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Abstract— The design of a physics-based dynamic simulator
of a robot requires to properly integrate the robot kinematic
and dynamic properties in a virtual environment. Naturally,
the closer is the integrated information to the real robot
properties, the more accurate the simulator predicts the real
robot behaviour. A reliable robot simulator is a valuable asset
for developing new research ideas; its use dramatically reduces
the costs and it is available to all researchers. This paper
presents a dynamic simulator of the da Vinci Research Kit
(dVRK) patient-side manipulator (PSM). The kinematic and
dynamic properties of the simulator rely on the parameters
identified in [1]. With respect to the kinematic simulator
previously developed by some of the authors, this work: (i)
redefines the kinematic architecture and the actuation model
by modeling the double parallelogram and the counterweight
mechanism, to reflect the structure of the real robot; (ii)
integrates the identified dynamic parameters in the simula-
tion model. The obtained simulator enables the design and
validation of control strategies relying on the robot dynamic
model, including interaction force estimation and control, that
are fundamental to guarantee safety in many surgical tasks.

I. INTRODUCTION

In the modern surgical practice, the necessity of achieving
operations safely and with elevated precision is the catalyst
fostering the development of computer- and robot-assisted
surgery paradigms. The da Vinci Surgical System [2] has
responded with great impact to such needs, by increasing
the quality and the overall outcome of the interventions
in minimally-invasive surgery. The da Vinci Research Kit
(dVRK) [3] has generated a further boost in this direction,
providing an open-source mechatronic toolset for both clin-
ical and research purposes.

Besides, the introduction of dedicated simulation tools
in the clinical workflow has significantly supported these
developments and played a key role in different stages of the
medical procedures, from training and pre-operative planning
to intra-operative plan adaptation. Dynamic simulators, in
particular, allow to render physical contacts between surgical
instruments and environment, to predict the dynamic be-
haviour of the robot, to validate physical interaction control
laws, and algorithms for model-based interaction forces
estimation and collisions/faults detection and isolation. A
realistic dynamic simulation of the PSM arms of the dVRK,
that integrates the dynamic parameters of the real robot,
would need a detailed designing process, that consists in
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modelling: i) the double parallelogram structure, guarantee-
ing mechanically the Remote Center of Motion (RCM) con-
straint at the surgical tool; ii) the counterweight mechanism,
balancing the motion of the surgical tool along the prismatic
joint of the chain through a transmission mechanism.

An extensive survey about the research progresses with
the dVRK system, including the development of dedicated
simulators, has been recently provided in [4]. Several simula-
tors are available today for training [5], [6], and simulation
platforms for research have also been recently developed,
with different degrees of modeling accuracy and possible
dynamic simulation capabilities. The simulator UnityFlexML
in [7], for example, presents a kinematic model of the
PSM in the Unity game development engine, to study the
interaction of the surgical tools with deformable objects in
a reinforcement learning scenario. The ATAR simulator [8]
replicates the surgical tools of the PSMs in a virtual train-
ing environment that is interfaced with the dVRK surgeon
console. It simulates the kinematics only and it does not
model the double parallelogram structure nor the counter-
weight mechanism. The AMBF framework [9], [10] allows
dynamic simulations of the PSMs, models the parallelogram
and introduces the counterweight in the simulation model.
However, the dynamic parameters integrated in the model
are extracted from SolidWorks, and are not those of the
identified model of the real robot. In addition, no physics-
based simulation appears to be linked to the counterweight
since the transmission mechanism between the counterweight
and the tool actuator is not modeled.

In our previous works, the dVRK simulator based on
the V-REP/CoppeliaSim simulation environment [11] inte-
grated also the possibility of interfacing virtual reality and
haptic devices [12], as well as additional novel surgical
tools [13]. However, it simulated a kinematically equivalent
robot model, that did not include the modelling of the
counterweight and with a simplified actuation model of the
double parallelogram that did not correspond to the real
robot.

Currently, up the the Authors’ knowledge, a dynamic
simulator of the dVRK combining a complete modeling of
the PSMs mechanics (including the double parallelogram, the
counterweight and the associated transmission model) with
integrated dynamic parameters, experimentally identified and
consistent with the real system, is lacking.

