Modular model construction
approaches for complex and
Interconnected systems

Leonardo Montecchi
University of Florence
leonardo.montecchi@unifi.it

SDCI 2012 Winter School: Hot Topics in Secure and
Dependable Computing for Critical Infrastructures

January 15%-19t% Cortina D’Ampezzo, Italy

Model-based dependability analysis

» A model of the system is constructed

Abstraction of the system that highlights features that are relevant
for the analysis and neglects the other details

» Advantages of model-based analysis
It does not require to exercise a real instance of the system
Allows “what-if analysis” and sensitivity analysis
Allows to assess the system in extreme conditions

» Common models that are used in dependability analysis

Combinatorial models
Fault-Trees (FT), Reliability Block Diagrams (RBD)...
State-based models
Continuous Time Markov Chains (CTMC)
Stochastic Petri Nets (SPN)

2 PhD Students Session - Leonardo Montecchi SDCI2012 - 17/01/2012

Challenges in LCCI modeling

» Challenges
Very high number of components

Components are interconnected, leading to complex dependencies and
interdependencies

Dependencies evolve during time (also because of external events)
The failure of a router in a communication network
A tree touching a power transmission line...

» Challenges are getting also harder by the increasing adoptions of
Decentralized architectures
Wireless connectivity
Mobile application scenarios
COTS components

» Moreover:infrastructures are also interdependent on each other

The power distribution infrastructure relies on network communication
for monitoring and control

Network communication needs electric power

3 PhD Students Session - Leonardo Montecchi SDCI2012 - 17/01/2012

Two complementary approaches

» The following properties of models are very welcome in
facing these challenges:

Scalability — To address the high number of components and
connections

Reusability — LCCls are often characterized by groups of
components having similar behavior

Modularity — Facilitates handling the interdependencies

Maintainability — Changes are easier to address: LCCls evolve
over time and their lifetime is typically several years

» In the following, two complementary approaches to
achieve these properties are presented

System decomposition and modular model construction
Automated model construction by transformations

4 PhD Students Session - Leonardo Montecchi SDCI2012 - 17/01/2012

System decomposition /1

» Main “building blocks” of the system are identified

» Usually, the system is decomposed considering
Different components (System-level decomposition)

Different layers and functionalities within components (Component-
level decomposition)

User layer: Models the interaction of the user (if any) with the
component

Application layer: Models the main functionalities of the component
Architecture layer: Models the dependability behavior of the component
» Interfaces between submodels should be carefully
identified
Submodels should communicate only through those interfaces
The behavior of submodels should be independent of each other

5 PhD Students Session - Leonardo Montecchi SDCI2012 - 17/01/2012

Template models

» Parameters

Often system components have similar functionalities, but different
operating conditions and setup parameters

The behavior of submodels should not depend on those parameters
» “Template” submodels are built, based on a set of parameters

These templates are then instantiated multiple times with different
parameters
And composed to obtain the overall model

» Advantages:

Easier to evaluate different scenarios ~ Parameter Settings [Model '“S}‘:‘E‘??_‘___,}
.@ 1 Behavior
Possible mistakes in model ﬁ ;
construction are reduced Template Model [Model Instance j }
Easier to modify and maintain Sehavir | Senavir |
the model (changes to template 5
are propagated) Model Instance k
| Behavior |

6 PhD Students Session - Leonardo Montecchi SDCI2012 - 17/01/2012

SAN implementation
» Stochastic Activity Networks (SAN)

Graphical formalism that extends Stochastic Petri Nets
Some useful features that can be exploited for this approach

» Extended places
Not limited to hold an integer number of tokens o g

Can hold C++ basic types, structures, arrays, or a
combination of those (e.g., an array of structures)

Very useful to hold submodel parameters
» Join/Replicate composition formalism

Allows to compose different instances
of submodels at multiple levels

» A special submodel “Setup” sets the
actual parameters of instances

CurrentPosition

MT_COSS

7 PhD Students Session - Leonardo Montecchi SDCI2012 - 17/01/2012

Application to LCClIs

4

This kind of approach is tailored to LCCls, and has already been used to model

kind of systems

HIDENETS “Car-accident” use-case

40 model instances

Based on 10 templates

Services:
Different load factors

Possibly also different
based on the cell

Base stations:
Different locations

One is subject
to outages while the
other are not

Submodel
CellManageral
Submodel
CellManagerBI
Submodel
CellManager
Submodel
CellManagerD1

Submodel
CellManageri2
Submodel
CellManagerB.
Submodel
CellManager
Submode|
CellManagerD2

Submodel
CellManagera3
Submodel
CellManagerB
Submode|
CellManager|
Submodel
CellManagerD3

PhD Students Session - Leonardo Montecchi

Submodel
ServigéManagerl
Join
0inSVEl

Submodel
Servicel

Submodel
SeryiceManager2

Join
oINSV

Submodel
Service2

Submodel
ServiceManager3
Join
0inSVA3

Submodel
Service3

“Setup” atomic model

‘ Submodel .

