CALM: a Compiler for Modular Action Language ALM

Edward Wertz

Texas Tech University

Abstract

CALM is the first compiler for the modular action language
ALM. ALM supports the modeling of larger dynamic domain
problems through the use of modules, module hierarchy, and
libraries. CALM translates an ALM system description P into
a SPARC (an Answer Set Programming language) program
which specifies the same state transition diagram as P. CALM
also supports language for specifying temporal projection and
planning problems. Given an ALM system description and a
temporal projection or planning problem, CALM will trans-
late them into a SPARC program whose answer sets contain
solutions to these problems.

Introduction

A dynamic domain can be viewed as a state transition di-
agram whose nodes are possible states of the domain and
whose arcs are actions in the domain. Action languages have
been developed to effectively specify the diagram, but are
restricted to small or medium sized domains (Gelfond and
Kahl 2014). ALM is a recently developed modular action
language that addresses larger domains (Inclezan and Gel-
fond 2016). It supports modeling by modules, module hier-
archy and library.

CALM is the first compiler for ALM. It translates an
ALM system description P into a SPARC (an Answer Set
Programming language (Balai, Gelfond, and Zhang 2013))
program which specifies the same state transition diagram as
P. Tt also supports language for specifying temporal projec-
tion and planning problems. Given an ALM system descrip-
tion and a temporal projection or planning problem, CALM
will translate them into a SPARC program whose answer
sets contain solutions to these problems.

In this presentation we first review the modeling capabil-
ity of ALM. We then discuss how CALM translates ALM
system descriptions to SPARC and how CALM can be used
to specify temporal projection and planning problems. Fi-
nally we discuss the significance of CALM and future work
for the compiler.

ALM Preliminaries

An ALM system description is composed of two parts, a
theory and a structure. The theory contains a hierarchy of

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

modules which specifies a basic action theory (BAT). The
structure provides an interpretation of the sorts and static
functions in the BAT. The structure and the BAT together
define a state transition diagram.

The BAT specified by an ALM program has two parts,
a sorted signature and a collection of axioms. The axioms
are composed of function definitions, state constraints,
executability conditions and dynamic causal laws of ac-
tions. The sorted signature is a 4-tuple (C,0,H,F) where
C is a set of sort names, O is a set of object constant names,
F is a set of function signatures f : cy,...,c, — co where f
is the name of the function and cy,...,c, € C, and H is a
directed acyclic graph over elements in CU O.

Within H, if there is an arc from sort s to sort s, then
s1 is called a subsort of sp. The subsort relation is transi-
tive in H. If there is an arc from object constant o to sort
s, then o is called an instance of s and s is called the sort
of o. There are no arcs that target object constants in H.
If o is an instance of s; and s; is a subsort of s, then o is
an instance of sp. H contains two special sorts universe and
actions such that universe is the only sink in H and there
is an arc from actions to universe. All user defined actions
must be instances of sorts that are subsorts of actions.

The BAT of an ALM program is defined by the mod-
ules within the theory. A module’s sort declarations sec-
tion adds sort names to C, defines arcs in H, and adds func-
tion signatures to F for the attribute functions of sorts. The
constant declarations section adds object constant names to
O and arcs in H. The function declaration section adds sig-
natures to F. Functions whose range value changes over time
are declared as fluents. Functions whose value does not
change are declared as statics. Each module also provides
axioms related to the locally declared functions. If module
M, is dependent on module M, then the sorts of M| may be
declared as subsorts of the sorts in M>.

There are two notions of inheritance in ALM. If s; is a
subsort of s, then s; inherits the attribute functions of s, and
they are defined on the instances of s;. If module M| is de-
pendent on module M; then M inherits the sorts, constants,
functions and axioms of M,. Through module inheritance,
an ALM system description can be flattened into a single
module that defines the BAT.

CALM - The ALM Compiler

When defining the semantics of an ALM program, the orig-
inal ALM paper (Inclezan and Gelfond 2016) translates
ALM to ASP{f} (Balduccini and Gelfond 2013), a variation
of ASP allowing the use of functions in addition to relations.
In our compiler, we chose to target SPARC for its support of
sorted signatures. Since SPARC does not support functions
directly, we employ predicates to represent them.

Before CALM flattens a multi-module system description
into a single module, it checks for semantic errors and type
checks the axioms following module dependency. If a mod-
ule declares 51 to be a subsort of s;, but s, is not declared
locally and not inherited through module dependency, a se-
mantic error is produced. Similarly all sorts used in function
signatures must exist in the sort hierarchy defined by the
modules. For each axiom, the variables are assigned sorts
that are inferred from their use in functions. If a variable oc-
curs multiple times in the same axiom, the assigned sort is
restricted to the greatest common subsort of all the inferred
sorts. If no common subsort exists, an error is recorded.