In this paper, we modify the kinematic simulator of
the dVRK [13] developed in CoppeliaSim, with the final
objective of enabling dynamic simulation of the PSMs in the
virtual environment that can reliably predict the behaviour of
the real system. The provided dynamic model corresponds to
the real robot mechanical structure and actuation model and



simulation framework dynamic robot simulation model of the doubleparallelogram counterweight dynamic simulation identified real-robot dynamic parameters
UnityFLexML [7] no yes no no

ATAR [8] no no no no
V-REP dVRK simulator [11]–[13] no partially no no

AMBF [9] yes yes no noa

proposed simulator yes yes yes yes

aPotentially they could be integrated upon appropriate transformations that depend on the simulation model.

TABLE I: Comparative scheme of the main dVRK simulators available to the research community. The first column reports
the name of the simulation framework, the subsequent columns the functionalities that it integrates.

is not a kinematic equivalent of the dVRK, as in [11]–[13].
For this purpose, the model of the single PSM is first
re-designed to match the kinematic formalization provided
in [1], by taking into account the following features: i)
the explicit modelling of the closed kinematic chain due to
the double parallelogram structure; ii) the simulation of the
counterweight mechanism and the associated transmission
system, employed on the real system to balance the motion
of the surgical tool through the prismatic joint. Then, we
integrate the full set of dynamic parameters of the PSM links
obtained from the convex optimization procedure illustrated
in [1]. A comparison of the features of interest of our
proposed simulator with the mentioned solutions available
to the research community is shown in Table I.

It is worth remarking that the work focuses on the dynamic
simulation model of the PSMs only because, as a matter of
fact, during surgical procedures the ECM is generally kept
in a fixed configuration which is changed when necessary to
improve the user’s view, while keeping the PSMs fixed. The
dynamic model of the ECM is therefore not as relevant as
that of the PSMs in the procedures currently executed with
the da Vinci Surgical System.

Summing up, the main contributions of this paper are: i)
the model of the double parallelogram kinematic structure
of the PSMs; ii) the model of the counterweight mechanism,
completed by the transmission system simulation model;
iii) the integration of the dynamic parameters of the real
system, identified in [1], in the dynamic simulation model
of the dVRK PSMs, made possible by the first two modeling
contributions; iv) validation of the simulator against the
identified model and the measures from the real robot.

Paper organization: Section II summarizes the identifica-
tion procedure [1]; Section III presents the PSM simulation
model; Section IV reports on the validation procedure and
proposes control examples. Section V concludes the paper.

II. DYNAMIC PARAMETERS OF THE dVRK-PSM

The dVRK platform is composed, on the operator side,
of a console with two Master Tool Manipulators (MTMs)
used to teleoperate, at the patient side, a pair of Patient Side
Manipulators (PSMs) mounted on a cart, together with an
Endoscopic Camera Manipulator (ECM).

Each of the two PSMs of the dVRK platform is a 7-DoF
actuated arm (see Fig. 1a), with 6 additional passive joints
arranged in a double parallelogram structure that enables
translation of the tool along its axis only and rotations around
a fulcrum point, the Remote Center of Motion (RCM).
The actuated DoF are organized according to a RRPRRRR

sequence: the first two revolute joints, J1 and J2, provide roll
and pitch rotation around the RCM point, the third prismatic
joint J3 allows translation along the instrument axis, while
the last four revolute joints, J4, J5, J6 and J7, yield mo-
bility of the EndoWrist, i.e., orientation and opening/closure
motion of surgical tool (see Fig. 1b). The manipulator also
hosts a counterweight (see Fig. 1c), balancing the tool motion
along J3 through a tendon driven transmission mechanism.
A torsional spring is included at J4, to favor the joint return
to the angular zero position [14].

Denoting with n = 7 the number of active joints, the
modelling process of the robot dynamic model in [1] relates
joint positions, velocities and accelerations q, q̇ and q̈, taking
values in Rn, to the joint torques τ ∈ Rn in the form:

