
PRIN Project DOTS-LCCI

Winter School on Hot Topics in
Secure and Dependable Computing
for Critical Infrastructures
Cortina d’Ampezzo, 16-19/01/2012

Software Architectures
for

Large-Scale Critical Systems

Stefano Russo
Dipartimento di Informatica e Sistemistica, Università di Napoli Federico II

Laboratorio Nazionale “C. Savy”, Consorzio Interuniversitario Naz. per l’Informatica

Stefano.Russo@unina.it

The MobiLab Group
www.mobilab.unina.it

mailto:Stefano.Russo@unina.it
http://www.mobilab.unina.it/

2

Outline
 Definitions, history, standard, key design principles
 Stakeholders, viewpoints, views
 Types of software assets
 Defining software architectures
 The role of the software architect
 Evaluating software architectures
 Decomposition techniques
 Architectural styles

This presentation is partially based on courseware material produced along with prof. Paolo Ciancarini from University of
Bologna for advanced training courses for CINI (Consorzio Interuniversitario Nazionale per l’Informatica).

Definitions, brief history, standards,
key principles, software architecting process,

documenting architectures,
patterns, architectural styles

Software Architectures

System

4

What is the role of architecture?

5

Architecture = design decisions

6

“Requirements constraints”

“Design” decisions

Architectural decisions

Other decisions

Software
design

Code etc.

Software
Architecture

Requirement
s

All choices are binding in the final product

Architecture = design? No!

7

8

Definition – 1/2

 Intuitively, the architecture of a software system
represents its internal structure, in terms of the
single components of which it is made up and of
the interactions among them

 According to the IEEE/ANSI 1471-2000 standard,
the architecture of a software system is its basic
organization, in terms of its components, of the
interactions among components and with the
external environments, as well as of the basic,
driving, principles for system design and evolution

9

Definition – 2/2

 From Wikipedia, the free encyclopedia
 The software architecture of a program or computing

system is the structure or structures of the system,
which comprise software components, the externally
visible properties of those components, and the
relationships between them.

 The term also refers to documentation of a system's
software architecture. Documenting software architecture
facilitates communication between stakeholders,
documents early decisions about high-level design, and
allows reuse of design components and patterns
between projects

10

Software architecture brief history
 The basics of software architectures have been

introduced by Dijkstra (1968) and Parnas (1970), who
argued:
 The key role of the structure of a software system, and
 How tricky the definition of the right structure for a given system

is

 A great deal of research has been conducted on software
architectures during ’90s, mainly focusing on:
 Architectural styles;
 How to solve recurrent problems (pattern);
 The definition of languages to describe software architectures

(ADL)
 Documentation of the architecture of a system

Sw engineering vs sw architecture
 Software Engineering is a discipline studying the

methods to produce software, the theories at their
basis, and the tools to effectively develop and measure
the qualities of software systems

 Software engineering deals with limited resources
 It is a discipline strongly empirical, that is based on

experience and past projects

 Is software architecture a discipline?
 Claim originated with the book by Shaw & Garlan, Software

Architecture: Perspectives on an Emerging Discipline, Prentice
Hall, 1996

11

Software architecture discipline
 The discipline of software architecture is centered on

the idea of managing the design complexity of
software systems through abstraction and separation
of concerns

 The discipline has developed a number of design
styles and patterns that help in designing or
integrating software intensive systems

 However,it is hard to find software architects who
agree on the right way to architect a software system

 Wrong decisions in crafting the software architecture
are a major cause of project cancellation

12

Why an architecture? – 3/4
 Design is typically driven by functional

requirements
 Architecture is driven more by non-functional

requirements / software quality attributes

 Some standards in specific domains are posing
some emphasis (directly or indirectly) on software
architecture
 E.g, DO-178B in the avionic domain

 Need to trace requirements through architecture up
to software modules and code

13

Why an architecture? – 1/4
 Every software system has an architecture
 Many kind of complex systems demand for putting

proper effort in the definition of the software
architecture:
 Large-scale systems
 Software intensive systems
 Dependable systems

 Safety critical systems
 Mission critical systems

 Business-critical
 Operation-critical

 Long-lived systems
 Example: software systems for critical infrastructures

14

Why an architecture? – 2/4
 In complex systems quality attributes cannot be

achieved in isolation
 Achieving one will have an effect, maybe positive or negative,

on others

 Examples:
 Security and reliability

 The most secure system has fewest points of failures, the most reliable
system has typically the most

 Portability and performance
 Portability is usually achieved isolating system dependencies, which

introduces overhead

 The architecture definition process helps finding the
tradeoffs that ensure meeting requirements and desired
quality factors

15

Why an architecture? – 4/4
 Companies are increasingly perceiving the importance

of software architecture
 Software companies / System integrators

 These companies are setting up ad hoc software
architectures divisions, that have to develop a long-
term vision of their products/product lines
 Different from Business Units and from product

engineering/development teams  SA div. responsible for
enforcing reuse (of any artifacts)

 A bridge between BUs (sys requirements) and Engineering
divisions (software design and implem.)

 Each large project has at least a software architect
 A senior IT and/or software specialist with proper skills

16

Architecture and system lifetime

17

18

Architectural decisions
 [Architectural decisions are] conscious design

decisions concerning a software system as a whole,
or one or more of its core components. These
decisions determine the non-functional
characteristics and quality factors of the system.
[Zimmermann]

 Architectural decisions are strategic decisions

Architecture = strategic design

(Functional) design = tactical design
 Decision rationale may come from experience,

method or some other asset

The role of architecture in software

19

Architecture plays a vital role in establishing the structure
of the system, early in the development lifecycle

The role of architecture in software

20

21

Software architecture and reuse
 Productivity in software development depends on

reuse: algorithms, data structures, components
 A software library is a typical example of code reuse
 A web server is a typical example of component

reuse
 A goal of architecture definition is the reuse of

components
 An important issue is the reuse of design ideas:

major examples are design patterns and
architectural styles

22

Style: layered
 An example of architectural styles:

layered architecture

Portuguese francesinha

Duality of the reuse concept

Reuse design with the reuse of existing software

artifacts

Riusability design for the development and maintenance of
reusable software artifacts

Riuse Riusability

technological
innovation

complexity

make /buy/ reuse

Reuse in software life cycle

Design
& development

for reuse

Production of
reusable assets

Product strategies

(Re-)use of assets

Management of
Assets

feedback

Technologies,
Methodologies,

Standards

Software Assets = Requirements + Architecture +
Code + Documents

Requirements
(functional and para-

functional)

Architecture

Relationships among artifacts

Sw Architecture

+domain
+communicat. infrastructure
+design methods
+model list
+trade off analysis
+system viewpoints
+prototype
+component list
+component relationship
+........

Sw Component

+architecture
+functional domain
+development platform
+execution platform
+development tool chain
+test tool chain
+related components (?)
+element list
+COTS (external)
+.......................

Sw Element

+type
+function list
+language
+hw development platform
+sw development platform
+hw execution platform
+sw execution platform
+related elements (CSCI)
+reuse note
+......

ARTEFACT

+name
+description
+part number (CM)
+internal reference point
+architecture
+development standard
+development methods
+development tools
+...............................

Architectural Model

+type

REQUIREMENT

+ID
+Description
+Date
+Version
+State
+............Sw Requirement

+ID

System Requirement

+......

Component Test

+............

TEST Element Test

+............

ESEMPIO NON COMPLETO DI RELAZIONI

An architecture goal:
reuse of components

26

Standards

27

28

Software architecture standards
 The first standard in the field of software

architectures is ANSI/IEEE 1471-2000:
Recommended Practice for Architecture
Description of Software-Intensive Systems
 better known as IEEE 1471 standards

 In fact it is a “recommended practice”
 the “weakest” type of IEEE standards, whose adoption

and interpretation are the responsibility of the using
organization

 It has been adopted by ISO/IEC JTC1/SC7 as
ISO/IEC 42010:2007, in 2007

29

IEEE 1471 standard
 It focuses on the description of an architecture as the

concrete artifact representing the abstraction that is
software architecture or system architecture.