Submodel
PhaseNet

Rep
RepGeneric

Join
JoinGerteric

Submodel|
Uker_Generic

Submodel
UserMobility_Generic

Submodel
CellManagerid
Submodel
CellManagerB4
Submodel
CellManager(4
Submodel
CellManagerD4

Join
arAccident

Join
JoinAmButance

Submodel
UserMability_Ambulance

Submodel by bmod?I o
ServigéManagers eliManagerd
Submodel
Join CellManagerB5 Join
oinSVay Submodel 0INSVE
Submodel CellManage!
Serviced Submodel|

Submodel
BaseStationA
Submodel
BaseStationB
Submodel
BaseStationC
Submodel
BaseStationD

Submodel
User_Ambulance

ServigeManagers

CellManagerD5

SDCI2012 - |

7/01/2012

CBD and MDE methodologies

» The second approaches takes advantage of two popular
software development methodologies:

» Component-Based Development (CBD)

The system is obtained by composition of a predefined set of
components, having well-defined interfaces

» Model-Driven Engineering (MDE)

Models are considered the main entities in the development process

The system is described using an high-level engineering language
(UML,AADL, SysML...)

Then, artifact are generated by automatic transformations

Code
Representation in other modeling languages

Analysis models

9 PhD Students Session - Leonardo Montecchi SDCI2012 - 17/01/2012

Dependability analysis in MDE and CBD

» Workflow:

The functional model of the system is built by composition of several
components and interfaces, using UML-like languages

The model is then enriched with dependability attributes
Automated transformations generate the analysis model

The model is solved using the analysis tool, and results are back-
annotated in the original model

» Incremental process: the resulting model can be used as input
to subsequent analyses

» Which dependability properties should be represented in the
high-level modeling language!?
No agreed answer or standardized solution yet

Standards exist in other domains: real-time and schedulability
(“MARTE” profile), quality of service (“QoS&FT” profile)

10 PhD Students Session - Leonardo Montecchi SDCI2012 - 17/01/2012

CHESS Dependability Profile

» CHESS (Composition with guarantees for High-integrity
Embedded Software components aSsembly)

Objective: Define and develop a methodology based on CBD and
MDE that allows to specify and evaluate non-functional properties

¥% CHESS

Real-time and embedded system domain

» CHESS Modeling Language (CHESS ML)
Language based on selected portions of UML, MARTE, and SysML

» CHESS Dependability Profile

Allows to specify dependability properties on CHESS ML models

Supports different dependability analysis techniques:
Fault-Tree Analysis (FTA)
Failure Modes, Effects [and Ciriticality] Analysis (FMEA and FMECA)
State-based analysis (using Stochastic Petri Nets)
Failure Transformation and Propagation Calculus (FTPC)

[PhD Students Session - Leonardo Montecchi SDCI2012 - 17/01/2012

CHESS Dependability Profile:

Key elements /1

» Template stereotypes
Define generic components,

Represents a rapid way for users to provide
dependability information on components

«statefulHardware»
«Components»
BoardSystem

= errorLatency=3.6E-04

«StatefulHardware»

probPermFault=0.9

FaultOcc=1.0E-07

e

» Non-functional properties on connections and allocations

Specify how propagation

takes place between

+ pc: PC[1]

connected components
Also propagation from

+ bs_port: I

+ pc_port: IComm [1]

]

hardware to software
components

» Maintenance

o

«propagation»

+

serialcable: SerialCab...

{prob=1.0,propDelay=1.0E-03}
+ sc_pc_port: IComm [1]]

Means to model more complex maintenance policies

12 PhD Students Session - Leonardo Montecchi

SDCI2012 - 17/01/2012

CHESS Dependability Profile:

Key elements /2
» CHESS Error Model

Defined as a particular kind of StateMachine diagram
Allows to define more complex behavior of components with

~

respect to dependability

«errorModel»
Component A

Internal faults
External faults

«failureMode»

«propagation»
propag Failure Mode 1

{prob=0.9,propDelay=1.0E-02}

«internalFault»
£« »
Error1
. - -

«failureMode»

Failure modes
» Measures of interest

Failure Mode 2

J

Supports the definition of different measures of interest
Currently implemented in transformations:

Instant of time reliability
Instant of time availability
Interval of time availability