H(q, q̇, q̈)δ = τ , (1)

where H ∈ Rn×p is the regressor matrix and δ ∈ Rp

collects the p constant dynamic parameters to be identified.
For each link `k, k = 1, . . . , N , N = 15, denote by mk its

mass and by rk ∈ R3, Lk ∈ R3×3 respectively the Center
of Mass (CoM) position and the symmetric inertia tensor,
expressed in the link frame. The dynamic parameters of
interest are collected, in barycentric form [15], in the vector:
δL,k = (mk, l
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zz)T , with lk =

mkrk the first moment of inertia, and Lk
ij , {i, j} ∈ {x, y},

the inertia matrix entries.
A complete description of the dynamic model requires to

consider also motor friction, the elastic torque contribution
generated by power cables (e.g., for J1 and J2) and by
the presence of the torsional spring at the joint J4. The
associated dynamic parameters (i.e., motor inertia, viscous
and Coulomb friction constants, Coulomb friction offset,
stiffness coefficient) are identified in [1] and gathered for
each link in δA,k ∈ R5. Clearly, not all the components of
δA,k are meaningful for each link `k due to the presence of
passive joints; hence, when appropriate, they have not been
considered in the identification procedure.

The vector δ in (1) is built by stacking the dynamic
parameters δL,k and δA,k for all the N links.

The identification problem consists in estimating a suitable
value δ∗ of the dynamic parameters collected in δ, minimiz-
ing the error between the torques predicted by (1) and their
measured values, in a least-square fashion. To enforce the
physical feasibility of the parameters to be identified, a set of
inequality constraints is included in [1], and the identification
is formalized as a semidefinite programming problem. The
solution δ∗ provides a set of parameters that, consistently
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Fig. 1: (a) One of the two PSM arms of the da Vinci Research Kit. The location of the RCM point is also shown in the
blue circle. (b) The double parallelogram mechanism highlighted with red and blue squares. Joint axes are highlighted with
dashed black lines, with passive joints denoted as Jp∗. (c) The counterweight modelling solution: the force measured at
Jcw,l is transmitted to Jcw,t, that exerts the same force on the tool through a dedicated loop closure configuration (LCC).

with the dynamic behaviour of the real robot, describe mass,
inertia and center of mass of all the links of the PSM.

For control design purposes, it is worth mentioning that
the dynamic model (1) has been also reformulated in [1]
according to the Euler-Lagrange equations :

M(q)q̈ +C(q, q̇)q̇ + g(q) + τ f = τ (2)

where M(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n

is the matrix of Coriolis and centrifugal forces, g(q) ∈ Rn

is the gravity vector and τ f ∈ Rn the friction torques.
Retrieving a set of feasible parameters δ∗ provides an
estimation of terms in (2), namely M̂(q), Ĉ(q, q̇), ĝ(q)
and τ̂ f . This allows to implement torque control laws, as
will be shown in Section IV.

III. THE DVRK-PSM DYNAMIC SIMULATOR

In minimally invasive surgery executed through robotic
manipulators the link constrained to move through the inci-
sion point can only translate along its axis and rotate about
a point on the link axis known as Remote Center of Motion
(RCM), which should be maintained in the same position as
the incision point during the surgery.

While for a serial nDoF manipulator, the RCM constraint
can be enforced by proper kinematic modeling and control
of the constraint and the surgical task [16], the PSM of the
dVRK satisfy this constraint mechanically, through a dou-
ble parallelogram mechanism equipped with passive joints
(denoted by Jp∗∗ in Fig. 1b).

As highlighted in [14]- [13], the derivation of the robot
kinematics does not necessarily require that the model of
the double parallelogram reflect the actuation of the physical
structure. The solution adopted in [14] to satisfy the RCM
constraint was, in fact, to add two (ficticious) revolute joints
at the RCM and to constraint consistently the motion of the
passive joints of the parallelogram. Moreover, in the robot

kinematics description the presence of the counterweight,
balancing the motion of the surgical tool along its longi-
tudinal axis, is not required.

In a dynamic simulator, however, both the kinematics and
the actuation model of the double parallelogram and of the
counterweight mechanisms must reflect the physical structure
for proper simulation of the actuation effort.

Therefore, in this work, we provide: (i) a reformula-
tion of the hierarchy of joints and shapes composing the
double parallelogram structure which is coherent with the
robot kinematics in [1] and includes the explicit formulation
of the closure constraint; (ii) a simulation model of the
counterweight system. This allows to integrate the dynamic
parameters of the robot links identified in [1], so as to obtain
a physics-based simulation.