 IEEE 1471's contributions lie in the following:
 It provides definitions and a meta-model for the description of

architecture
 It states that an architecture exists to respond to specific

stakeholder concerns about the software/system being described
 It asserts that architecture descriptions are inherently multi-view, no

single view captures all stakeholder concerns about an architecture
 It separates the notion of view from viewpoint, where a viewpoint

identifies the set of concerns and the representations/modeling
techniques, etc used to describe the architecture to address those
concerns

 It establishes that a conforming architecture description has a 1-to-1
correspondence between its viewpoints and its views

30

IEEE 1471 conceptual model

31

Stakeholders and viewpoints
 Stakeholders are the people for (users) and with

(developers) whom we build a system; they have
complex, overlapping, and often conflicting needs

 Viewpoints are ways to structure the description of
a system. Viewpoints guide the creation of the
system architecture, depicted by a particular view
(or set of views) and based on the principle of
separation of concerns

32

Stakeholders
 Customer
 User
 Project manager
 System engineer
 Software architect
 Developer
 Maintainer
 Tester
 Network administrator
 Quality assurance engineer
 …

33

Stakeholders and their concerns

Ease of IntegrationEase of Integration

Ease of UseEase of Use

FunctionalityFunctionality

PricePrice

Dev CostsDev Costs

On Time DeliveryOn Time Delivery

PerformancePerformance

Stability & MaintainabilityStability & Maintainability

Ease of DebuggingEase of Debugging

ModifiabilityModifiability

Testability & TraceabilityTestability & Traceability

Structure & dependency between componentStructure & dependency between component

Ease of InstallationEase of Installation

End UserEnd User

Sales Sales

Dev ManagerDev Manager

DeveloperDeveloper

Sys AdminSys Admin

MaintainerMaintainer

CustomerCustomer

Architectural description
 An architectural description (AD) is a set of

artifacts which collectively document an
architecture in a way understandable by its
stakeholders, and demonstrates that the
architecture meets their concerns

 The artifacts in an AD include views, models,
principles, contraints, etc., to present the essence
of the architecture and its details, so that it can be
validated and the described system can be built

 The AD can include also relevant information like
business drivers, scope or requirements overview

34

35

Views
 A view is a description of a system according to the

perspective (viewpoint) of some stakeholder, who
has to satisfy some interest (concern)
 Example: a user view describes the typical scenarios

where a system can be used

 An architectural view is a description of some
relevant issues of a software architecture
 Example: the architectural view of packages necessary

to install a software system, depicting their dependencies

Architectural views and concerns

Views and
stakeholders

37

Example
 Structure: the source code of an operating system

has a structure, that for instance separates the
kernel (eg. concerning processes and scheduling)
from the services (eg. concerning the file system)

 Behavior: the operation of an operating system
like Unix can be described as a set of concurrent
processes which can invoke system calls; each call
can raise events which can suspend or activate
processes; we can say that a running Unix system
is made of processes coordinated by events

38

Architectural views

Views (Krutchen 4+1)

40pkruchten.wordpress.com/architecture/

Views (Rozanski and Woods’)
 Functional View: runtime elements which deliver

functionality, including their responsibilities, interfaces and
interactions

 Information View: how the architecture stores,
manipulates, manages, and distributes information

 Concurrency View: state-related structure and constraints
 Development View: module organization and related tools
 Deployment View: physical environment in which the

system runs
 Operational View: how the system will be operated,

administered, and supported when it is running in its
production environment

41www.viewpoints-and-perspectives.info/

Views (Clements and others)
 Module views
 Components-and-connectors views
 Allocation views

42wiki.sei.cmu.edu/sad

Prescribes Standards and
Conventions

Standards Rules

Conventions

Technical
Standards View

Views (DODAF)

Information Flow

Operational
Elements

Activities/
Tasks

Identifies What Needs To Be
Done And Who Does It

Operational
View

Systems Data Flow

Communications

X Y
X

Z

X

Y

Y
Relates Systems and

Characteristics to
 Operational Needs

Systems
View

43cio-nii.defense.gov/sites/dodaf20/journal.html

DODAF views
 All View: is the overarching information describing

the architecture plans, scope, and definitions
 Operational View: focuses on the behaviours and

functions describing the mission aspects
 System View: describes the system and

applications supporting the mission functions
 Technical Standards View (TV): describes the

policies, standards and constraints

44

class
diagrams

use case
diagrams

object
diagrams

sequence
diagrams

statechart
diagrams

activity
diagrams

component
diagrams

deployment
diagrams

Actors
Use cases
Classes

Collaborations

Objects
Classes

Collaborations
Interactions
Categories

Modules
Subroutines

Tasks
Subsystems

Nodes
Modules

Main Programs

Expression of
requirements

Expressing
Behavior

Implementing
Objects and Classes

Deployment of
Executable Code

Representing
Structure

collaboration
diagrams

Use Case View Logical View Physical View Deployment V.

Focus

Diagram

Element

UML diagrams model a system from different perspectives

UML diagrams for documentation

Architecture design principles

46

47

Defining software architecture – 1/2
 The definition of the architecture is the first high-

level step of software design (i.e., architectural
design)

Architecture = Design in the large
 Its first aim is the a structural decomposition of the

system into sub-entities:
 Divide et impera approach: to develop single entities in

simpler than to develop the entire system
 It allows to perform several development activities at the

same time (i.e., different entities developed in parallel)
 It significantly favors modifiability, reusability as well as

the portability of the system

48

Defining software architecture – 2/2
 The definition of the criteria for identification of

sub-entities is the preliminary step :
 A typical criterion is the functional one, i.e., sub-entities

may be identified by mapping software functionalities to
its parts:

 E.g., user interfaces, database access, security management…

 Among the key principles for the architecture
definition there are (must be!) High Cohesion and
Low Coupling among components
 Each sub-system has to contain homogeneous modules

(e.g., modules providing services which are strictly
related one to each other),

 Minimize interactions between subsystems

49

Key architectural design principles
 Abstraction
 Modularity
 Simplicity
 Separation of concerns
 Postponing decisions
 Encapsulation
 Information hiding
 Clear interface design
 High cohesion
 Low coupling

50

Software module
 A module is a component that:

 Provides an abstraction
 Has a clear separation between:

 Interface
 Body

 The interface specifies “what” the
module is (the abstraction
provided) and “how” it can be used
 The interface is the contract between

the user and the provider of the
abstraction

 The body describes “how” the
abstraction is implemented

Interface
(visible from outside)

Body
(hidden and
protected)

Module

51

Software component
 A component is a run-time entity, and usually offers no

visibility into the implementation structure
 Thus, the concept of module is more abstract, while the

concept of component is more physical, however they
overlap

 In many architectures there is a one-to-one mapping
between modules and components

 We could consider components as modules inserted in
an architecture, however a single module can turn into
several components, and a single component can
correspond to many modules

Main elements of a sw architecture

 Components
 Connectors
 Configurations

Architectural
element

Component
+name

Configuration
+name

Connector
+name

52

Component
 A software component is a unit of composition with

contractually specified interfaces (including some ports)
and explicit dependencies

 Example: a web server
 A software component can be deployed independently

and is subject to composition by third parties
 A component model defines rules (standards) for

naming, meta data, behavior specification,
implementation, interoperability, customization,
composition, and deployment of components

 Example: the CORBA Component Model (CCM)

53

Connector
 A software connector specifies the mechanisms by

which components transfer control or data
 Examples: procedure call, protocol, pipe, repository

 A connector defines the possible interactions
among components: the interfaces of connectors
are called roles, which are attached to ports of
components

54

Architectural configuration
 An architectural configuration is a connected graph

of components and connectors that describes
basic configuration aspects of a software system

 Example:

55

56

A software architecting process
(Eeles & Cripps)

Define
Requirements

Create
Logical

Architecture

Create
Logical

Detailed Design

Create
Physical

Architecture

Create
Physical

Detailed Design

Requirements Architecture Development

57

A software architecting process
(Eeles & Cripps)

Collect
Stakeholder

Requests

Capture
Common

Vocabulary

Define
System
Context

Outline
Functional

Requirements

Outline
NonFunctional
Requirements

Prioritize
Requirements

Write
Sw arch

document

Review
Requirements

w Stakeholders

Detail
Functional

Requirements

Detail
NonFunctional
Requirements

Tasks in the
Define Requirements

Activity

58

A software architecting process
(Eeles & Cripps)

Survey
Architecture

Assets

Define
Architecture

Overview

Document
Architecture
Decisions

Outline
Functional
Elements

Outline
Deployment

Elements

Detail
Functional
Elements

Detail
Deployment

Elements

Verify
Architecture

Build
Architecture

Proof-of-concept

Validate
Architecture

Update
Sw arch

document

Review
Architecture

w Stakeholders

Tasks in the
Create Logical Architecture

Activity

A typical industrial (sub)process – 1/3

System
Requirements

Analysis

Software
Architecture
Description

SSS
(System Requirements Specification)

SSDD
(System Software Architecture Description,

 System Requirements Allocation to Components)

Software
Requirements

Analysis

Definition of the
Software Architecture for

Components

SRS
(Software Requirements

Specification for each Component
SDD

(Description of the Software
Architecture of
Components,

Software Requirements
Allocation to Sub-

components)

System of Systems
Analysis and Design

Document of the requirements on:
Sensors

Actuators
ICT System

Civil Infrastructures
….