If no syntax, semantic or type errors exist in the ALM Pro-
gram, CALM translates the BAT and the structure to an out-
put SPARC program with 3 sections: sorts, predicates, and
rules. Since instances in the structure may have conditions
placed on their definition, we use an intermediate SPARC
program to calculate the exact instances of each sort. From
the answer set of the sort-calculating program, we enumer-
ate the instances of each sort in the sorts section of the out-
put SPARC program. The predicates section contains the
sorted signatures of the predicates used to model functions.
The rules section of the output SPARC program contains the
rules modeling the sort hierarchy and axioms of BAT and
auxiliary rules needed for modeling functions as predicates.

A temporal pro jection problem is specified by providing
a history of action occurrences and observed fluent values,
including the values of fluents at the initial time step 0. A
planning problem extends atemporal pro jection by adding
a goal state to be achieved. CALM uses SPARC CR rules to
generate actions required to reach the goal state. If CALM is
given a temporal projection or planning problem to supple-
ment the ALM system description, it will translate them to
the SPARC program as discussed above and use the SPARC
solver to find answer sets for the program. Each answer set
contains a solution to the given problem.

Significance of CALM

Before CALM, ALM programs were manually translated to
SPARC or other ASP languages. By automating the trans-
lation process, we free the domain modeler to focus on the
development of ALM modules and libraries. CALM’s abil-
ity to apply temporal projection and planning problems to
the transition diagram allows the modeler to test and verify
the correctness of their modules. CALM’s syntax, semantic,
and type checking capability help catch errors early instead
of debugging complex ASP programs.

Now that CALM exists, programmers and researchers are
able to use ALM as a target for reasoning about dynamic
domains. One application of CALM would be as a compo-

nent of a natural language question answering system. After
parsing the text and identifying subject domains, the NLP
system would build an ALM system description by includ-
ing the modules related to each subject in the text. From the
questions being asked, the NLP system would add a tempo-
ral projection or planning problem to derive the answers.

As for related work, another modular action language is
MAD (Lifschitz and Ren 2006; Erdogan 2008). A MAD
compiler can translate a MAD program into a program in the
language of the Causal Calculator (CCalc) such that CCalc
can be used to carry out reasoning tasks.

Future Work

We are testing the CALM compiler on increasingly complex
dynamic domains. We hope this presentation inspires col-
laboration to use and further develop CALM.

One priority for us is to extend CALM to support aggre-
gates, which is already supported by SPARC. It is currently
awkward to express state constraints related to aggregation
(e.g. no more than two toasts should be cooked in the pan in
the French Toast Problem (Lifschitz 2015)).

Acknowledgments

This presentation is based on a paper of the same title sub-
mitted to NMR-2018, co-authored by Edward Wertz, Anu-
radha Chandrasekaran and Yuanlin Zhang of Texas Tech
University. We are grateful to Michael Gelfond for numer-
ous discussions on ALM. We also thank Sonia Baee, Justin
Lugo, Alexander Meyer, Christian Reotutar, Jason Yee, Levi
Brown and Elias Marcopulos for their contribution to this
project. We thank Daniela Inclezan for providing us ALM
programs.

References

Balai, E.; Gelfond, M.; and Zhang, Y. 2013. Towards answer
set programming with sorts. In Logic Programming and
Nonmonotonic Reasoning, 12th International Conference,
LPNMR 2013, Corunna, Spain, September 15-19, 2013.
Proceedings, 135-147.

Balduccini, M., and Gelfond, M. 2013. Language asp {f}
with arithmetic expressions and consistency-restoring rules.
arXiv preprint arXiv:1301.1387.

Erdogan, S. T. 2008. A library of general-purpose action
descriptions.

Gelfond, M., and Kahl, Y. 2014. Knowledge Representation,
Reasoning, and the Design of Intelligent Agents. Cambridge
University Press.

Inclezan, D., and Gelfond, M. 2016. Modular action lan-
guage o/ L .M . Theory and Practice of Logic Programming
16(2):189-235.

Lifschitz, V., and Ren, W. 2006. Toward a modular action
description language. AAAI 2006 Spring Symposium Se-
ries. to appear.

Lifschitz, V. 2015. French toast discussion at tag,
https://www.cs.utexas.edu/users/vl/tag/discussions.html, re-
trieved in August 2018.