For the sake of clarity, we first summarize some Cop-
peliaSim features, exploited to model the virtual robot1.
Shapes: rigid meshes built with triangular faces, used to
model and visualize the robot links in the virtual environ-
ment. More in detail, each link is characterized by a pair
of shapes: i) a respondable shape, simulating contacts with
other shapes in the environment; ii) a visual shape, that
is graphically more accurate and reproduces a geometric
structure analogous to the real link. In addition, respondable
meshes can be set as dynamic, in order to simulate also the
dynamics of the corresponding rigid body.
Joints: CoppeliaSim objects enabling motion of the attached
links. Joint operation modes can be passive, dependent, or
torque/force. When working in torque/force mode, an object
joint behaves as active and, when connected to dynamic
respondable shapes, it is said dynamically enabled. Due to

1A more detailed and exhaustive description of the CoppeliaSim
feature can be found at the official documentation webpage:
https://www.coppeliarobotics.com/helpFiles/en/
designingDynamicSimulations.htm



their moltiple operation modes, joints can be involved in the
design of loop closure configurations, necessary to model
closed chains.
Dummy object: simple point shape with an attached refer-
ence frame, without mass nor other dynamic properties, used
to represent a reference frame.
Overlap constraint: dynamic constraint imposed on a couple
of dummy objects and forcing them to adopt the same
position and orientation.
Loop closure configuration (LCC): a special hierarchical
configuration of virtual objects, combining dynamically en-
abled joints and overlap constraints to connect respondable
shapes that are not in a parent-child relationship. Loop
closure configurations are adopted to model closed chains,
either kinematic or dynamic.

A. Modelling of the double parallelogram chain

The double parallelogram structure of the dVRK-PSM is
highlighted in Fig. 1b. The shapes of the links and joints
are modeled as follows: the actuated revolute joints J1 and
J2 describe the roll and pitch rotation of the structure that
is anchored at the link `1. Differently from [14]– [13], their
position in the kinematic hierarchy reflects here the structure
of the physical robot. The first parallelogram, highlighted
with a red square in the Fig. 1b, is composed by the top
part of the link `2 (red part labeled as `2,1 in the encircled
close-up view), along with links `3, `4 and `6, and it is
connected through the passive joints Jp22, Jp23, Jp24 and
Jp25. Similarly, the second parallelogram of the kinematic
chain, highlighted with a blue square in the same figure,
is composed by the bottom part of the link `2 (blue part
labeled as `2,2 in the encircled close-up view), along with
links `1, `4 and `5, and it is connected by the joints J2, Jp21,
Jp23 and Jp26. To enforce the two closed kinematic chains,
two different LCCs are set: the loop LCC1 for the first
parallelogram is enforced through the joint Jp24 and specifies
an overlap constraint between dummy objects attached to the
links `3 and `6. The second loop LCC2 is enforced through
the joint Jp21 and specifies an overlap constraint between
dummy objects attached to the links `1 and `5.

B. Modelling of the counterweight

On the identified dynamics of the dVRK PSM arm, the
counterweight is linked to the prismatic joint J3 through a
transmission system, based on pulleys and tendons. The iden-
tification procedure in [1] models this mechanism, providing
an estimation of the relative dynamic parameters that we
have integrated in the simulation model as explained below.

Since deformable objects, like tendons, are not simulated
in CoppeliaSim, the transmission system is modeled by
simulating the effect at the two endpoints of the transmission
chain. On the load-side, the actuated prismatic joint Jcw,l

makes the counterweight mirror the motion of the tool. In
particular, setting the current position q3 of the joint J3
as a reference for Jcw,l, i.e., qrcw,l

= q3, a low-level PID
controller regulates the position of Jcw,l.

On the tool-side, the measure of the force provided at Jcw,l

for regulating its position to qrcw,l
contributes to the actuation

of the tool joint. Specifically, a fictitious prismatic joint Jcw,t

is placed above the prismatic joint J3 so as the joint axes
are coincident. To simulate the compensation mechanism,
the force fcw provided by Jcw,l to move the counterweight
is set as the force commanded at Jcw,t, while an additional
LCC between Jcw,t and J3 is enforced. The effect of the
LCC is to partially compensate the force due to gravity on
the dynamics of J3 with the force commanded at Jcw,t.

Note in Fig. 1c: i) Jcw,l providing the necessary actuation
to move the counterweight along a constrained direction,
consistently with the motion of the tool; ii) the respondable
counterweight load shape, characterized by its mass and
inertia from [1]; iii) the fictitious prismatic joint Jcw,t.