System Software

Number of requirements ~ 1000 Number of requirements ~ 10000

System Requirements

ReqSys1
ReqSys2
ReqSys3
ReqSys4

C1

SSS

C2

C3

System HL Architecture
SysReq Allocation

C1 - SysReq1
C1 - SysReq2
C2 - SysReq3
C3 - SysReq4

SSDD

Software Requirements
SysReq1 - SwReq1
SysReq2 – SwReq2
SysReq2 – SwReq3

A1

SRS

A2

A3

SwReq Allocation
A1 - SwReq1
A1 - SwReq2
A2 - SwReq3
A3 - SwReq4

SDD

C1 Software Requirements
SysReq1 - SwReq1
SysReq2 – SwReq2

B1

SRS

B2

B3

SwReq Allocation
B1 – SwReq1
B2 – SwReq2
B3 – SwReq2

SDD

C2 Software Requirements
SysReq1 - SwReq1
SysReq2 – SwReq2
SysReq2 – SwReq3

D1

SRS

D2

D3

SwReq Allocation
D1 – SwReq1
D2 – SwReq2
D3 – SwReq2

SDD

C3

A typical industrial (sub)process – 2/3

A typical industrial (sub)process – 3/3

Decomposition -> Which components in the system?
Assembly -> How are components structurally related?
Delegation -> Which components are delegated the external

interfaces to?

3. …..

4. System Architecture Design
4.1 System components
…
4.2 Relationships among components
….
4.3 Interfaces design
….

5. ….

DECOMPOSITIONDECOMPOSITION

SSDD

ASSEMBLYASSEMBLY

ACTORS ACTORS

INTERFACESINTERFACES

DELEGATIONDELEGATION

Example

Example: Air Traffic Control system

 The scenario provides an example of a real
ATC system;

 Layered software organization

LINUX O.S.LINUX O.S.

CORBACORBA

CARDAMOMCARDAMOM
DDSDDS

APPLICATIONAPPLICATION

63

The middleware layer

 The application uses the following
underlying layers:
 CARDAMOM services:

 System Management, Load Balancing, Fault
Tolerance, …

 CORBA
 Interaction mean between remote objects

 DDS
 Data exchange according to the publish-

subcribe model

64

A sample 3-host deployment

Platform
Daemon

SMG
Supervision

HOST 1 HOST 2

Client

FT
Manager

Proc.
Server-1

Platform
Daemon

LB-Group
Observer

Proc.
Server-2

Facade
Backup

HOST 3

Platform
Daemon

Proc.
Server-3

Facade
Primary

Corlm
Facade

Corlm
Proc. Srv

65

CD_wrapperCD_wrapper

FPL_wrapperFPL_wrapper

Correlation Data

Adding external components
 External components are de-coupled from the

system using the DDS

Mockup VISUMockup VISU

FDPFDP CORLMCORLM

Full FDP

ClientClient
ClientClient

ClientClient
TrackTrack

GeneratorGenerator

Compact FDP

CORBACORBA
invocationinvocation

66

CD_wrapperCD_wrapper

System overview

FPL_wrapperFPL_wrapper
Mockup VISUMockup VISU

FDPFDP
Flight DataFlight Data

 ProcessorProcessor

CORLMCORLM
CorrelationCorrelation

ManagerManager

Data Distribution System

ClientClient
ClientClient
ClientClient

TrackTrack
GeneratorGenerator

CORBA TCP/IP channel DDS read-write

67

Flight information processing

 FDP – Flight Data Processor
 Manages several flight-plan instances
 Provides methods to insert, delete, update

them

 CORLM – Correlation Manager
 Correlates the FPLs with the radar

information (simulated via the track-
generator component)

 Generates the Correlation Data

68

FDP logical organization
 2 Facade servers replicated via CDMW Fault

Tolerance
 3 Processing servers under CDMW Load Balancing

Full FDP

Compact FDP

Server 3

Server 2

FacadeFacade
BackupBackup

 FacadeFacade
PrimaryPrimary

Server 1

CDMW LB

CDMW FT

readwrite

read
read

read

ClientClient

69

CORLM logical organization

 Track Receiver: manages the radar output (may
be simulated with the Track Generator)

 Corlm PS and Corlm Facade

Compact FDP

Correlation Data

Track
Receiver

CORLMCORLM
FacadeFacade

CORLM
PS

readwrite

TrackTrack
GeneratorGenerator

70

Architectural assets

71

Sources of Architecture

 Theft
 From a previous system or from technical literature

 Method
 An approach to deriving the architecture from the requirements

 Intuition
 The experience of the architect

From “Mommy, Where Do Software Architectures Come From?”, Philippe Kruchten
1st International Workshop on Architectures for Software Systems, Seattle, 1995

72

Software asset
 A (reusable) software asset is

a set of artifacts providing a
solution to a problem in a given
context

 An asset may have a variability
point, which is a part of the
asset that may have a value
provided or customized by the
asset consumer

 The asset has rules for usage
which are the instructions
describing how the asset
should be used

73www.omg.org/spec/RAS

What Types of Architectural Assets are
there?

Reference Architecture

Architectural Style

Architectural Pattern

Design Pattern

Programming Pattern

Packaged Application

Application Framework

Architectural
MechanismLegacy Application

Component Library

Component

Pattern Language

Development Method Reference Model

Architectural Decision

Pattern

74

 [A pattern is] a common solution to a common problem in
a given context. [UML User Guide]

 Pattern types
 Architectural Patterns

 Distribution patterns
 Security Patterns
 …

 Design Patterns
 Programming Patterns
 Requirements Patterns
 Testing Patterns
 Project Management Patterns
 Process Patterns
 Organizational Patterns
 …

Pattern

75

76

 An architectural pattern expresses a fundamental structural
organization schema for software systems. It provides a set
of predefined subsystems, specifies their responsibilities,
and includes rules and guidelines for organizing the
relationships between them. [Buschmann]

 Example:
Pattern: Layers

Context
A system that requires decomposition

Problem
High-level elements rely on lower-level elements and the following forces must
be balanced:

- Interfaces should be stable
- Parts of the system should be exchangeable
- Source code changes should not ripple through the system

Solution
Structure the system into layers

Architectural Pattern

76

Calculator

(from Business-Specific)

Filestore
Management

(from Base)

Memory
Management

(from Base)

Math

(from Base)

Address Book

(from Business-Specific)

Personal Organizer

(from Application-Specific)

Application

Physical

Session

Transport

Network

Data Link

Presentation

Layer 7

Layer 1

Layer 5

Layer 4

Layer 3

Layer 2

Layer 6

Provides application facilities

Transmits bits

Manages the connection

Creates packets of data

Routes packets of data

Detects and corrects errors

Structures information as required

ISO OSI 7-Layer Model

Personal Organizer

Architectural pattern – Layers

77

Application-Specific
<<layer>>

Busi ness-Specifi c
<<layer>>

Base
<<layer>>

 A design pattern provides a scheme for refining the
subsystems or components of a software system, or the
relationships between them. It describes a commonly-
recurring structure of communicating components that
solves a general design problem within a particular context.
[Gamma]

