On Module Checking and Strategies

Aniello Murano
Universita degli Studi di Napoli Federico |l
Naples, Italy
murano@na.infn.it

ABSTRACT

Two decision problems are very close in spirit: module check-
ing of CTL* and model checking of ATL*. The latter ap-
pears to be a natural multi-agent extension of the former,
and it is commonly believed that model checking of ATL*
subsumes module checking of CTL* in a straightforward
way. Perhaps because of that, the exact relationship be-
tween the two has never been formally established.

A more careful look at the known complexity results, how-
ever, makes one realize that the relationship is somewhat
suspicious. True, the complexities of the two problems in
their most general variants match, i.e., both module check-
ing of CTL* and model checking of ATL* are 2EXPTIME-
complete. On the other hand, for the state-based fragments,
module checking of CTL is EXPTIME-complete, while model
checking of ATL is only P-complete. Thus, the (seemingly)
less expressive framework yields significantly higher compu-
tational complexity than the (seemingly) more expressive
one. This suggests that the relationship may not be as sim-
ple as believed. In this paper, we show that the difference is
indeed fundamental. The way in which behavior of the envi-
ronment is understood in module checking cannot be equiv-
alently characterized in ATL*. Conversely, if one wants to
embed module checking in ATL* then its semantics must be
extended with two essential features, namely nondetermin-
istic strategies and long-term commitment to strategies.

1. CTL MODULE CHECKING VS
ATL MODEL CHECKING

In design and verification of formal systems, model check-
ing is a well-established method to automatically check for
global correctness of systems. In such a framework, in or-
der to verify whether a system is correct with respect to a
desired property, we describe its structure with a mathemat-
ical model, specify the property with a temporal logic for-
mula, and check formally that the model satisfies the spec-
ification. This method has been first conceived for closed
systems whose behavior is completely determined by their
internal states and transitions. In this setting, models are
often given as Kripke structures (i.e., labeled state transition
graphs) and a classical temporal logic specification is CTL*

Appears in: ACTIONS 2018
Copyright 2018(C) 2014. All rights reserved.

or its sublogics CTL, LTL. It is worth observing that in
closed models we have an internal nondeterminism. Hence,
an unwinding of a Kripke structure results in an infinite tree,
formally called computation tree, that collects all possible
evolutions of the system. Then, model checking of a closed
system amounts to checking whether the tree is correct with
respect to the specification.

Module checking. In the last decade, interest has arisen
in analyzing the behavior of individual components (or sets
of components) in systems with multiple entities. The inter-
est began in the field of reactive systems, which are systems
that interact continually with their environments. In mod-
ule checking [11], the system is modeled as a module that
interacts with its environment, and correctness means that a
desired property must hold with respect to all possible inter-
actions. The module can be seen as a Kripke structure with
states partitioned into ones controlled by the system and by
the environment. Notice that the environment represents
an external additional source of nondeterminism, because
at each state controlled by the environment the computa-
tion can continue with any subset of its possible successor
states. In other words, while in model checking we have only
one computation tree to check, in module checking we have
an infinite number of trees to handle, one for each possible
behavior of the environment.

This makes the module checking problem harder to deal
with. Indeed, while CTL* model checking is PSPACE-comp-
lete, CTL* module checking is 2EXPTIME-complete. More-
over, CTL model checking is P-complete, whereas CTL mod-
ule checking is EXPTIME-complete. Finally, module check-
ing is exponentially harder even in terms of program com-
plexity (i.e., in case we use a fixed-size formula) where we
move from LogSpace-completeness for model checking CTL
to P-completeness for module checking CTL.

Alternating-time logic. Taking module checking as the
starting point, researchers have looked for logics to rea-
son about, and verify strategic behavior of agents in multi-
agent systems [1, 16, 8, 6, 14]. Perhaps the most impor-
tant development in this field was alternating-time tempo-
ral logic (ATL* for short), introduced by Alur, Henzinger,
and Kupferman [1]. ATL* allows reasoning about strate-
gies of agents with temporal goals. Formally, it is obtained
as a generalization of CTL* in which the path quantifiers
E (“there exists a path”) and A (“for all paths”) are replaced
with strategic modalities of the form ((A)) (“A can collectively
enforce that...”), where A is a set of agents (a.k.a. play-
ers). Strategic modalities are used to express cooperation
and competition among agents in order to achieve certain



goals. In particular, they can express selective quantifica-
tion over those paths that are the result of the infinite game
between coalition A and the rest of agents.

Module checking vs. ATL*. Model checking of ATL*
comes out as a natural multi-agent extension of CTL* mod-
ule checking [1] and it is commonly believed that the latter
can be embedded by the former in a straightforward way [1,
5, 18]. However, the relationship between the two has never
been formally shown, which is rather remarkable given how
relevant the topic is for verification of open and multi-agent
systems. This lack of formal correspondence results is not
without a reason, and the existing complexity results sug-
gest potential misalignment. True, the complexity of the
two problems in their most general variant match, i.e., both
module checking of CTL* and model checking of ATL* are
2EXPTIME-complete. On the other hand, for the state-
based fragments, we get that model checking of ATL is only
P-complete while module checking of CTL is EXPTIME-
complete. The (seemingly) less expressive framework yields
significantly higher computational complexity than the (seem-
ingly) more expressive one! Thus, the relationship cannot
be as simple as commonly believed. Of course, there could
be many reasons for this pattern of complexity (perhaps a
translation to from ATL to CTL* is needed for the embed-
ding, or the optimal translation requires exponential blowup
of the formula etc.). In this paper, we show that none of
those is the case, and the difference is fundamental.