C. Integration of the dynamic coefficient in the robot model

The full set of identified parameters δ allows to include
in the simulation the dynamic effect of the links motion
according to their mass, inertia and center of mass.

On the other side, joint friction, motor inertia and springs
are not simulated by the physics engine of CoppeliaSim.
Therefore, only the inertial parameters δL,k are set in the
simulator for each link. The effect of the additional parame-
ters δA,k can be optionally taken into account as an additive
torque contribution determined on the base of a mathematical
model of the involved phenomena, evaluated on the current
state of the system. In the proposed simulations we have not
introduced this model-based contribution to report on the
physics simulation only.

The assignment of mass, inertia tensor and CoM coordi-
nates of the corresponding rigid link `i requires preliminary
mathematical manipulations. In fact, while in CoppeliaSim
inertia tensors and CoM coordinates are expressed in the
virtual world frame Fw, the corresponding quantities in δL,i

are expressed in the related link frame Fi. Denoting by
< wR0,

wp0 > the constant roto-translation between the
CoppeliaSim world frame Fw and the robot base frame F0,
we simply convert the CoM coordinates as

wri = wRi
iri + wp0, (3)

where wRi = wR0
0Ri is the composed rotation express-

ing the orientation of the i-th link frame Fi in Fw.
Similarly, in order to convert the elements of δL,i related

to the inertia tensor expressed in Fi, we apply the parallel
axis theorem [17] on the inertia tensor Li so as to obtain

wLi = wRiLi
wRT

i +miS
T (wri)S (wri) , (4)

where S(∗) is the skew-symmetric operator. Evaluating (3)
and (4) for all the rigid links `i generates the correct data to
be integrated in the PSM simulation model.

IV. SIMULATOR VALIDATION

The validation of the proposed dynamic dVRK simula-
tor in CoppeliaSim has been accomplished through differ-
ent simulation tests. First, a validation of the redesigned
robot kinematics, including the double parallelogram model,
through the execution of Cartesian trajectory tracking tasks
with a kinematic controller. In this first case, the CoppeliaSim
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Fig. 2: Validation of the kinematic model: Reference (dashed red) and actual (blue) Cartesian position (a) and orientation
(b) during a rectilinear trajectory tracking task.
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Fig. 3: Validation of the kinematic model: Reference (dashed red) and actual (blue) Cartesian position (a) and orientation
(b) during a spiral trajectory tracking task.
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Fig. 4: Dynamic model validation through kinematic control: comparison of model-based torques (blue) vs simulated torques
(red), during a tracking task along a rectilinear trajectory. Left (a): the counterweight is not modeled and a significant force
error is observed on J3. Right (b): the counterweight is accounted in the robot modelling, resulting in a small force error.

dynamic engine is disabled and the tracking error is taken
as a performance indicator. Next, the same conditions are
used to assess also the correctness of the dynamic model,
with the CoppeliaSim dynamic engine turned on. In this
case, validation is accomplished by comparing the torques
predicted by the dynamic model, identified in [1], with the
torques simulated by the physics engine of CoppeliaSim. To
further evaluate the performance of the simulator, its torque
prediction capability has been compared with data collected
on the real robot during the identification procedure in [1].
Finally, for demonstration purposes, we show the results of

Cartesian trajectory tracking tasks which are accomplished
through torque control. Control design is based on the robot
dynamic model (2), using the identified matrices.

Given a Cartesian reference trajectory for the tool rd, with
time derivative ṙd, the kinematic controller provides the joint
reference velocity:

q̇d(t) = J(q)−1 (Kpe(t) + ṙd(t)) , (5)

where J(q) =
∂f (q)
∂q is the robot Jacobian, f(q) = r(t)

the direct kinematics function, built consistently with [1],
e = rd − r the tracking error, Kp > 0 a gain matrix.
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Fig. 5: Dynamic model validation through kinematic control: comparison of model-based torques (blue) vs simulated torques
(red), during a tracking task along a spiral trajectory. Left (a): the counterweight is not modeled and a significant force error
is observed on J3. Right (b): the counterweight is accounted in the robot modelling, resulting in a small force error.
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Fig. 6: Dynamic model validation through kinematic control along the optimal excitation joint trajectories used in [1]:
comparison of the model-based torques (blue) vs simulated torques (red) vs measured torques (green) retrieved from
online database2. Left (a): the counterweight is not modeled and a significant force error is observed on J3. Right (b):
the counterweight is accounted in the robot modelling, resulting in a small force error.