Observer Pattern

Design Pattern

78

 An idiom is a low-level pattern specific to a
programming language. An idiom describes how to
implement particular aspects of components or the
relationships between them using the features of
the given language. [Buschmann]

// Swap the values of 2 variables
temp = a;
a = b;
b = temp;

Programming Pattern

79

 [An architectural style] defines a family of systems in terms of a pattern
of structural organization. More specifically, an architectural style
defines a vocabulary of components and connector types, and a set of
constraints on how they can be combined. [Shaw]

 Client-server
 Supports the physical separation of client-side processing (such as a browser)

and server-side processing (such as an application server that accesses a
database)

 Event-based
 Promotes a publish-subscribe way of working, applied across large areas of the

architecture

 Pipes-and-filters
 A series of filters that provide data transformation, and pipes that connect the

filters. Examples include compilers, signal processing

Architectural Style

80

81

 A reference architecture is an architecture representation of
a particular domain of interest. It typically includes many
different architectural patterns, applied in different areas of
its structure

 Examples include J2EE and .NET

Reference Architecture

 A reference model is an abstract representation of entities,
their relationships and behavior, in a given domain of
interest, and which typically forms the conceptual basis for
the development of more concrete elements

 Examples include a business model, an information model
and a glossary of terms

Financial Services Data Model

Business
Solution

Templates

Application
Solution

Templates

Banking Data Warehouse Model

Business
Object
Model

Business
Process
Model

Interface Design Model

Financial
Services
Function

Model

Financial
Services

Workflow
Model

IFW Information Models (Banking Data Warehouse) IFW Process & Integration Models

IFW Foundation Models

IBM Information FrameWork (IFW)

Reference Model

 An application framework represents the partial
implementation of a specific area of an application

 Most widely-known frameworks support user interfaces
 Java Server Pages
 ASP.NET

Client

Web
Server

Server

Internet

HTTP HTTP

Script

Scripting
container

URL

Application Framework

 A packaged application is a large-grained Commercial-
Off-The-Shelf (COTS) product that provides a
significant amount of capability (and reuse)

 Examples
 Customer Relationship Management (CRM) application (e.g.

Siebel)
 Enterprise Resource Planning (ERP) application (e.g. SAP)

 The amount of custom development required is greatly
reduced

 Primary focus is on configuring the application

Packaged Application

 Component examples
 GUI widget (such as a table)
 Service

 Component library examples
 Class libraries (e.g. Java class library)
 Procedure libraries

Component & component library

 A legacy application is a system that continues to
be used because the owning organization cannot
replace or redesign it

 Tends to be a focus on integration rather than new
development

 Often results in a focus on enterprise application
integration (EAI)

Legacy Application

Patterns, styles, and DSSAs

87

A map of architectural concepts

88

Domain-Specific Software Architectures

 A DSSA is an assemblage of software components
 specialized for a particular type of domain,
 generalized for effective use across that domain, and
 composed in a standardized structure (topology)

effective for building domain specific applications.
 Since DSSAs are specialized for a particular domain

they are only of value if one exists for the domain
wherein the engineer is tasked with building a new
application.

 DSSAs are the pre-eminent means for maximal reuse of
knowledge and prior development and hence for
developing a new architectural design.

89

DSSA Example

90

D.Batory and others, Creating Reference Architectures: An Example from Avionics, 1995

The role of the software architect

91

92

The role of the Software Architect

 The role of the software architect involves not just
technical activities, but others that are more
“political” and strategic in nature, and more like
those of a consultant

 Not all good technologists have the skills that make
them good architects

 The best architects are good technologists, that
command respect in the technical community, but
also are good strategists, organizational politicians
and leaders

A quotation

The architect must be a prophet…
in the true sense of the term …
if he can’t see at least ten years

ahead,
don’t call him an architect

Frank Lloyd Wright

93

The need
 The best architectures are the product of

 A single mind or
 A very small, carefully structured team

 Rechtin, Systems Architecting: Creating & Building Complex
Systems, 1991, p21

 Every project should have exactly 1 architect
 For larger projects, the principal architect should be

backed up by architect team of small size
 Booch, Object Solutions, 1996

The role of software architect

95

96

Developer/Integrator/Architect skills
Software Developer
 Typically involved in new

applications /
components

 Ability to compare
technologies and
solutions, in order to
choose the best one

 Analisys, design,
programming and testing
skills

 Tipically a young
professional

 Low cost

Application Integrator
 Reuse of legacy

applications (usually badly
documented), and use of
COTS components

 Faces constraints on OSs,
protocols, languages,
development
environments to be used;
and technologies of legacy
systems which often are
not interoperable

 Re-engineering, reuse,
interface design and
components adaptation
skills

 Familiar with pre-existing
systems

 Typically a senior
professional

 Medium/high cost

Software Architect
 Master technology trends
 Ability to interface both

business/organization
key people and technical
teams

 Strategic vision
 Organizational skills
 Communication skills
 Ability to design for

change
 Manage risk

identification and risk
mitigation strategies

 Cost estimator
 Leading skill
 High cost

Architects as sw development experts
 Must understand details of software development

 Principles
 Methods & techniques
 Methodologies
 Tools

 Need not be world-class software programmers
 Should understand consequences of architectural choices

 Some architectural choices constrain implementation
options

 Some implementation-level techniques & tools constrain
architectural choices

97

Architects as domain experts
 Software engineering expertise is not enough
 Problem domain knowledge

 Maturity
 Stability
 System user profile

 May affect selected & developed architectural
solutions
 Distribution
 Scale
 Evolvability

 Requires artifacts that model problem space
 Not solution space

98

Architects as communicators
 At least ½ of the job
 Must

 Listen to stakeholder concerns
 Explain the architecture
 Negotiate compromises, acquire consensus

 Need good communication skills
 Writing
 Speaking
 Presenting

99

Architects communicate with
 Managers

 Must relay key messages
 Architecture is useful & important
 Ensure support throughout project

 Must listen to concerns
 Cost
 Schedule

 Developers
 Convince them that the architecture is effective
 Justify local suboptimal choices
 Listen to problems

 Tools, methods, design/implementation choices
 Other software architects

 Ensure conceptual integrity
 Ensure desired system properties & evolution

100

Architects also communicate with
 System engineers

 Coordinate requirements & solutions
 Explain how architecture addresses key concerns

 Customers
 Determine needs
 Explain how architecture addresses requirements

 Users
 Determine needs
 Explain how architecture addresses those needs
 Listen to problems

 Marketers
 Get/help set goals & directions
 Explain how architecture addresses marketing objectives

101

Architects as strategists
 Developing an architecture is not enough

 Technology is only part of picture
 Architecture must be right for organization

 Must fit organization’s
 business strategy and rationale behind it,
 business practices,
 planning cycles,
 decision making processes

 Must also be aware of competitors’
 Products
 Strategies
 Processes

102

Architects as cost estimators
 Must understand financial ramifications of

architectural choices
 Make or buy
 Cost of COTS adoption
 Cost of development for reuse
 Company’s financial stability & position in marketplace

 Technologically superior solution is not always the
most appropriate one
 Impact on cost & schedule

 Quick, approximate cost estimations are often
sufficient
 Detailed cost estimation techniques can be applied once set

of candidate solutions is narrowed down

103

Architect - Summary
 Designate architect or assemble architecture team

to be creators & proponents of common system
goal/vision

 Architects must be experienced at least in problem
domain & software development

 Software architect is a full-time job
 Charter of software architecture team should

 Clearly define its roles & responsibilities
 Clearly specify its authority

 Do not isolate software architecture team from the
rest of project personnel

 Avoid pitfalls

104

Evaluating software architectures

105

Evaluating architectures – Why?
 Evaluating the candidate architecture before it

becomes the project blueprint can be of great
economic value

 Useful to:
 Assess whether the candidate can deliver the expected

benefits
 Assessment against stakeholders’ requirements/software quality

attributes/quality managers concerns
 Evaluate a large software system with a long expected

lifetime before acquiring it
 Compare alternatives
 Architecture refactoring

 Repeatable, structured architecture evaluation
methods are available now

106

Evaluating architectures – When?
 Evaluation can take place at many points
 As usual: the earlier, the better