Our Contribution. We show that the way in which the
behavior of the environment is understood in module check-
ing cannot be equivalently characterized in ATL*. The main
reason lies in the fact that in module checking strategies of
the environment are nondeterministic and irrevocable (for-
mally represented by pruning the computation tree). In
ATL*, instead, agents can only use deterministic and re-
vocable strategies. We prove that, due to these limitations,
ATL* model checking does not cover the distinguishing and
expressive power of CTL* module checking, and even mod-
ule checking of the less expressive logic CTL. We show that
the lack of distinguishing power crucially stems from revo-
cability of strategies in ATL*. Indeed, by considering the
MIATL* extension of ATL* in which strategies are irrevoca-
ble, we show that a variant of ATL* model checking with at
least the same distinguishing power as CTL* module check-
ing. On the other hand, we show that module checking can-
not be embedded in MIATL* in a natural way, because the
latter lacks nondeterministic strategies. Finally, we present
a syntactic and semantic variant of ATL* that exactly cor-
responds to the module checking of CTL* specifications.

Related work. Module checking is an active area of re-
search. Since its introduction, it has been extensively stud-
ied in several directions. In [10], the basic question has
been extended to the setting where the environment has im-
perfect information about the state of the system, showing
that such a constraint does not effect the overall complex-
ity of the problem. In [4] the module checking problem has
been extended to infinite-state open systems, by considering
pushdown modules. The problem has been first investigated
under the perfect-information case, showing that it is expo-
nentially harder (in comparison with the finite-state case).
Then, in [2], the problem has been investigated under the
imperfect-information case and proved that it is in general
undecidable and that the undecidability relies on hiding in-

formation about the pushdown store. Finally, in [15] the
module checking problem has been investigated with respect
to bounded pushdown modules (formally hierarchical mod-
ules), showing up a rare case in which the program complex-
ity of the model and module checking problems coincide.
From a more practical point of view, Martinelli [13] built
a semi-automated tool to perform the finite-state module
checking problem, both in the perfect and imperfect set-
ting, with respect to a specification given in the existential
fragment of CTL. Successively, an approach to CTL module
checking based on tableau rules has been exploited in [3].
Godefroid and Huth also exploited an extension of module
checking to reason about three-valued abstractions [7].
Literature on ATL* model checking is equally rich and the
complexity of the problem has been studied in a multitude
of papers. Existing implementations of ATL model checkers
include MCMAS [12], constantly developed since 2004.

Acknowledgements. This work is based on two papers
appearin in AAMAS 2014 and AAMAS 2015, respectively,
done in collaboration with Wojciech Jamroga.

2. REFERENCES

[1] R. Alur, T. A. Henzinger, and O. Kupferman.
Alternating-time Temporal Logic. Journal of the ACM,
49:672-713, 2002.

[2] B. Aminof, A. Murano, and M. Vardi. Pushdown module
checking with imperfect information. In CONCUR’07,
LNCS 4703, pages 461-476. Springer-Verlag, 2007.

[3] S. Basu, P. S. Roop, and R. Sinha. Local module checking
for ctl specifications. ENTCS, 176(2):125-141, 2007.

[4] L. Bozzelli, A. Murano, and A. Peron. Pushdown module
checking. Formal Meth. in Syst. Design, 36(1):65-95, 2010.

[5] T. Brihaye, A. D. C. Lopes, F. Laroussinie, and N. Markey.
ATL with strategy contexts and bounded memory. In
LFCS’09, LNCS 5407, pages 92—106, Springer, 2009.

[6] K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy
logic. In CONCUR’07, pages 59-73, 2007.

[7] P. Godefroid. Reasoning about abstract open systems with
generalized module checking. In EMSOFT’03, LNCS 2855,
pages 223—240. Springer, 2003.

[8] W. Jamroga and W. van der Hoek. Agents that know how
to play. Fundamenta Informaticae, 63(2-3):185-219, 2004.

[9] M. Kacprzak and W. Penczek. Unbounded model checking
for Alternating-time Temporal Logic. In AAMAS’04, 2004.

[10] O. Kupferman and M. Vardi. Module checking revisited. In
CAV’97, LNCS 1254, pages 36-47, 1997.

[11] O. Kupferman, M. Vardi, and P. Wolper. Module checking.
Information and Computation, 164(2):322-344, 2001.

[12] A. Lomuscio and F. Raimondi. MCMAS : A model checker
for multi-agent systems. In TACAS’06, LNCS 4314, pages
450-454, 2006.

[13] F. Martinelli. Module checking through partial model
checking. Technical report, CNR Roma - TR-06, 2002.

[14] F. Mogavero, A. Murano, and M. Vardi. Reasoning about
strategies. In FSTTCS’10, pages 133-144, 2010.

[15] A. Murano, M. Napoli, and M. Parente. Program
complexity in hierarchical module checking. In LPAR’08,
LNCS 5330, pages 318-332, 2008.

[16] M. Pauly. A modal logic for coalitional power in games.
Journal of Logic and Computation, 12(1):149-166, 2002.

[17] F. Raimondi. Model Checking Multi-Agent Systems. PhD
thesis, University College London, 2006.

[18] D. Walther, C. Lutz, F. Wolter, and M. Wooldridge. ATL
satisfiability is indeed EXPTIME-complete. Journal of
Logic and Computation, 16(6):765-787, 2006.

[19] D. Walther, W. van der Hoek, and M. Wooldridge.
Alternating-time temporal logic with explicit strategies. In
Proceedings TARK XI1’07, pages 269278, 2007.