In the first, kinematics only, validation, the joints of the
simulated robot are set to the desired value qd obtained
from q̇d through simple integration. In the second validation
scenario, when the dynamic engine of the CoppeliaSim
is turned on, the joints reference velocity q̇d computed
through (5) is sent to the low-level controllers simulated by
CoppeliaSim. The corresponding control torques/forces are
therefore generated by the physics simulation. In particular,
by setting a very high value for the maximum torque/force of
the joints, the target velocities are instantaneously reached,
that is equivalent to let the joints operate in velocity control.

Section IV-A and Sect. IV-B respectively, show the valida-
tion of the robot simulator in these two operative conditions.
The results relative to torque control are given in Sect. IV-C.

A. Validation of the novel kinematic model

In the first simulation, we consider a tracking problem
for the gripper of the PSM along a rectilinear trajectory,
i.e., rd(t) = L t

T and ṙd(t) = L
T , where L = 0.09 m is

the length of the path and T = 10 s is the path traveling
interval. The desired orientation of the gripper is set constant
along the path. The tracking results, shown in Fig. 2 and
comparing the pose of the PSM gripper over time with the
desired quantities, prove good tracking performance in terms

of Root Mean Square (RMS) along the trajectory (RMSp =
(7·10−4, 3·10−3, 4·10−4) [m] in position, RMSo = (4·10−3,
2 · 10−2, 3 · 10−2) [rad] in orientation).

The second simulation consists in tracking of a spiral
trajectory with the PSM gripper. In this case rd(t) =
(A cos(2πfAt), A sin(2πfAt), h cos(2πfht))

T , where A =
0.05 m is the radius of the spiral, h = 0.03 m is its
height, fA = 1.5 Hz and fh = 0.5 Hz are the trajectory
frequencies. Results of this simulation are reported in Fig. 3.
Also in this simulation, the high accuracy of the tracking
proves the consistency of the re-modeled kinematic chain
and of the double parallelogram explicit simulation, with
RMSp = (2 · 10−3, 1 · 10−3, 9 · 10−4) [m] for the position,
RMSo = (3·10−3, 2·10−3, 3·10−2) [rad] for the orientation.

B. Validation of the dynamic model

For this validation, the Open Dynamics Engine available in
CoppeliaSim is enabled, with a simulation time step ∆T =
10 ms and a dynamic calculation step of 5 ms. The validation
of the dynamic properties of the proposed dVRK simulator
is accomplished at the torque-level. Specifically, the joint
torques τ sim, simulated through the CoppeliaSim physics
engine and measured by the dedicated software API func-
tions, are compared with torques τmod = H(q, q̇, q̈), pre-



dicted by the model identified in [1]. The computational load
to retrieve the identified dynamic model has been verified to
be negligible, as the response time of the queries to read the
inertia matrix and the gravity and Coriolis/centrifugal vectors
is of the order of microseconds (6-7 µs). In the kinematic
control, we set Kp = 15. As before, two control tasks are
considered to be accomplished through kinematic control:
tracking of a rectilinear and of a spiral Cartesian trajectory
specified for the tip of the PSM gripper. The difference
between measured and predicted torques is evaluated in terms
of RMS error. To better highlight the contribution of the
counterweight, we show the comparison in two different
cases: in the first case (nCW), the counterweight is removed
from the simulated model of the PSM robot; in the second
case (wCW), the counterweight is accounted.

The results relative to first task are shown in Fig. 4
that reports the comparison between the simulated torques
τ sim (red) and the model-based predicted torques τmod

(blue): when the counterweight is not modeled, we observe
a relevant force error on J3, with RMSnCW = (0.66 [Nm],
0.13 [Nm], 2.17 [N]). On the contrary, when the counter-
weight is accounted, the error on J3 is dramatically reduced,
while the effect on J1 and J2 is minor, having RMSwCW =
(0.65 [Nm], 0.1 [Nm], 0.048 [N]).

The second simulation, shown in Fig. 5, highlights a
similar behaviour: despite the higher excitation of the trajec-
tory, simulated torques are consistent with the model-based
prediction, with a large error on J3 when the counterweight is
not modeled (RMSnCW = (0.59 [Nm], 0.38 [Nm], 3.3 [N]),
see Fig. 5a), compared to the scenario with the counterweight
(RMSwCW = (0.57 [Nm], 0.27 [Nm], 0.3 [N]), see Fig. 5b).

