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Abstract

Answer Set Programming (ASP) is a highly expressive
paradigm for declarative problem solving. Its declarative lan-
guage can also be used to formalize actions, planning, and
agent policies, in an expressive setting, and to reason about
them. An ASP-based view on describing policies that express
a reactive behavior for an agent employs the notion of indis-
tinguishable states, and combines components for describing
reactivity such as target establishment and (online) planning
(Saribatur and Eiter 2016). The representation allows one to
analyze the flow of executing the given reactive policy, and
lays foundations for verifying properties of policies.

Reactive Behavior with Policies
In search scenarios, where an agent needs to find a miss-
ing person in unknown environments, the naive approach of
searching for a plan that achieves the main goal easily be-
comes troublesome, as the planner needs to consider all pos-
sible initial states to find a plan that guarantees finding the
person. Alternatively, a reactive policy can be described for
the agent (e.g., “move to the farthest visible point”) that de-
termines its course of actions and guides the agent in the en-
vironment, while the agent gains information (e.g., obstacle
locations) on the way. Then it needs to be checked whether
the policy works or not, e.g., the person is always found,
regardless of actual obstacle locations.

This reactive behavior can be seen as deciding the course
of actions by determining targets as stepping stones to
achieve during the interaction with the environment, where
the agents come with an (online) planning capability to com-
pute plans to reach the targets. Following the policy, the
agent would determine a target at its current state, compute
a plan to reach the target, execute it, observe the outcomes.

Fig. 1(a)-1(c) show some instances to demonstrate that the
given policy might not always work. The farthest (horizon-
tally/vertically) visible point in these states is (3,1), which is
determined as the target. Then the policy computes a plan to
reach this target. While in Fig. 1(a) the person will be found
after executing the plan, in Fig. 1(b) following the policy will
result in a loop and in Fig. 1(c) there is a possibility to loop,
depending on the chosen target.
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Figure 1: (a),(b),(c): Possible instances of a search scenario
in a grid-cell environment, (d): Agent’s observation in the
instances, �:agent, •:person, ×:obstacle, ?:unknown
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Answer Set Programming
Answer Set Programming (ASP) (Lifschitz 2008; Brewka et
al. 2011; Baral 2003; Erdem et al. 2016) is a widely used
problem solving approach, as its underlying non-monotonic
semantics is general enough to represent interesting compu-
tational problems. Dynamic domains can be described by a
“history program” (Lifschitz 1999), where the answer sets
represent possible evolutions of the system over a time in-
terval. This is achieved by adding a time variable to the
atoms, and introducing action atoms that may cause changes
over time. The expressiveness allows to describe the ac-
tions in a declarative way through their preconditions and di-
rect/indirect effects, while addressing the problems encoun-
tered when reasoning about actions, e.g., the frame problem
(McCarthy and Hayes 1969).

For illustration, the following rule describes a direct effect
of the action goTo over the robot’s location.

rAt(X,Y, T+1)← goTo(X,Y, T ).

Actions can also have indirect effects over the state (rules
not mentioning actions); e.g., the robot location is visited:

visited(X,Y, T )← rAt(X,Y, T ).

Inertia laws (unaffectedness) can be elegantly expressed,
e.g., rAt(X,Y, T+1) ←rAt(X,Y, T ),not ¬rAt(X,Y, T+1).
says that the robot location remains by default the same.

One can also give further restrictions on the state, e.g., the
robot and an obstacle can never be in the same cell.

⊥ ← rAt(X,Y, T ), obsAt(X,Y, T ).

Constraints can also define preconditions of an action, e.g.,
⊥ ← goTo(X,Y, T ), obsAt(X,Y, T ).

Dedicated action languages carry this idea further with
special syntax for such axioms (Gelfond and Lifschitz



1998), and can be translated to ASP (Giunchiglia et al.
2004). The expressiveness also allows to distinguish how the
objects are affected by the actions. E.g., the obstacles are not
affected by goTo, while they play a role in its executability.

Using ASP, the policies can be phrased in logical formulas
which are understandable and easily changeable. E.g., target
determination according to the policy is as below.

1 {target(X1, Y 1, T ) : farthest(X,Y,X1, Y 1, T )} 1
← rAt(X,Y, T ),not seen(T ),not caught(T ).

target(X,Y, T )← seen(T ),not caught(T ), pAt(X,Y, T ).

After computing a target for a state, an outsourced planner
can be used to determine the course of actions, i.e., policy
action, from the agent’s current location to the target lo-
cation. Checking whether the policy works can be done by
searching for a path following such policy actions, where the
main goal is not reached. If such a path can not be found,
then the policy works; otherwise, a counterexample to the
policy’s expected behavior is found.

Equalized States and Policy Actions
Depending on the agent’s designed behavior, and its deter-
mination of its course of actions at a state, some informa-
tion in the state may not be necessary, relevant or even ob-
servable. In this sense, the states that contain different facts
about such information can be seen as indistinguishable to
the agent. E.g., Fig. 1(a)-1(c) provide the same observations
(Fig. 1(d)). Since the rest of the environment can not be ob-
served, these states are indistinguishable to the agent.

The notion of equalized states is about clustering the
states that contain the same profile according to the pol-
icy. E.g., for partially observable environments, same obser-
vations could yield the same profile. Such a clustering ac-
cording to the observations is similarly considered in (Bonet
and Geffner 2015). For fully observable environments, one
needs to check the policy to determine the profiles.

The policy uses a target function to determine a target
and an outsourced planner to compute a plan to reach the
target. The policy actions are defined to be these plans that
are determined according to the policy and executed. Such
actions can also be seen as macro actions/big jumps, and
the transitions between the equalized states are defined us-
ing them. The outsourced planner is considered to compute
a conformant plan to the target, for the computed plans to
be sound and complete. This notion is similar to the related
work (Banihashemi et al. 2017) which considers a refine-
ment mapping between a high-level action and low-level ac-
tions and defines the properties for such high-level view.

Fig. 2 demonstrates a policy action transition. Depending
on the current state, ŝ, a plan σ can be executed if it is re-
turned by the outsourced planner to reach the target gB that
is determined by the policy. There may be more than one
equalized state satisfying gB , and the policy execution func-
tion ΦB(ŝ, σ) executes σ and finds a transition into one of
these states, ŝ′. When the knowledge of the executed plans
are projected away to only consider ΦB : Ŝ → 2Ŝ , the tran-
sition ΦB becomes a big jump between states, where the
actions taken and the states passed in between are omitted.

Figure 2: A transition in the equalized transition system

ŝ
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A properness condition over the equalization ensures that
having a trajectory through the policy actions guarantees the
existence of a concrete trajectory. Knowing that any such
trajectory found in the equalized transition system exists in
the original transition system is enough to conclude that the
policy indeed does not work.
Next Challenge. When such a macro action view may not
help enough to the state explosion, an abstraction over the
states and the policy actions by deliberately losing informa-
tion becomes necessary.
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