The Escapee Domain: A Multi-Agent Planning Domain

Gregory Gelfond
University of Nebraska Omaha
1110 S. 67th St
Omaha, Nebraska 68182

Introduction

The action language m.A+ (Gelfond 2018; Baral et al. 2015)
brings together developments regarding representing and rea-
soning about actions and their effects from the knowledge
representation and dynamic epistemic logic communities.
The language’s declarative semantics is highly amenable to
direct translation into a logic program under the answer-set se-
mantics, but the reliance of modern solvers such as c1ingo
(Gebser et al. 2012) on grounding makes its application lim-
ited for automating multi-agent reasoning in a natural way.
In this paper, we present an axiomatization of a multi-agent
domain known as the “Escapee Domain” with two purposes
in mind: to serve as an introduction to the action language
m.A+ itself; and also to present a challenge problem to the
developers of answer-set solvers.

The Escapee Domain and the Language m.A+

Agent A is held captive by a hostile agent B. In order to
escape, A must open his cell without B’s knowledge. Fortu-
nately, agent C' is a double agent in B’s organization and
may release A from his cell. C' does not want to break his
cover however, so he may release A only if B is not watching.
Once A has been released, he must work together with C' to
subdue agent B, and then make his escape. A will only work
with C' if he believes that C' is an ally.

Representing the Domain

In m.A+, a multi-agent domain is defined over a signature
Y = (AG, F, A) where AG, F, and A, are finite, disjoint,
non-empty sets of symbols respectively defining the names
of the agents within the domain, the properties of the domain
(or fluents), and the elementary actions which the agents may
perform. In the interest of space, we omit the full description
of the domain signature and assume that all of the relevant
syntactic objects have been defined.

What is important to note is that in a multi-agent settings,
fluents fall into two broad categories: ontic fluents and per-
spective fluents. Ontic fluents are used to describe actual
physical properties of the domain, while perspective fluents,
define the observability of action occurrences as a function
of the state in which they transpire. In this particular domain,

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

fluents of the form attentive(«) (read as “agent « is atten-
tive”) are perspective fluents. Other fluents of this kind may
be used for modeling group formation and collaborative ac-
tion. These fluents may be manipulated directly by the agents
via perspective altering actions such as signal/distract and
unite/disband.

Assuming our domain signature is fixed, we represent the
initial state of the domain via a collection of initial state
axioms as follows:

initially C{ 5 ,cy (attentive(a) N\ bound(A))
initially C; 5 p,cy (—Baallies(A, C') A =Bpallies(B, C))
initially Beallies(A, C)
Generally speaking, such axioms are statements of the form:
initially ¢

where ¢ is a restricted kind of modal formula (Fagin et al.
1995) called a belief formula (Gelfond 2018; Baral et al.
2015), and have the informal reading of: “¢ is initially true.”
The first axiom tells us that initially, it is a “commonly held
belief” amongst agents A, B, and C that they are attentive
and that agent A is bound.

When it comes to describing actions and their effects, in
a multi-agent context it is important to note that in addition
to direct effects, actions may have indirect effects based on
whether or not they are observed by the agents. As a con-
sequence, the observability of actions is also something we
must describe within our action descriptions. With this in
mind, the actions signal and distract in a straightforward man-
ner, with their observability limited to those agents directly
involved in the action occurrences, and attentive agents:

signal(ay, ) causes attentive(as)

distract(au, ag) causes —attentive(cs)

{au, as} observes signal(aq, as)

{a} observes signal(a, as) if attentive(«)

{a1, as} observes distract(ay, az)

{a} observes distract(ay, as) if attentive()
The first two axioms are dynamic causal laws in the fash-
ion of the languages A and AL and describe the direct ef-

fects of the actions signal and distract respectively. The
remainder are perspective axioms and define the rules by



which the agents of the domain observe individual action
occurrences. The rule [{aq, ao} observes signal(aq, )]
states that the agents directly involved in the action oc-
currence are aware of it transpiring. Additionally, the
rule [{«} observes signal(aq, ) if attentive(ar)] extends
this property to attentive agents.

