Adyvising and Instructing Reinforcement Learning Agents with LTL and Automata

Toryn Q. Klassen*
Department of Computer Science
University of Toronto, Canada
toryn@cs.toronto.edu

Introduction

Reinforcement learning (RL) involves an agent learning
through interaction with an environment how to behave so
as to maximize the expected cumulative reward (Sutton and
Barto 1998). Typically, the environment is modelled as a
Markov Decision Process (MDP). A reinforcement learning
agent learns a policy, a mapping from states to actions. In
a recent series of papers (Toro Icarte et al. 2018a; 2018b;
2018c), my coauthors and I have investigated ways in which
linear temporal logic (LTL) and related formalisms can be
incorporated into reinforcement learning algorithms, either
to specify tasks for the agent or to guide the learning pro-
cess. The remaining two sections describe each of these two
research directions in turn.

Task specification

LTL extends propositional logic with temporal operators
that can be used to describe patterns of events over a linear
timeline (Pnueli 1977). For example, LTL can express the
proposition “eventually P”, meaning that the proposition P
becomes true at some point in the timeline. LTL is an in-
teresting language for describing tasks because it can define
non-Markovian rewards that depend on the entire history.

Various works have used LTL to specify goals for
MDP-like formalisms (Bacchus, Boutilier, and Grove 1996;
Thiébaux et al. 2006; Lacerda, Parker, and Hawes 2014;
2015; Camacho et al. 2017; 2018), including in the con-
text of RL (Fu and Topcu 2014; Li, Vasile, and Belta 2017;
Littman et al. 2017; Sahni et al. 2017; Hasanbeig, Abate,
and Kroening 2018). Our contribution with respect to LTL
and goals was creating the LTL Progression for Off-Policy
Learning (LPOPL) algorithm (Toro Icarte et al. 2018b),
which efficiently learns policies for a given set @ of tasks,
each described by a (co-safe) LTL formula.

The way LPOPL works is as follows. First, the set ®+
of all possible iterated progressions of the formulas in @ is
computed. The progression of an LTL formula ¢ is another
LTL formula ¢, which intuitively describes what the future
must be like if ¢ is to be made true, given that the present
is a certain way. So ®T can be thought of as including for-
mulas describing all the possible outstanding obligations (or
subtasks) that the agent may have during completion of any
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task in . Training involves completing a series of episodes,
each attempting to complete some task from ® (selected ac-
cording to some curriculum). While each episode is running,
separate policies are concurrently being learned (off-policy)
for achieving each of the formulas in ®*. This off-policy
learning can be done either with tabular Q-learning or Deep
Q-Networks (DQN) (Mnih et al. 2015). In the tabular case,
convergence to the optimal policy can be guaranteed.

In our experiments using LPOPL (where the off-policy
learning was done with DQN), LPOPL outperformed the
baselines we compared against. The baselines operated on
modified MDPs whose states were expanded to keep track
of the progression of the LTL goal formulas (this made the
rewards Markovian, which allowed standard RL algorithms
to be applied). One baseline was just to use DQN. We also
considered hierarchical methods based on the extension to
deep RL (Kulkarni et al. 2016) of the options framework
(Sutton, Precup, and Singh 1999).

Progression is not the only way to keep track of the
progress made in satisfying an LTL formula. It is well-
known that there is a Biichi automaton corresponding to any
LTL formula, and progress can be tracked by tracking the
current states of this automaton. This suggests defining tasks
by directly specifying some form of automaton.

This idea was realized with the reward machine (Toro
Icarte et al. 2018c¢), a form of finite-state automaton that de-
scribes how an agent may be rewarded by multiple different
reward functions over the course of an episode (depending
on the pattern of events that occur). Like LTL, reward ma-
chines can be used with either tabular or deep RL. We have
done experiments with both, and in each case using reward
machines outperformed the corresponding baselines (which
were respectively based on tabular or deep RL). Again, some
of our baselines were based on the options framework.

We may note that the hierarchy in hierarchical RL meth-
ods like the options framework is defined independently
from the reward function. Policies that make use of macro-
actions (i.e., options) may be suboptimal. In contrast, the
structure given by a reward machines (or by an LTL formula,
when it used to define a task) is what defines the rewards.
This allows for the task to be decomposed in an optimal way
(though of course, if the policies for the subtasks are learned
by an algorithm like DQN which does not provide conver-
gence guarantees, then the learned policy for the overall task
may not be optimal).



Advice

Another use that LTL can be put to for RL is for pro-
viding advice. Advice is additional information given to
the agent which (unlike task specifications) does not de-
fine what provides reward for the agent, but may help the
agent in achieving good rewards. For example, if you know
that the agent will get reward when it opens a door, you
might advise the agent to get a key. Advice had previously
been considered in the literature (Maclin and Shavlik 1996;
Krening et al. 2016), but not in the form of LTL.

We incorporated LTL advice into a model-based RL al-
gorithm (Toro Icarte et al. 2018a). In model-based RL, the
agent learns the dynamics of the environment, and con-
structs a policy based on that. The high-level idea of our
algorithm is that during exploration of the environment, the
agent is always aiming to reach the closest unknown en-
vironment transition currently “recommended” by the ad-
vice formula. The current recommendation is determined by
keeping track of how much of the advice has been followed
so far (using automata) and seeing what the advice calls for
next. For example, if the advice is to get the key and open the
door, and the agent has already got the key, then the current
recommendation would be to go to the door.

Experiments (in a simple grid-world environment)
showed that some pieces of advice could reduce the amount
of training needed to find a fairly good policy, and the algo-
rithm also eventually recovered from unhelpful advice.
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