 Software quality cannot be appended late in a project, it
must be built in from the beginning

 Typically, when the architecture is finished, before
the project commits to expensive development

 But also:
 Compare two competing architectures
 Evaluate the architecture of a legacy system undergoing

evolution
 Evaluate the architecture of a system to be acquired
 Evaluate OTS (Off-The-Shelf) (sub)systems

107

Evaluating architectures – How?
 Some architecture evaluation methodologies are

available
 ATAM
 CBAM

 Planned
 Scheduled well in advance
 Built into the project’s plan and budget

 Unplanned
 When the management perceives that the project has

risks of failure or needs a correction
 Reactive – Tension filled

108

Evaluating architectures – How?
 Preconditions:

 A few high-priority goals – 3 to 5
 Availability of key personnel
 Competent evaluation team

 Cost: a few tens of staff-days in a large project
 ATAM requires approximately 36 staff-days

 Result:
 A report describing all issues of concern, along with

supporting data
 Report should include costs of the evaluation and estimated

benefits if concerns are addressed
 Report to be first circulated in draft form among participants
 Issues should be ranked by potential impact on the project if

unaddressed
109

Evaluating architectures – Benefits
(Especially for planned evaluations)
 Economic / financial
 Preparation for review
 Captured rationale
 Early detection of problems
 Validation of requirements
 Improved final architecture
 Ensuring proper documentation

110

Architectural styles

111

112

Definition of a software architecture
 The architectural definition of a system is generally

achieved by breaking up the system into
subsystems, following a layered and/or partitions
based approach (tiers).

 These are orthogonal approaches:
 A layer is a level in charge of providing services (e.g., a

user interface)
 A tier is the organization of several peer modules (within

the same layer, in most of the cases)

113

Layers
 A system which has a hierarchical structure, consisting of

an ordered set of layers
 A layer is given by a set of subsystems which are able to

provide related services, that can even be realized by
exploiting services from other layers

 A layer depends only on lower layers (i.e., layers which are
located at a lower level into the architecture)
 A layer is only aware of lower layers

 Closed architecture: the i-th layer can only have access to
the layer (i-1)-th

 Open architecture: the i-th layer can have access to all the
underlying layers (i.e., the layers lower than i)

114

Layers – Closed architecture
 The i-th layer can only invoke the services and the

operations which are provided by the layer (i-1)-th
 The main goals are the system maintainability and

high portability

115

Application

Presentation Format

Session Connection

Transport Message

Network Packet

DataLink Frame

Physical Bit

An example of closed architecture

 ISO/OSI stack
 The ISO/OSI

reference model
defines 7 network
layers,
characterized by an
increasing level of
abstraction

116

Layers – Open architecture
 The i-th layer can invoke the services and the

operations which are provided by all the lower
layers (the layers lower than i)

 The main goals are the execution time and
efficiency

117

Tiers
 A further approach to manage system complexity

consists of partitioning the system into peer sub-
systems (peers), which are responsible for a class
of services

 Typically, a complete decomposition of a given
system comes from both layering and partitioning
 First, the system in divided into top level subsystems

which are responsible for certain functionalities
(partitioning)

 Second, each subsystem is organized into several
layers, if necessary, up to the definition of simple enough
layers

118

Architectural styles
 Several architectural styles have been defined in

the literature of software engineering. They can be
used as the basis for software architectures. They
include:
 Repository
 Client/Server

 two-tiers; three-tiers; n-tiers
 Model/View/Controller
 Distributed objects
 Distributed components
 Service-Oriented
 Peer-To-Peer

Repository-based architectures

120

Repository Architecture – 1/4
 The subsystems use and modify (i.e., they have

access to) a data structure named repository.
 They are relatively independent, in that they

interact only through the repository
 The control flow into the system can be managed

both by the repository (if stored data have to be
modified) and by the subsystems (independent
control flow)

121

Repository Architecture – 2/4

122

Repository Architecture – 3/4
 An example: a compiler architecture

123

Repository Architecture – 4/4
 Benefits

 It is an effective mean to share huge amount of data: write once for all to read
 Each subsystems has not to take care of how data are produced/consumed

by other subsystems
 It allows a centralized management of system backups, as well as of security

and recovery procedures
 The data sharing model is available as the repository schema, hence it is

easy to plug new subsystems
 Pitfalls

 Subsystems have to agree on a data model, thus impacting on performance
 Data evolution: it is “expensive” to adopt a new data model since (a) it has to

be applied on the entire repository, and (b) all the subsystems have to be
updated

 Not all the subsystems requirements in terms of backup, security are always
supported by the repository

 It is tricky to deploy the repository on several machines, preserving the logical
vision of a centralized entity, due to redundancy and data consistency matters

Client-Server Architectures

(CSA)

125

Client-server paradigm – 1/2
 It has been conceived in the context of distributed

systems, aiming to solve a synchronization issue:
 A protocol was needed to allow the communication

between two different entities

 The driving idea is to make unbalanced the
partners’ roles within a communication process
 Passive entities (named server):

 They cannot initiate a communication
 … they can only answer to incoming requests (reactive entities)

 Active entities (named client):
 They trigger the communication process
 They forward requests to the servers, then they wait for

responses

126

Client-server paradigm – 2/2
 The first generation of software distributed systems

was based on the client server paradigm

Mainframe
Monolithic

1st Generation
Client/Server

2nd Generation
Distributed
Objects

Complexity & adaptability

Degree of
distribution

127

Client-server architecture – 1/3
 From the architectural viewpoint, a C/S software

system is made up of components which can be
classified according to the service abstraction:
 Who provides services is a server;
 Who requires a service is a client;

 Clients are typically responsible for the interaction
between the system and its users
 …but a server can be a client for a different service

 Clients are aware of the server interface
 Servers cannot foresee clients’ requests

128

Client-server architecture – 2/3
 In fact, a system can be logically

divided into three parts:
 The presentation, which is in charge

of managing the user interface
(graphic events, input fields check,
help..)

 The actual application logic
 The data management layer for the

management of persistent data.

 The system architecture is defined
according to how these parts are
organized :
 2-tiered
 3-tiered
 n-tiered

129

Client-server architecture – 3/3
 2 tiers Client/Server architectures

130

Two-tier C/S architectures – 1/2
 Pitfalls:

 They exhibit a heavy message traffic since front-end and
the servers communicate intensively

 The business logic is not managed by a ad-hoc
component, but is it “shared” by front-end and back-end

 client and server depend one from each other
 It is difficult to reuse the same interface to access to different

data
 It is difficult to interact with databases which have different front-

end
 The business logic is encapsulated into the user interface

 If the logic changes, the interface has to change as well

131

Two-tier C/S architectures – 2/2
 Recurrent problem:

 Business and presentation logic are not clearly separate
 E.g., if there is a service which can be accessed by several

devices (e.g., mobile phone, desktop PC)
 The same logic but different interface

132

Three-tier architectures – 1/6
 Early 90’s; they propose a clear separation among logics:

 Level 1: data management (DBMS, XML files, …..)
 Level 2: business logic (application processing, …)
 Level 3: user interface (data presentation and services)

 Each layer has its own goals, as well as specific design
constraints

 No assumptions at all about the structure and/or the
implementation of the other layers, i.e.:
 Level 2 does not make any assumptions neither on how data are

represented, nor on how user interfaces are made
 Level 3 does not make any assumptions on how business logic works

133

Three-tier architectures – 2/6
 Levels 1 and 3 do not communicate, i.e.:

 The user interface neither receives any data from data
management, nor it can write data

 Information passing (in both the directions) are filterer by
the business logic

 Levels work as they were not part of a specific
application:
 Applications are conceived as collections of interacting

components
 Each component can take part to several applications at

the same time

134

Three-tier architectures – 3/6

135

Three-tier architectures – 4/6
 Benefits:

 They leverage the flexibility of and the high modifiability
of modular systems

 Components can be used in several systems
 A change into a given component do not have any impacts on

the system (apart from changes into the API)
 It is easier to localize a bug since the system functionalities are

isolated
 New functionalities can be added to the system by only

modifying the components which are in charge of realizing them,
or by plugging new components

136

Three-tier architectures – 5/6
 Pitfalls:

 Application dimensions and efficiency:
 Heavy network traffic

 High latency for service delivering
 Ad hoc software libraries have to be used to allow the

communication among components
 Many LoCs!

