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Intelligent agents often operate in complex domains and
have complex behaviors. Reasoning about such agents and
even describing their behavior can be difficult. One way to
cope with this is to use abstraction (Saitta and Zucker 2013).
In essence, this involves developing an abstract model of
the agent/domain that suppresses less important details. The
abstract model allows us to reason more easily about the
agent’s possible behaviors and to provide high-level expla-
nations of the agent’s behavior. To efficiently solve a com-
plex reasoning problem, e.g. planning, one may first try to
find a solution in the abstract model, and then use this ab-
stract solution as a template to guide the search for a solution
in the concrete model. Systems developed using abstractions
are typically more robust to change, as adjustments to more
detailed levels may leave the abstract levels unchanged.

In recent joint work, Bita Banihashemi, Giuseppe De Gi-
acomo, and I have proposed a general framework for agent
abstraction (Banihashemi, De Giacomo, and Lespérance
2017) based on the situation calculus (SitCalc) (McCarthy
and Hayes 1969; Reiter 2001) and the ConGolog (De Gia-
como, Lespérance, and Levesque 2000) agent programming
language. We assume that one has a high-level/abstract ac-
tion theory, a low-level/concrete action theory, and a refine-
ment mapping between the two. The mapping associates
each high-level primitive action to a (possibly nondetermin-
istic) ConGolog program defined over the low-level action
theory that “implements it”. Moreover, it maps each high-
level fluent to a state formula in the low-level language that
characterizes the concrete conditions under which it holds.

In this setting, we define a notion of a high-level the-
ory being a sound abstraction of a low-level theory under
a given refinement mapping. The formalization involves the
existence of a suitable bisimulation relation (Milner 1971;
1989) between models of the low-level and high-level theo-
ries with respect to the mapping. With a sound abstraction,
whenever the high-level theory entails that a sequence of
actions is executable and achieves a certain condition, then
the low level must also entail that there exist an executable
refinement of the sequence such that the “translated” con-
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dition holds afterwards. Moreover, whenever the low level
thinks that a refinement of a high-level action (perhaps in-
volving exogenous actions) can occur (i.e., its executability
is satisfiable), then the high level does also. Thus, sound ab-
stractions can be used to perform effectively several forms
of reasoning about action, such as planning, agent monitor-
ing, and generating high-level explanations of low-level be-
havior. We also provide a “proof-theoretic” characterization
that gives us the basis for automatically verifying that we
have a sound abstraction.

In addition, we define a dual notion of complete abstrac-
tion where whenever the low-level theory entails that some
refinement of a sequence of high-level actions is executable
and achieves a “translated” high-level condition, then the
high level also entails that the action sequence is executable
and the condition holds afterwards. Moreover, whenever the
high level thinks that an action can occur (i.e., its executabil-
ity is satisfiable), then there exists a refinement of the action
that the low level thinks can happen as well.

Many different approaches to abstraction have been pro-
posed in a variety of settings such as planning (Sacerdoti
1974), automated reasoning (Giunchiglia and Walsh 1992),
model checking (Clarke, Grumberg, and Long 1994), and
data integration (Lenzerini 2002). Most of these do not deal
with dynamic domains. Previous work on hierarchical plan-
ning generally makes major simplifying assumptions (Nau,
Ghallab, and Traverso 2016). In contrast, our approach deals
with agents represented in an expressive first-order frame-
work.

For simplicity, we have focused on a single layer of ab-
straction, but the framework supports extending the hierar-
chy to more levels. Our approach can also support the use
of ConGolog programs to specify the possible behaviors of
the agent at both the high and low level, as we can follow
(De Giacomo et al. 2016) and “compile” the program into
the basic action theory (BAT)D to get a new BATD′ whose
executable situations are exactly those that can be reached
by executing the program. We have also identified a set of
BAT constraints that ensure that for any low-level action
sequence, there is a unique high-level action sequence that
it refines. This is useful for providing high-level explana-
tions of behavior and monitoring (De Giacomo, Reiter, and
Soutchanski 1998).

More recently, we have examined how our abstraction



framework can be used to reason about an agent’s on-
line executions where the agent acquire new knowledge
through sensing as it executes (Banihashemi, De Giacomo,
and Lespérance 2018a). As well, we have used the frame-
work to show how one can gain efficency in performing
agent supervision, i.e., obtaining a supervisor/controller that
minimally restricts an agent’s behaviour to ensure that it sat-
isfies some specification (Banihashemi, De Giacomo, and
Lespérance 2018b).

In future work, we plan to investigate methodologies for
obtaining abstractions for given objectives, as well as au-
tomated synthesis techniques to support this. We are also
examining how to implement a hierarchical agent supervi-
sion tool for the case where abstract theory is propositional.
We also plan to study how our abstraction framework can
be used for online agent supervision. Finally, we will also
explore how agent abstraction can be used in verification,
where there is some related work (Mo, Li, and Liu 2016;
Belardinelli, Lomuscio, and Michaliszyn 2016).
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