
Recent Advances in LTL Realizability and Synthesis as Planning

Alberto Camacho
University of Toronto, Canada

acamacho@cs.toronto.edu

1 Introduction
Automatic synthesis of software from specification is a clas-
sic problem in computer science that dates back to Church
in 1957. Synthesis is a hard problem that has been well-
studied, and for which no efficient solution exists in the gen-
eral case. In the context of constructing strategies for re-
active systems, Pnueli and Rosner (1989) proposed Linear
Temporal Logic (LTL) synthesis where the specification is
expressed in LTL. In the last decade we have seen signif-
icant algorithmic advances in LTL synthesis, and the field
is gathering signifficant traction. So-called bounded syn-
thesis techniques transform the problem into a game, and
limit the search for solutions to spaces of bounded size that
are more tractable, in practice (Kupferman and Vardi 2005;
Schewe and Finkbeiner 2007). Bounded synthesis was a ma-
jor breakthrough in the development of practical algorithms.
Modern tools approach the problem as bounded synthesis,
and solve the resulting games using different technology
such as SAT (e.g. (Bohy et al. 2012)), SMT (e.g. (Fay-
monville, Finkbeiner, and Tentrup 2017)), and BDDs (e.g.
LtlSynt). We explore the use of automated planning.

This document summarizes some of the recent work by
our research group. We study the synthesis problem of LTL
specifications for programs that run in perpetuity, and for
programs that terminate in finite time. From a theoretical
perspective, our work makes the following contributions:
• formalize the correspondence between synthesis and au-

tomated planning, as exemplified in (Camacho et al.
2018b; 2018a; 2018d)

• define and generate certificates of unrealizability for pro-
grams that terminate (Camacho et al. 2018a)

• introduce novel techniques for determining LTL realiz-
ability via reachability games (Camacho et al. 2018d)

• examine the critical role of environment assumptions in
the generation of programs that terminate (Camacho, Bi-
envenu, and McIlraith 2018)

• provide novel quality measures and algorithms for the
synthesis of optimal programs that terminate (Camacho,
Bienvenu, and McIlraith 2018)
Our experiments suggest that planning can be an efficient

technology to approach to synthesis. Most of our techniques
are implemented in a a web service and API tool for synthe-
sis, that we name SynKit (Camacho et al. 2018e), and that
aims at making synthesis more accessible to the masses.

1.1 What is LTL Realizability and Synthesis?

LTL is a modal logic defined over a set of atomic proposi-
tions p ∈ AP with standard logical connectives and temporal
operators next () and until (U).

ϕ B p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ | ϕ1Uϕ2

Intuitively, LTL formula α denotes that α has to hold in the
next time step, and αUβ denotes that α has to hold until β
holds. The truth of an LTL formula is typically evaluated over
infinite traces. Noteworthy, LTL formulae can be also inter-
preted over finite traces (e.g. (Bacchus and Kabanza 1998;
Baier and McIlraith 2006; De Giacomo and Vardi 2013)).
This variant is more recently referred to as LTLf, which we
also use to disambiguate with the infinite semantics.

LTL (resp. LTLf) is a compelling language to express the
properties of the programs that we want to synthesize, and
that have to run in perpetuity (resp. terminate in finite time).

Synthesis of programs that run in perpetuity Following
the notation in (Camacho et al. 2018d), an LTL specification
is a tuple 〈X,Y, ϕ〉s, where X andY are disjoint sets of vari-
ables and ϕ is an LTL formula overX∪Y. LTL specifications
are usually interpreted as two-player games, where the envi-
ronment player controls X and the agent player controls Y.
In each turn, players select a subset of the variables they con-
trol. A play is an infinite sequence w = (x1∪y1)(x2∪y2) · · · of
subsets of X∪Y. The play is winning for the agent if w sat-
isfies ϕ. LTL realizability consists of determining if the agent
player has a winning strategy for the game, and LTL synthe-
sis is the problem of computing one such strategy. The order
of turn taking is important, and is indicated by the seman-
tics, s. If the agent plays first, then s = “Moore”; otherwise,
s = “Mealy” (e.g. (Ehlers 2011))

Synthesis of programs that terminate LTLf realizability
and synthesis are defined as in the infinite case, with the ex-
ception that ϕ is an LTLf formula (De Giacomo and Vardi
2015). Likewise, LTLf specifications can be interpreted as
two-player games. This time, the objective is for the agent
to find a strategy that satisfies the LTLf formula in a finite
number of turns. LTLf synthesis captures many interesting
and important problems that have finite duration, including
typical planning problems and problems involving business
processes.

2 Programs that Run in Perpetuity
LTL realizability is typically determined by solving synthe-
sis in a dual game, where the role of the system and en-
vironment players is interchanged. In recent work, we re-
visited the role of duality in LTL realizability and synthesis
(Camacho et al. 2018d). We distinguish two types of dual-
ity: the duality between synthesis and automata games, and
the duality with respect to the Mealy and Moore semantics.
By carefully exploiting duality, we provide a unified view
of synthesis and games, and introduce novel bounded real-
izability methods via reductions to reachability games – that
is, games where a “good thing” has to occur in finite time.

3 Programs that Terminate
Existing approaches to LTLf synthesis transform LTLf into
deterministic finite-state automata (DFA) and reduce the
synthesis problem to a DFA game (e.g. (Zhu et al.
2017)). Unfortunately, the DFA transformation is worst-case
double-exponential in the size of the formula, presenting a
computational bottleneck. In contrast, our approach exploits
non-deterministic automata. We leverage our approach not
only for strategy generation but also to generate certificates
of unrealizability – the first such method for LTLf.