 Legacy software
 Many industries make use of preexisting software, monolithic,

systems to manage data
 Adapters have to be implemented to interoperate with the legacy

SW

137

Three-tier architectures – 6/6
 Levels are logical abstractions, not physical

entities
 Three-tier architectures can even be realized by using

one or two levels of machines

138

N-tier architectures
 They provide high flexibility
 Fundamental items:

 User Interface (UI): e.g., a browser, a WAP
minibrowser, a graphical user interface (GUI)

 Presentation logic, which defines what the UI has to
show and how to manage users’ requests

 Business logic, which manages the application business
rules

 Infrastructure services
 The provides further functionalities to the application

components (messaging, transactions support);
 Data layer:

 Application Data level

Model/View/Controller Architectures

MVC

140

MVC Architectures – 1/2
 Three kinds of subsystems:

 Model, which keep the knowledge about the application
domain

 View, which takes care of making application objects
visible to system users

 Controller, which manages the interactions between
the system and it users.

141

MVC Architectures – 2/2
 Model subsystems do not depend on any View

and/or Controller subsystems. Changes into their
state are communicated to the viewer (View subs)
by means of a “subscribe/notify” protocol

 MVC represents a meeting point between the
repository and the three tier architecture:
 The Model implements the centralizes data structure;
 The Controller manages the control flow: it receives

inputs from users and forwards messages to the Model
 The Viewer pictures the model.

142

MVC: An example – 1/2
 Two different views

of a file system:
 The bottom window

visualizes the
Component Based
Software
Engineering folder

 The up windows,
instead, visualizes
information related
to the
9DesignPatterns2.p
pt file

 The file name is
visualized into three
different places

143

MVC: An example – 2/2

2.User types new filename

:Controller 3. Request name change in model

1. Views subscribe to event
:Model

5. Updated views

4. Notify subscribers :InfoView

:FolderView

 1. Both InfoView and FolderView subscribe the changes to the model File
when created

 2. The user enters the new filename
 3. The Controller forwards the request to the model
 4. The model actually changes the filename and notifies the operation to

subscribers
 5. InfoView and FolderView are updated so that the user perceives the

changes in a consistent way

144

The benefits of MVC architectures
 The main reason behind the separation

subsystems (Model, View and Controller) is that
user interface are changed much more frequently
then the knowledge about the application domain
(Model)

 The MVC architecture is effective in the case of
interactive systems, especially when several
views of the same model have to be provided

Distributed Objects Architectures

DOA

146

Objects
 An object is the encapsulation of a concrete data

structure into the operations (those and only those)
to access (read/write) it

 In typed languages, an alternative definition of
object is an instance of an Abstract Data Type
 ADT: the specification of a data structure and of the

operations to access it

Data
structure

OP1 OP2

OP3

…

…

OPn

object / ADT
 Untyped languages (eg.,

Smalltalk) are typically
interpreted

 Typed languages (C++,
Java) are compiled
 the compiler performs static

type-checking

147

The power of objects
 In programming languages, subprograms

(procedure / functions) and objects are “good”
software modules
 abstraction, interface, body, information hiding

 ... but subprograms provide only a functional
abstraction
 The hidden information is the algorithm that implements

the functionality

 Objects provide data abstraction
 The hidden information are:

 data structures encapsulated
 algorithms inside operations

A Car ADT

Engine,
Chassis

…

PowerOn() PowerOff()

. . .

…

Accelerate()

Decelerate()

148

Object-orientation principles
 Object-based techniques based on:

 Classes
 a way to implement abstract data types

 Objects
 instances of classes

 Object-oriented techniques are based on:
 Classes
 Objects
 Inheritance, and / or
 Polymorphism

149

Inheritance
 Inheritance induces a hierarchical structure into the

 software architecture
 It allows to build generalization/specialization

relationships between classes
 A class (base class) offers services that are common to

a set of derived classes (subclasses)
 Subclasses offer specialized services/behavior with

respect to the base class

 Example:
 Base class/type: Animal
 Derived classes/types: Dog, Cat, Horse, …

150

Gen/Spec hierarchies
 Generalization: the process of moving from

particular to general
 Specialization: the process of moving from

general to particular

Generalizazion

Specialization

vehicle

car

taxi

truck

151

The benefits of inheritance
 Inheritance offers the advantage of reducing the

development time, since it minimizes the code to
add when:
 defining a new user type (class) that is inherently a

subtype of an existing one
 adapting an existing class to new needs

152

Polymorphism
 Polymorphism is the property of an entity to

assume several forms
 In O-O languages, polymorphism refers to the

property of a reference (to an object) to refer in
different moments to objects of different classes

Triangle

+draw()

Rectangle

+draw()

Square

+draw()

Figure

+draw()

existing code (eg,: main program):
for i = 1 to N do A[i]->draw()
What about adding to the
hierarchy a new class Circle?
With polymorphism, the existing
code does not need to be
recompiled!

A sample
hierarchy

153

The benefits of polymorphism
 Polymorphism offers the advantage of reducing the

development time, in that it minimizes the
existing code to modify when adding new user
types (classes)

 For this reason, polymorphism supports the
property of extensibility of a software systems

 Polymorphism is typically implemented in O-O
languages by means of late binding
 Late binding consists in defining run time (instead of

compilation time) the code to execute upon method
invocation, depending on the actual (current) object type

154

Distributed objects arch. – 1/4
 The second generation of software distributed

systems is based on DOA architectures

D
is

tr
ib

u t
io

n
de

gr
ee

 a
n d

 m
ob

i li
ty

2 levels

3 levels
client-server

Complexity

Distributed
objects

1st generation 2nd generation

155

Distributed objects arch. – 2/4
 Distributed objects architectures extend the principles of

object orientation to a distributed environment
 Schematically:

Distributed objects = object-oriented programming + client-server

 Both objects and servers:
 Are passive entities
 Are able to provide services (operations)
 Have got an interface
 Are unaware of the clients

DO = OOP + C/S

156

Distributed objects arch. – 3/4
 In a DOA, components are objects which are

deployed on different machines and which
communicate by invoking remote methods

Oggetto
Servente

Servant obj

middle-
ware

interface

Remote invocation

result

Client application Server application

 Client host Server host

middle-
ware

157

 DOAs are based on middleware platforms (DOM),
that allow to call a remote method as if it were local

 DOA platforms may be
 based on an Object Request Broker
 not ORB-based

 Examples of DOM technologies are:
 CORBA (OMG standard); ORB-based, language

independent
 Java RMI; not ORB-based, language-dependent

Distributed objects arch. – 4/4

Request

Stub
(Proxy)

Client
object

Skeleton

ORB

Server
object

158

DOA pitfalls
 In O-O techniques, the reusable software modules (classes)

are not executable entities
 In O-O applications, dependencies between objects are not

made explicit in their interfaces
 An object’s interface states what it offers (the services it provides),

not what it uses (the object/services it requires)

 Interactions among objects are hidden in the application
code

 Objects are often a too fine-grained abstraction for large
distributed complex systems

from objects to components

Component-based Architectures

160

Components
 Component:

 An executable software module with a clear interface
 Dependencies from other modules are stated explicitly

in its interface
 Can be released and executed autonomously
 Can be assembled with other modules to build more

complex modules
 Component Based Software Engineering (CBSE)

 Better reuse opportunities wrt O-O
 Reuse whole applications, not only classes

 The Component Model (CM) is an evolution of
the O-O model

161

Component-based arch. – 1/2
 The third generation of distributed software

systems
 Components are coarser grained than objects

D
is

tr
ib

u t
io

n
de

gr
ee

 a
n d

 m
ob

i li
ty

2 levels

3 levels
client-server

Complexity

Distributed
objects

Distributed
components

1st generation 2° generation 3rd generation

C4 C5

C3

C2
C1

162

Component-based arch. – 2/2
 Component-based architectures rely on component

middleware platforms
 Component platforms are based on containers
 Container:

 Components’ execution environment
 Manages components’ life cycle (creation, activation,

execution, de-activation)
 Example: a server has to be running when a client issues a

request; a component can be active but not in execution till
requested, in order to avoid resource consumption

 Offers pre-defined standard services
 Security,

 Advantage: much of the development effort is
shifted from programming to assembly/deployment

163

A component middleware: J2EE
 Sun Java 2 Enterprise Edition (J2EE)
 Three-tiered architecture
 Four types of components

 generic client, web client, web server, Ent. Java Beans

Application
client
container

EJB container

Client

EJB
component

Web container

Web
component

Enterprise
Information

Systems

(DBMS, ERP,
Legacy applications)

Web
client
container

Client

Client tier Middle tier(s) EIS tier

API

Service-Oriented Architectures

(SOA)

165

Service-oriented architectures – 1/3
 SOAs represent an evolution of component based

architectures (i.e., the 3th generation of distributed
software systems)

D
is

tr
ib

u t
io

n
de

gr
ee

 a
n d

 m
ob

i li
ty

2 levels

3 levels
client-server

Complexity

Distributed
objects

Distributed
components

1st generation 2nd generation 3rd generation

C4 C5

C3

C2
C1

SOAs

166

Service-oriented architectures – 2/3
 Service-oriented architecture (SOA) is an

approach to loosely coupled, protocol
independent, standards-based distributed
computing where software resources available
on the network are considered as Services

 SOA is believed the enterprise technology solution
that provides the agility and flexibility the business
users have been looking for by leveraging the
integration process through composition of the
services spanning multiple enterprises

167

Service-oriented architectures – 3/3
 The following guiding principles define the ground

rules for development, maintenance, and usage of
the SOA:
 Reuse, granularity, modularity, composability,

componentization, and interoperability
 Compliance to standards (both common and industry-

specific)
 Services identification and categorization, provisioning

and delivery, and monitoring and tracking

168

SOA principles – 1/2
 Service encapsulation - Many web-services are

consolidated to be used under the SOA Architecture.
Often such services have not been planned to be under
SOA

 Service loose coupling - Services maintain a
relationship that minimizes dependencies and only
requires that they maintain an awareness of each other

 Service contract - Services adhere to a
communications agreement, as defined collectively by
one or more service description documents

 Service abstraction - Beyond what is described in the
service contract, services hide logic from the outside
world

169

SOA principles – 2/2
 Service reusability - Logic is divided into services

with the intention of promoting reuse
 Service composability - Services can be

coordinated/assembled to form composite services
 Service autonomy – Services have control over the

logic they encapsulate
 Service optimization – All else equal, high-quality

services are generally considered preferable to low-
quality ones

 Service discoverability – Services are designed to
be outwardly descriptive so that they can be found
and assessed via available discovery mechanisms

170

SOA building blocks – 1/2
 Service Consumer (also known as Service

Requestor): it locates entries in the Registry using
various find operations and then binds to the
service provider in order to invoke one of its
services

 Service Provider: it creates a service and
publishes its interface and access information to
the Service registry

 Service Registry (also known as Service Broker):
it is responsible for making the Service interface
and implementation access information available to
any potential service requestor

171

SOA building blocks – 2/2
 Service registration (provider) and lookup (requestor) in the

registry
 Service access

Desktop
Computer

PDA

SERVICE
REQUESTOR

SERVICE
REGISTRY

SERVICE
PROVIDER

Service lookup

Service access

Service registration

Laptop

172

SOA model
 1 Service Consumer
 2 Service Provider
 3 Service Registry
 4 Service Contract
 5 Service Proxy
 6 Service Lease

173

SOA elements

174

SOA characteristics
 The software components in a SOA are services

based on standard protocols
 Services in SOA have minimum amount of

interdependencies
 Communication infrastructure used within an SOA

should be designed to be independent of the
underlying protocol layer

 Offers coarse-grained business services, as opposed
to fine-grained software-oriented function calls

 Uses service granularity to provide effective
composition, encapsulation and management of
services

175

Service granularity
 Service granularity refers to the scope of

functionality a service exposes
 Fine-grained services provide a small amount of

business-process usefulness, such as basic data
access

 Coarse-grained services are constructed from fine-
grained services that are intelligently structured to
meet specific business needs.

176

Service composition

Jeff Hanson, Coarse-grained Interfaces Enable Service Composition in SOA, JavaOne, August 29, 2003

http://builder.com.com/5100-6386-5064520.html

177

Web Services
 A W3C standard suite for SOAs
 Definition:

 ‘A Web service is a software application identified by a
URI, whose interfaces and bindings are capable of being
defined, described, and discovered as XML artifacts. A
Web service supports direct interactions with other
software agents using XML based messages exchanged
via internet-based protocols.’

178

WS underlying technologies
 The basic standards for

web services are:
 XML (Extensible Markup

Language)
 SOAP (Simple Object

Access Protocol)
 WSDL (Web Services

Description Language)
 UDDI (Universal

Description, Discovery
and Integration)

179

SOA-related standards
 XML 1.0 fairly stable, although Schema are in the

process of replacing DTDs (currently Schema 1.1
being worked on).

 SOAP 1.2
 WSDL 2.0 (coming out, 1.2 current)
 UDDI version 3 (Aug 2003)
 BPEL 1.1 (Business Process Execution Language)
 choreography description language (web services

work flows)
 started January 2003

180

Web Services Architecture
 Web Services involve three major roles

 Service Provider
 Service Registry
 Service Consumer

 Three major operations surround web services
 Publishing – making a service available
 Finding – locating web services
 Binding – using web services

181

Service publication
 In order for someone to use your service they have

to know about it
 To allow users to discover a service it is published

to a registry (UDDI)
 To allow users to interact with a service you must

publish a description of it’s interface (methods &
arguments)

 This is done using WSDL

182

Making a service available
 Once you have published a description of your

service you must have a host set up to serve it.
 A web server is often used to deliver services

(although custom application – application
communication is also possible).

 This functionality has to be added to the web
server. In the case of the Apache web server a
‘container’ application (Tomcat) can be used to
make the application (servlet) available to Apache
(deploying).

183

WS and existing protocols
 Web services are layered on top of existing,

mature transfer protocols
 HTTP, SMTP are still used over TCP/IP to pass the

messages
 Web services (like grids) can be seen as a

functionality enhancement to the existing
technologies

184

WS and XML
 All Web Services documents are written in XML
 XML Schema are used to define the elements used

in Web Services communication

185

WS and SOAP
 SOAP is the protocol actually used to communicate

with the Web Service
 Both the request and the response are SOAP

messages
 The body of the message (whose grammar is

defined by the WSDL) is contained within a SOAP
“envelope”

 “Binds” the client to the web service

186

WSDL
 Describes the Web Service and defines the

functions that are exposed in the Web Service
 Defines the XML grammar to be used in the

messages
 Uses the W3C Schema language

187

WS and UDDI
 UDDI is used to register and look up services with

a central registry
 Service Providers can publish information about

their business and the services that they offer
 Service consumers can look up services that are

available by
 Business
 Service category
 Specific service

188

Web Services and SOAs
 Web Services are an open standards-based way of

creating and offering SOAs
 Web Services are able to exchange structured

documents that contain different amounts of
information, as well as information about that
information, known as metadata

 In other words, Web Services can be coarse
grained. Such coarse granularity is one of the most
important features of SOAs

189

Re-architecture to SOA
 Encapsulate software components, applications

and underlying systems with Web Services
interfaces

 Compose (virtualizing) these fine-grained
functional Web Services into coarse-grained
business services

190

Re-architecture to SOA: benefits
 Provides location independence: Services need not be associated with

a particular system on a particular network
 Protocol-independent communication framework renders code

reusability
 Offers better adaptability and faster response rate to changing business

requirements
 Allows easier application development, run-time deployment and better

service management
 Loosely coupled system architecture allows easy integration by

composition of applications, processes, or more complex services from
other less complex services

 Provides authentication and authorization of Service consumers, and all
security functionality via Services interfaces rather than tightly-coupled
mechanisms

 Allows service consumers (ex. Web Services) to find and connect to
available Services dynamically