In general, agents may unite in order to act together. In
this particular domain, an agent must be —bound before he
may unite with another agent to collaboratively perform some
action. In addition, an agent will only unite with someone
whom he believes is an ally. Once they are done collaborating,
they may disband. This behavior is defined by the following
axioms:

unite(a, a) causes united(ay, az)

executable unite(oy, as) if —~bound(aq )N
—bound(az) A By, allies(ay, ag)

disband(ay, an) causes —united(aq , aa)

The observation axioms governing the frames of reference
of the agents with respect to occurrences of the actions unite
and disband follow the same pattern as those for the actions
signal and distract and hence are omitted from our presenta-
tion.

Now that we have finished defining the behaviors of the
perspective altering actions, we turn our attention to the re-
maining actions. A single agent may release another agent
causing him to no longer be bound. A pair of agents working
together may subdue an agent, causing him to be bound.

release(av, o) causes —bound(az)

subdue(ay, aa, a3) causes bound(as)

executable subdue(a, ag, ag) if
united(a, aig) V united(aa, o)

The representation of the action escape is straightforward
as well. Once an agent has escaped, he is free. Furthermore,
we know that an agent, may only escape once his captor has
been subdued (i.e. bound). The relevant observation axioms
follow a now familiar pattern and are omitted due to space
considerations.

escape(«) causes free()

executable escape(a) if captor(ag, a1) A bound(as) A
(—united(ay, ag) V —united(o, aq))

Lastly, an agent may fell another agent some fact about the

domain. The action tell is a communication action, and is
represented by the corresponding axiom:

tell(a1, g, ) communicates @

where ¢ is of the form allies(a1, o). Agents may eavesdrop
however, and therefore in the Escapee Domain, communica-
tion must be done with caution. For this domain, we assume
that attentive agents are fully aware of what is said between
their fellows. This assumption is encoded by the following
observation axioms:

{au, as} observes tell(ay, as, p)
{as} observes tell(ay, aa, @) if attentive(as)

The Transition Diagram

As is the case with other languages of this kind, the seman-
tics of m.A+ is based on the notion of a transition diagram
whose nodes represent states of the domain and whose edges
are labeled by actions. In a multi-agent context such as the
one presented here, states of the domain are represented by
complex objects known as Kripke worlds (Fagin et al. 1995),
and individual action occurrences are modeled by similar
kinds of objects known as update models (van Benthem, van
Eijck, and Kooi 2006). Each of these is a kind of graph
itself whose nodes represent either possible worlds or poten-
tial outcomes, and whose edges represent what the agents
of the domain believe about them. The transition function
itself is defined by a function known as an update execu-
tion, which may be viewed as a graph product between a
Kripke world representing a state of the domain and an up-
date model describing a concrete action occurrence. The
full definitions of these constructs are omitted from the pre-
sentation here, and we refer the reader to (Gelfond 2018;
Baral et al. 2015) for a full treatment of the language m.A+.
The aforementioned axioms constitute an action description
of m.A+, which defines the domain’s transition diagram, al-
lowing us to precisely define and answer queries regarding
temporal projection, planning, etc.

Some Concluding Thoughts

The use of modal formulae in m.A-+ and consequent recasting
of the notions of a state of the domain and requisite transition
function as a graph product provide an interesting challenge
for modern answer-set solvers such as cl1ingo. Each ob-
jects definition on both a syntactic and semantic level render
a direct translation of the language’s semantics into a logic
program computationally difficult due to the reliance of such
systems on pre-grounding the logic program. It is the au-
thor’s hope that the logic programming semantics of m.4+
in addition to being of general interest to the knowledge
representation community, will also present a new set of chal-
lenge problems or benchmarks for subsequent developments
in answer-set solvers.

References

Baral, C.; Gelfond, G.; Pontelli, E.; and Son, T. C. 2015.
Multi-Agent Action Modeling through Action Sequences
and Perspective Fluents. In Proceedings of the AAAI Spring
Symposium on Common Sense Reasoning 2015, AAAI’15.

Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995.
Reasoning About Knowledge. MIT Press.

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan and
Claypool Publishers.

Gelfond, G. 2018. Representing and Reasoning about Dy-
namic Multi-Agent Domains: An Action Language Approach.
Ph.D. Dissertation, Arizona State University.

van Benthem, J.; van Eijck, J.; and Kooi, B. 2006. Logics of

communication and change. Information and Computation
204(11):1620-1662.



