intelligent trees. The branches compute a Boolean function via agents. The 

Boolean function is what might satisfy a goal formula on the tree. An intelligent 

AND/OR tree is solved iff the corresponding Boolean functions solve the AND/OR trees 

named by intelligent functions on the trees.  

 

Thus node m might be f(a1,a2,a3) & g(b1,b2), where f and g are Boolean functions of 

three and two variables, respectively, and ai's and bi's are Boolean valued agents 

satisfying goal formulas for f and g. 

 
Figure 1 Agent and/or trees 

The chess game trees can be defined by agent augmenting AND/OR trees (Nilsson 69). 

For the intelligent game trees and the problem-solving techniques defined, the same 

model can be applied to the game trees in the sense of two-person games and to the state 

space from the single agent view. The two-person game tree is obtained from the 

intelligent tree model, as is the state space tree for agents. To obtain the two-person game 

tree the cross-board-cupboard agent computation is depicted on a tree. Whereas the sate-



space trees for each agent is determined by the computation sequence on its side of the 

board-cupboard. Thus a tree node m might be f(a1,a2,a3) & g(b1,b2), where f and g are 

Boolean functions of three and two variables, respectively, and ai's and bi's are Boolean 

valued agents satisfying goal formulas for f and g. A tree game degree is the game state a 

tree is at with respect to a model truth assignment, e.g. to the parameters to the Boolean 

functions above. Let generic diagram or G-diagrams be diagrams definable by specific 

functions. We can then rank models based on game-tree satisfiability on a specific game 

tree degree. Thus we have the model closest to a win when ranks higher on satisfiability. 

 

Definition 5.1 A random diagram game tree is a game tree where assignments to 

variables is defined on a Boolean function on a specified random set. We can then rank 

models based on game-tree satisfiability on a specific game tree degree. Thus we have 

the model closest to a win when ranks higher on satisfiability. Based on the above we can 

state basic theorems that 

 

Proposition 5.1 A model has optimal rank ifff the model satisfies every plan goal and has 

the lowest highest game tree degree.  

 

Theorem 5.1 There are computable models where optimal ranks can be determined. 

 

Theorem 5.2 Based on computable models with computable diagrams model 

compatibility is effectively computable. 

 

5.1 Random Models and Big Data Heuristics  

 

 Let us now view the deductive methods, for example the proof- theoretic example 

:SLDNF- resolution, a well-known deductive heuristic. A SLDNF-proof can be 

considered as the unfolding of an AND/OR-tree, which is rooted in the formula to be 

proven, whose branches are determined by formulas of the theory, and whose leaves are 

determined by atomic formulas which are true in a world. Partial deduction from our 

view point (Nourani-Hoppe 1995) usually computes from a formula and a theory an 

existential quantified diagram. In these papers and (Nourani 1995,2005) we also 

instantiate proof tree leaves with free Skolemized trees, where free trees are substituted 

for the leaves. By a free Skolemized tree we intend a term built with constant symbols 

and Skolem functions terms. Dropping the assumption that proof-tree leaves get 

instantiated with atomic formulas only yields an abstract and general notion of proof 

trees. The mathematical formalization that allows us to apply the method of free proof 

trees is based on the first author’s 1995-2005. In the present approach, as we shall further 

define, leaves could be free Skolemized trees. By a free Skolemized tree we intend a term 

made of constant symbols and Skolem function terms. Like models and diagrams, which 

where generalized above in different ways, we can generalize the notion of a proof. 

      First author had developed free proof tree techniques since projects at TU Berlin, 

1994. Free proof trees allow us to carry on Skolemized tress on game tree computing 

models, for example, that can have unassigned variables. The techniques allow us to 

carry on predictive model diagrams. Reverse Skolemization (Nourani 1986) that can be 

carried on with generic model diagrams corresponding to what since Genesereth (2011) is 



applying on game tree “stratified” recursion to check game tree computations. The free 

trees defined by the notion of provability implied by the definition, could consist of some 

extra Skolem functions{g1,...,gm},that appear at free trees. The f terms and g terms, tree 

congruences, and predictive diagrams then characterize partial deduction with free trees. 

To compare recursive stratification on game trees on what Geneserth calls recursive 

stratification we carry on models that are recursive on generic diagram functions where 

goal satisfaction is realized on plans with free proof trees (Nourani 1994-2007).  

     Thus essentially the basic heurstics here is satisfying nodes on agent AND./OR game 

trees. The general heuristics to accomplish that are a game tree deductive technique based 

on computing game tree unfoldings projected onto predictive model diagrams. The 

soundness and completeness of these techniques, e,g, heuristics as a computing logic is 

published since (Nourani 1994) at several events e.g. AISB 1995, and Systems and 

Cybernectics 2005), (Nourani 2015). In computer science, specifically in algorithms 

related to pathfinding, a heuristic function is said to be admissible if it never 

overestimates the cost of reaching the goal, i.e. the cost it estimates to reach the goal is 

not higher than the lowest possible cost from the current point in the path. An admissible 

heuristic is also known as an optimistic heuristic. 

An admissible heuristic is used to estimate the cost of reaching the goal state in an 

informed search algorithm. In order for a heuristic to be admissible to the search problem, 

the estimated cost must always be lower than or equal to the actual cost of reaching the 

goal state. The search algorithm uses the admissible heuristic to find an estimated optimal 

path to the goal state from the current node.  

An admissible heuristic can be derived from a relaxed version of the problem, or by 

information from pattern databases that store exact solutions to subproblems of the 

problem, or by using inductive learning methods. Here we apply the techniques on goal 

satisfiability on competive models brifed on the preceding section.  While all consistent 

heuristics are admissible, not all admissible heuristics are consistent.  For tree search 

problems, if an admissible heuristic is used, the A* search algorithm will never return a 

suboptimal goal node. 

      The heuristic nomenclature indicates that a heuristic function is called an admissible- 

heuristic if it never overestimates the cost of reaching the goal, i.e. the cost it estimates to 

reach the goal is not higher than the lowest possible cost from the current point in the 

path. An admissible heuristic is also known as an optimistic heuristic (Russell and Norvig 

2002). What is the cost estimate on satisfying a goal on an unfolding projection to model 

diagrams, for example with SLNDF, to satisfy a goal? Our heuristics are based on 

satisfying nondeterministic Skolemized trees. The heuristics aims to decrease the 

unknown assignments on the trees. Since at least one path on the tree must have all 

assignments defined to T, or F, and at most one such assignment closes the search, the 

“cost estimate,” is no more than the lowest. 

 

 6. Areas to further Explore 

Practical AI systems are designed by modeling AI with facts, rules, goals, 

strategies, knowledge bases. Patterns, schemas, AI frames and viewpoints are the 

micro to aggregate glimpses onto the database and knowledge bases were masses 

of data and their relashionships-represenations, respectively, are stored. Schemas 

and frames are what might be defined with objects, the object classes, the object 
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class inheritances, user-defined inheritance relations, and specific restrictions on 

the object, class, or frame slot types and behaviors to design analytics interfaces. 

Example Scheme: Intelligent Forecasting 

IS-A Stock Forecasting Technique  

Portfolios Stock, bonds, corporate assets  

Member Management Science Techniques 
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