191

Why not SOA
 For a stable or homogeneous enterprise IT

environment, SOA may not be important or cost
effective to implement

 If an organization is not offering software
functionality as services to external parties or not
using external services, which require flexibility and
standard-based accessibility, SOA may not be
useful

 SOA is not desirable in case of real time
requirements because SOA relies on loosely
coupled asynchronous communication

Peer-to-peer Architectures

P2P

193

Peer-to-peer architectures – 1/3
 They can be considered a generalization of the

client/server architecture
 Each subsystem is able to provide services, as

well as to make requests
 Each subsystem acts both as a server and as a client

194

Peer-to-peer architectures – 2/3
 In P2P architectures, all nodes have the same

abilities, as well as the same responsibilities. All
communications are (potentially) bidirectional

 The goal:
 To share resources and services (data, CPU cycles,

disk space, …)

 P2P systems are characterized by:
 Decentralized control
 Adaptability
 Self-organization and self-management capabilities

195

Peer-to-peer architectures – 3/3
 Functional characteristics of typical P2P systems

 File sharing system
 File storage system
 Distributed file system
 Redundant storage
 Distributed computation

 Nonfunctional requirements
 Availability
 Reliability
 Performance
 Scalability
 Anonymity

196

P2P architectures: brief history
 Although they were proposed 30 years ago, they

mainly evolved in the last decade
 File sharing systems contributed to increase the

interest (Napster, 1999; Gnutella, 2000)
 In 2000, the Napster client has been downloaded by

50 millions users
 It has recorded a traffic peak of 7 TB in a day!

 Gnutella followed Napster’s footprint
 The first release has been delivered on March 14th,

2003, by (14 hours!)
 Host servers are listed at gnutellahost.com

197

The phases of a P2P application
 A P2P application is organized in three phases:

 Boot, during which a peer finds the networks and
actually performs the connections (P2P boot is made
rarely)

 Lookup, during which a peer looks for a provider for a
given service/information (generally providers are
SuperPeers)

 Resource sharing

198

P2P classification – 1/2
 P2P applications can be categorized as follows:

 Pure P2P applications:
 All the phases are based on P2P

 P2P applications :
 lookup and resource sharing are performed according to the

P2P paradigm;
 Some SERVERS are used to make the boot;

 Hybrid P2P applications :
 The resource sharing is performed according to the P2P

paradigm;
 Some SERVERS are used to make the boot;
 Specific peers are used to perform lookup.

199

P2P classification – 2/2
 With respect to lookup phase:

 Centralized Lookup
 Centralized index of providers

 Decentralized Lookup
 Distributed index

 Hybrid Lookup
 Several centralized systems which are linked

into a decentralized system

200

P2P: scalability – 1/2
 The performances of a P2P system (e.g., the time

to find a file) become worse as the number of
nodes increases (linearly)
 The “work” for a node increases linearly with respect to

the number of nodes
 The protocols used by Napster and Gnutella are

not scalable
 A second generation of P2P protocols has been

realized to improve the scalability which support
DHT (Distributed Hash Table).
 Examples are Tapestry, Chord, Can, Viceroy, Koorde,

kademlia, kelips …

201

P2P: scalability – 2/2
 The degree of scalability of a given protocol

depends on the efficiency of the adopted routing
algorithm (lookup)

 In this directions, two are the main objectives:
 To minimize the number of message to complete the

lookup
 To minimize, for each node, information about other

nodes in the network

 DHT differ into the routing strategy they adopt

References
 Shaw & Garlan, Software Architecture: Perspectives on an Emerging

Discipline, Prentice Hall, 1996

 Bass, Clemens, Kazman, Software Architecture in Practice, 2nd ed, Addison
Wesley, 2003 softarchpract.tar.hu

 Rozanski & Woods, Software systems architecture: Working with
Stakeholders Using Viewpoints and Perspectives, Addison Wesley, 2005

 Garland, Large-Scale Software Architecture: A Practical Guide using UML,
Addison-Wesley, 2005

 Taylor & Medvidović & Dashofy, Software Architecture: Foundations,
Theory, and Practice, Wiley 2009

 Clements, Documenting Software Architectures: Views and Beyond, The
SEI Series in Software Engineering, Addison-Wesley, 2010

 Clemens, Kazman, Klein, Evaluating Software Architectures: Methods and
Case Studies, SEI Series in Software Engineering, Addison-Wesley, 2001

202

Web sites
 www.sei.cmu.edu/architecture
 www.iso-architecture.org
 www.viewpoints-and-perspectives.info
 www.softwarearchitectureportal.org
 enterprise-architecture-
wiki.nl/mediawiki/index.php/Main_Page

 www.bredemeyer.com/definiti.htm
 www.booch.com/architecture
 www.ivencia.com/index.html?/softwarearchitect/

203

http://www.ivencia.com/index.html?/softwarearchitect/

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35
	Pagina 36
	Pagina 37
	Pagina 38
	Pagina 39
	Pagina 40
	Pagina 41
	Pagina 42
	Pagina 43
	Pagina 44
	Pagina 45
	Pagina 46
	Pagina 47
	Pagina 48
	Pagina 49
	Pagina 50
	Pagina 51
	Pagina 52
	Pagina 53
	Pagina 54
	Pagina 55
	Pagina 56
	Pagina 57
	Pagina 58
	Pagina 59
	Pagina 60
	Pagina 61
	Pagina 62
	Pagina 63
	Pagina 64
	Pagina 65
	Pagina 66
	Pagina 67
	Pagina 68
	Pagina 69
	Pagina 70
	Pagina 71
	Pagina 72
	Pagina 73
	Pagina 74
	Pagina 75
	Pagina 76
	Pagina 77
	Pagina 78
	Pagina 79
	Pagina 80
	Pagina 81
	Pagina 82
	Pagina 83
	Pagina 84
	Pagina 85
	Pagina 86
	Pagina 87
	Pagina 88
	Pagina 89
	Pagina 90
	Pagina 91
	Pagina 92
	Pagina 93
	Pagina 94
	Pagina 95
	Pagina 96
	Pagina 97
	Pagina 98
	Pagina 99
	Pagina 100
	Pagina 101
	Pagina 102
	Pagina 103
	Pagina 104
	Pagina 105
	Pagina 106
	Pagina 107
	Pagina 108
	Pagina 109
	Pagina 110
	Pagina 111
	Pagina 112
	Pagina 113
	Pagina 114
	Pagina 115
	Pagina 116
	Pagina 117
	Pagina 118
	Pagina 119
	Pagina 120
	Pagina 121
	Pagina 122
	Pagina 123
	Pagina 124
	Pagina 125
	Pagina 126
	Pagina 127
	Pagina 128
	Pagina 129
	Pagina 130
	Pagina 131
	Pagina 132
	Pagina 133
	Pagina 134
	Pagina 135
	Pagina 136
	Pagina 137
	Pagina 138
	Pagina 139
	Pagina 140
	Pagina 141
	Pagina 142
	Pagina 143
	Pagina 144
	Pagina 145
	Pagina 146
	Pagina 147
	Pagina 148
	Pagina 149
	Pagina 150
	Pagina 151
	Pagina 152
	Pagina 153
	Pagina 154
	Pagina 155
	Pagina 156
	Pagina 157
	Pagina 158
	Pagina 159
	Pagina 160
	Pagina 161
	Pagina 162
	Pagina 163
	Pagina 164
	Pagina 165
	Pagina 166
	Pagina 167
	Pagina 168
	Pagina 169
	Pagina 170
	Pagina 171
	Pagina 172
	Pagina 173
	Pagina 174
	Pagina 175
	Pagina 176
	Pagina 177
	Pagina 178
	Pagina 179
	Pagina 180
	Pagina 181
	Pagina 182
	Pagina 183
	Pagina 184
	Pagina 185
	Pagina 186
	Pagina 187
	Pagina 188
	Pagina 189
	Pagina 190
	Pagina 191
	Pagina 192
	Pagina 193
	Pagina 194
	Pagina 195
	Pagina 196
	Pagina 197
	Pagina 198
	Pagina 199
	Pagina 200
	Pagina 201
	Pagina 202
	Pagina 203

