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Introduction

In reasoning about action it is becoming of great inter-
est to develop mechanisms that include components with
forms of decision making that are based on stochastic mod-
els as in Markovian and Non-Markovian Decision Processes
(MDPs/NMDPs) and Reinforcement Learning (RL) (Puter-
man 1994; Sutton and Barto 1998), possibly coupled with
deep learning techniques (Silver et al. 2017). However,
while the actual execution in such components could be cho-
sen stochastically, we do want to have safety guarantees
on all possible generated executions (Amodei et al. 2016;
Hadfield-Menell et al. 2017).

In this work we aim at starting the development of the
foundation for the concept of “restraining bolt”!, as envi-
sioned in science fiction movies. The concept of restraining
bolt is based on two distinct representations of the world:
one by the agent and one by the authority imposing the bolt.
The two representations are different since developed by in-
dependent parties. However they both model (aspects of)
the same world. We want the mechanism to conform the re-
straining rules even if these are not expressed in its original
representation.

In this work we present some preliminary results and
show that if the mechanism’s view of the world is an (un-
known) MDP and the restraining rules are expressed in
LTL;/LDLy over a separate (unknown) model of the world
that complements the mechanism’s one in a Markovian way,
then, under general circumstances, the mechanism can learn
to act, while conforming to the LTL;/LDL; rules. Notice
that keeping track of the satisfaction of the LTL ¢/LDL s rules
makes the whole system formed by the mechanism and the
restraining bolt non-Markovian.

Recently, interest in NMDPs (Bacchus, Boutilier, and
Grove 1996; Whitehead and Lin 1995) has been revived and
motivated by the difficulty in rewarding complex behaviors
directly on MDPs (Littman 2015; Littman et al. 2017). In
this context, the use of linear-time temporal logics over fi-
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1“A restraining bolt is a device that restricts a droid’s [mech-
anism’s] actions when connected to its systems. Droid owners
install restraining bolts to limit actions to a set of desired
behaviors.” https://www.starwars.com/databank/
restraining-bolt

nite traces has been independently advocated by (Camacho
et al. 2017a) and (Brafman, De Giacomo, and Patrizi 2017,
2018). Both research groups propose to use LTLy, or its
more general extension LDLy, to model temporal proper-
ties of dynamic systems (De Giacomo and Vardi 2013;
2015; De Giacomo and Vardi 2016; Baier et al. 2008;
Torres and Baier 2015; Camacho et al. 2017b).

The logic LTLy is the classical linear time logic LTL
(Pnueli 1977) interpreted over finite traces, formed by a
finite (instead of infinite as in LTL) sequence of propo-
sitional interpretations. Instead, LDLy is a proper exten-
sion of LTLf, which allows to express regular expressions
over such sequences, hence mixing procedural and declar-
ative specifications as advocated in some work in Rea-
soning about Action and Planning (Levesque et al. 1997;
Baier et al. 2008).

The crucial point of both LTL; and LDL ¢ is that their for-
mulas can be transformed into finite state automata; this, in
turn, allows for transforming an NMDP with non-Markovian
LTL;/LDL; rewards into an equivalent MDP over an ex-
tended state space, obtained as the crossproduct of the states
of the NMDP and the states of the automaton.

When applied to Reinforcement Learning (RL) with non-
Markovian rewards rexpressed in LTL y/LDL s, the availabil-
ity of this transformation allows us to do RL on a fully equiv-
alent MDP whose (optimal) policies are also (optimal) poli-
cies for the original problem and viceversa (Brafman, De
Giacomo, and Patrizi 2018).

Exploiting such results, we study the “restraining bolt”
case. We assume to have a learning agent (the mechanism)
equipped with sensing procedures to compute a set of fea-
tures from the world that form its states and with a set of
actions that it can perform. We want to use this agent to
learn one (or simultaneously many) task whose goal(s) are
expressed in LTLy/LDL¢. Such goals are expressed over a
representation of the world that is not the one used by the
agent (oversimplifying, we may say that the agent has a low-
level representation), but a convenient high-level represen-
tation suitable to express declaratively temporally extended
goals. In other words, we study the possibility of having two
separate representations of the world:

e one for expressing the dynamics of the learning agent;

e one for expressing the LTL ;//LDL goals.



These two representations use different classes of features
from the real world: the first includes the features that the
agent can directly access, while the second includes the fea-
tures needed to evaluate the LTL ¢/LDL goal

For example, consider a robotic paddle playing the
BREAKOUT game. The paddle has to drive the ball to hit
a wall of bricks. The robotic paddle perceives its position
and the position and velocity of the balls. Though it does not
perceive the position and the status of the bricks, the envi-
ronment gives suitable rewards when they are broken.

Now suppose we want to express in LTLy or LDL; the
goal: break first the columns on the left, then those at the
center, and finally those on the right. To express this goal we
do need a representation of bricks’ position and their status
(broken or not) of the LTL;/LDL; formula. A plain appli-
cation of RL algorithms in the equivalent MDP requires the
extension of the state space for the learning agent with mem-
ory for keeping track of the stages of the goals, as well as the
representation of the bricks’ positions and their status. While
adding memory is not problematic, keeping track of bricks’
positions and their status may require sophisticated sensors?.
Moreover, what if the bricks are too far for the available sen-
sors to be detected?

For this reason we want to keep the representations sepa-
rated and we study the problem of RL in the case in which
the learning agent cannot access the high-level representa-
tion used to express the goals. The interest in having separate
representations is manifold:

1. The learning agent feature space can be designed sepa-
rately from the features needed to express the goal, thus
promoting separation of concerns which, in turn, facili-
tates the design; this separation facilitates also the reuse
of representations already available, possibly developed
for the standard setting.

2. A reduced agent’s feature space allows for realizing
simpler agents (think, e.g., of a mobile robot platform,
where one can avoid specific sensors and perception rou-
tines), while preserving the possibility of tackling com-
plex declarative goals which cannot be represented in the
agent’s feature space.

3. Reducing the agent’s feature space may yield a reduced
state space to be explored by the learning agent.

Clearly, the two separate representations (i.e., the two sets
of features) need to be somehow correlated in reality. The
crucial point, however, is that in order to perform RL effec-
tively, such a correlation does not need to be formalized. In
this work, we set this framework and provide proofs and ex-
perimental evidence that an learning agent can learn policies
that optimize the conformance to the LTL ;//LDL ; goals with-
out including in the state space representation the features
needed to evaluate the corresponding LTL;/LDL; formula
(more details can be found in (De Giacomo et al. 2018).)
Using these results, we can envision that once the agent is
equipped with the restraining bolt, by simulating in its mind

Notice it may require equipping the robot with better sensors,
e.g., replacing an inexpensive Kinect-like device with full-fledged
distance lasers.

how to act (i.e., applying RL), it will deliberate a course of
actions that automatically conform (as much as possible) to
the restraining rules.
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