In further work, we examine the critical role of environ-
ment assumptions in the synthesis of terminating programs
(Camacho, Bienvenu, and McIlraith 2018). We argue that in
many applications, the existence of a program that satisfies
user intent is predicated on some assumption on the environ-
ment behavior. While this is also true for LTL synthesis, we
notice that incorporating and handling environment assump-
tions is significantly more intricate for LTLf synthesis.

Finally, we explore different quality measures and intro-
duce novel techniques to compute optimal solutions to LTLf
specifications (Camacho, Bienvenu, and McIlraith 2018).

4 From Theory to Practice
We implemented our algorithms for LTL and LTLf realizabil-
ity and synthesis via automated planning in a tool that we
named SynKit (Camacho et al. 2018e). SynKit is the first tool
that computes certificates of unrealizability for LTLf specifi-
cations, and is the first algorithmic approach to LTL realiz-
ability via reachability games. Our experiments show that
automated planning is a promising approach to synthesis,
with competitive performance relative to state of the art.

SynKit is accessible as a web service and API. Our pur-
pose is to make synthesis technology more accessible to the
masses, given that there is a limited number of existing tools.

5 Related Work
Some of our algorithmic techniques were inspired by previ-
ous work in planning with LTLf goals (e.g. (Baier and McIl-
raith 2006; Patrizi, Lipovetzky, and Geffner 2013; Camacho
et al. 2017b)). Likewise, our novel techniques can be applied
into other sequential decision-making problems. In recent
work we developed techniques to solve Non-Markovian Re-
ward Decision Processes (NMRDPs) with LTLf rewards (Ca-
macho et al. 2017a; 2018c). Similar work has been recently
pursued by (Brafman, De Giacomo, and Patrizi 2018).

References
Bacchus, F., and Kabanza, F. 1998. Planning for temporally ex-
tended goals. Annals of Mathematics and Artificial Intelligence
22(1-2):5–27.
Baier, J. A., and McIlraith, S. A. 2006. Planning with temporally
extended goals using heuristic search. In ICAPS, 342–345.
Bohy, A.; Bruyère, V.; Filiot, E.; Jin, N.; and Raskin, J. 2012.
Acacia+, a tool for LTL synthesis. In CAV, 652–657.
Brafman, R. I.; De Giacomo, G.; and Patrizi, F. 2018. LTLf/LDLf
non-markovian rewards. In AAAI, 1771–1778.
Camacho, A.; Chen, O.; Sanner, S.; and McIlraith, S. A. 2017a.
Non-markovian rewards expressed in LTL: Guiding search via re-
ward shaping. In SOCS, 159–160.
Camacho, A.; Triantafillou, E.; Muise, C.; Baier, J. A.; and McIl-
raith, S. A. 2017b. Non-deterministic planning with temporally
extended goals: LTL over finite and infinite traces. In AAAI, 3716–
3724.
Camacho, A.; Baier, J. A.; Muise, C. J.; and McIlraith, S. A. 2018a.
Finite LTL synthesis as planning. In ICAPS, 29–38.
Camacho, A.; Baier, J. A.; Muise, C. J.; and McIlraith, S. A. 2018b.
Synthesizing controllers: On the correspondence between LTL syn-
thesis and non-deterministic planning. In Advances in Artificial
Intelligence - Canadian AI, 45–59.
Camacho, A.; Chen, O.; Sanner, S.; and McIlraith, S. A. 2018c.
Non-markovian rewards expressed in LTL: Guiding search via re-
ward shaping (extended version). In GoalsRL Workshop.
Camacho, A.; Muise, C. J.; Baier, J. A.; and McIlraith, S. A. 2018d.
LTL realizability via safety and reachability games. In IJCAI,
4683–4691.
Camacho, A.; Muise, C. J.; Baier, J. A.; and McIlraith, S. A. 2018e.
SynKit: LTL synthesis as a service. In IJCAI, 5817–5819.
Camacho, A.; Bienvenu, M.; and McIlraith, S. A. 2018. Finite LTL
synthesis with environment assumptions and quality measures. In
KR. To appear.
Church, A. 1957. Applications of recursive arithmetic to the prob-
lem of circuit synthesis. Summaries of the Summer Institute of
Symbolic Logic, Cornell University 1957 1:3–50.
De Giacomo, G., and Vardi, M. Y. 2013. Linear temporal logic and
linear dynamic logic on finite traces. In IJCAI, 854–860.
De Giacomo, G., and Vardi, M. Y. 2015. Synthesis for LTL and
LDL on finite traces. In IJCAI, 1558–1564.
Ehlers, R. 2011. Experimental aspects of synthesis. In IWIGP,
1–16.
Faymonville, P.; Finkbeiner, B.; and Tentrup, L. 2017. Bosy: An
experimentation framework for bounded synthesis. In CAV, 325–
332.
Kupferman, O., and Vardi, M. Y. 2005. Safraless decision proce-
dures. In FOCS, 531–542.
Patrizi, F.; Lipovetzky, N.; and Geffner, H. 2013. Fair LTL synthe-
sis for non-deterministic systems using strong cyclic planners. In
IJCAI, 2343–2349.
Pnueli, A., and Rosner, R. 1989. On the synthesis of a reactive
module. In POPL, 179–190.
Schewe, S., and Finkbeiner, B. 2007. Bounded synthesis. In ATVA,
474–488.
Zhu, S.; Tabajara, L. M.; Li, J.; Pu, G.; and Vardi, M. Y. 2017.
Symbolic LTLf synthesis. In IJCAI, 1362–1369.