To conclude this part, we show also the validation re-
sults along the optimal excitation joint trajectories that have
been used in [1] in the experimental sessions on the real
robot. In this case, the joint velocities measured along the
trajectories retrieved from the identification database2 , are
set as joint velocity reference q̇d for the simulator. Results,
shown in Figure 6, are consistent with previous simulations,
with lower RMS errors observed when the counterweight is
accounted (RMSnCW = (0.58 [Nm], 0.8 [Nm], 2.89 [N]),
RMSwCW = (0.55 [Nm], 0.8 [Nm], 0.59 [N])).

C. Torque-based control

In this validation, since only the first three joints of the
PSM are dynamically enabled, only position tracking tasks
are considered. For all tasks, specified by a reference position
trajectory rd(t), a control law with feedback linearization in
the Cartesian space generates the commanded torques u:

u = M̂(q)J−1
L a+ Ĉ(q, q̇)q̇+ ĝ(q)− M̂(q)J−1

L J̇3q̇ (6)

where ∗̂ denote estimated quantities of the dynamic model (2)
and JL is the 3 × 3 Jacobian matrix relating the Cartesian
linear velocity of the PSM end-effector to the motion of the
first three joints. The Cartesian acceleration a is designed to

2https://github.com/WPI-AIM/dvrk_dynamics_
identification

stabilize the position error ep = rd − r through decoupled
chains of double integrators:

a = r̈d +Kpep +Kdėp (7)

with Kp, Kd > 0. Results of the tracking tasks with
rectilinear and spiral trajectories are shown in Fig. 7 and
Fig. 8, respectively, with Kp = 8 ·102I3 and Kd = 6 ·10I3.
In all the presented scenarios, since the torque-controlled
PSM robot is non-redundant for the considered tasks, the
dynamic behavior at the Cartesian level is exactly linearized
and decoupled, showing an exponentially stable transient
behavior of the Cartesian error along the desired trajectory.

It is worth noticing that, for all the presented cases, a
discrepancy is present, in the transient phase, between the
simulated and the model-based predicted force at joint J3.
Such discrepancy is due to the way in which the transmission
mechanism of the counterweight has been modeled, as
described in Sect. III-B. In particular, the low-level PID
controller of joint Jcw,l, that mirrors the motion of J3,
modifies the dynamic response of the counterweight with
respect to the identification model.

A videoclip showing the presented simulations is
included in the multimedia material of this Letter. The
software of the dynamic dVRK simulator, composed by the
CoppeliaSim scenes, the dynamic model of the PSM and
the example program replicating the presented simulations,
is available at https://github.com/marcofer/
dynamic-dvrk-coppeliasim-simulator. We
highlight that, similarly to the portable version presented
in [12], the provided simulator has not been developed
through the ROS interface. However, it could be easily
adapted, in an analogously to the former version described
in [11].

V. CONCLUSIONS

In this paper, we presented a dynamic simulator of the
da Vinci Research Kit Patient-Side Manipulator, in the Cop-
peliaSim robotic simulation environment. The presented sim-
ulator relies on a refined version of a previously developed
kinematic simulator in the V-REP/CoppeliaSim environment
that reflects the mechanical structure of the real robot and
its actuation. It is the first dynamic simulator integrating the
dynamic parameters of the real system identified in [1].

The development of the simulator has required: i) the
redefinition of the robot kinematic structure to model the
double parallelogram mechanism and its actuation and by
explicitly simulating the presence of a counterweight and
the associated transmission system; ii) the proper integration
of the set of dynamic parameters identified.

The resulting simulator has been validated through a set
of control tasks, by evaluating the trajectory tracking error
and the error between simulated, model-predicted, and mea-
sured joint torques. The torque comparison shows that the
design choices capture consistently the dynamic behaviour
described by the identified dynamic model and the behaviour
of the real robot.
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Fig. 7: Dynamic model validation through torque control: commanded input torques generated by the control (a) and resulting
Cartesian position error (b) during a tracking task along a linear trajectory.
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Fig. 8: Dynamic model validation through torque control: commanded input torques generated by the control (a) and resulting
Cartesian position error (b) during a tracking task along a spiral trajectory.
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