W.rt. to either a single failure mode
or a whole component

3 PhD Students Session - Leonardo Montecchi

«stateBasedAnalysis»
«Component»
SBAO1

«StateBasedAnalysis»
measure=Reliability { instantOfTime = 10000 }
targetDepComponent=[sw_system_Receiver_impl_inst]
platform=[hwsystem_instSpec]

SDCI2012 - 17/01/2012

Linking the error model and component
interfaces /1

«Component»
. Component A
» Failure modes T il
Associated with output [ﬁz
o pProv
(provided) ports of ! I\
components -7 AN
-— - - - B \
« Model»)
\\ \\

» Maps failure modes ot (RECCTNN
. . {fromPort=[pReq1]}
to services provided | o L
by the component

«propagation» || affectedPorts

«externatFault» «error»
{fromPort=[pReqg2 e?

A}
«internalFaulky “propagation» \
(«failureMode» 1
«error» fm2
affectedPorts€[pProv2]
«propagation» LL q

e3
|4 PhD Students Session - Leonardo Montecchi SDCI2012 - 17/01/2012

J

Linking the error model and component
interfaces /2

«Component»
preqt [CemBanentA | » External faults
«@w | Associated with input
oreaz |) | (required) ports of
/ =~ o~
/ Tt~ components
/ = - ~—~
/ h = =~ ~
«errorModel»
// ErrorModel for Component A
FailureModer » Maps external faults
{F rﬁﬁ‘ﬁirr\fj fm?1 W P . .
«propagation» LaffectedPorts=[pProv1]J to SerVIces reqUIred
o by the component

«internalFaulky

«error»
e3

«propagation»
N ™
«failureMode»
fm2

affectedPorts=[pProv2]

«propagation»
J

|5 PhD Students Session - Leonardo Montecchi SDCI2012 - 17/01/2012

CHESS State-based analysis plugin

» Based on some of the latest technologies:
MDT/Papyrus

E I ul d ” | ©©© Papyrus- CHESSReviewDemo/models/model.di- Eclipse sOK |
C Ipse n Igo File Edit Papyrus CHESS W
!TL B @ BRETTB T8 |89 F

Build Inst.
Filters
Analysis

=

% Model E & LA peatl | € modelzidm | &) mg
e FMEA '
QA -
S B Q%RBE S » State-Based

¥ B2 «CHESS» model
» 3 «ComponentView» modelCom|

e ': «Depl View» modelDepl
Error Model for Controller cRequirementView» modelReq e
«AnalysisView» modelAnalysis' SB_Analysis
«DependabilityAnalysisviews «StateBasedAnalysis»
«error» platform=[hwsystem_instSpec]
N nRTAnal o w» madelRTAf measure=Availability {intervalEnd =100}
el profileApplication (3) targetDepComponent=[sw_system_Analyzer_impl_inst]|
measureEvaluationResult=
AttributeCompartment
. --CASE#0-- 97000 samples -Z-- Next check at 106660 samples ----
. ->Reliability IN2!Receiver_impl: 9.135258e-61 (confidence interval = ©.23%)
«externa.lFault» L «propagation» - -CASE#8-- 98860 samples ---- Next check at 180008 samples ----
fromPort=[pInDevice1, pinDevice2 ->Reliability IN2!Receiver impl: 9.135102e-81 (confidence interval = 0.23%)
propagationCondition=AND --CASE#8-- 99000 samples ---- Next check at 100000 samples ----
«FailureMode» ->Reliability IN2!Receiver impl: 9.134242e-81 (confidence interval = 8.23%)
--CASE#0-- 106000 samples ---- Next check at 100860 samples ----

fm1

->Reliability IN2!Receiver impl: 9.133080e-81 (confidence interval = ©.23%)

\ Y, Final measures for case #0:
-> Reliability IN2!Receiver impl 9.133000e-81 (confidence interval = 0.23%)

Execution time: 8 h : 8m : 1 s.

» Demonstration video is available online

http://chess-project.ning.com/page/videos- |
Set 2, Clip 2

16 PhD Students Session - Leonardo Montecchi SDCI2012 - 17/01/2012

Application to LCClIs

» System composed of many similar components and many

interconnections ATS

Example: Electric
Power Infrastructure
» Model the components
and interconnections
using a CBD approach

» Add non-functional properties

» Automatically derive propagation paths

Facilitates in spotting “cascading” and “escalating” failures

» UML profile for Critical Infrastructures modeling?

|7 PhD Students Session - Leonardo Montecchi SDCI2012 - 17/01/2012

Concluding remarks

» Presented two approaches to cope with system
complexity in model construction

System decomposition and template models
Automated model generation by transformations

» Future work

Understand how these two approaches can be profitably
combined

Extend the presented approaches to other contexts
LCCI (mainly for MDE-based approach)
Take into account aspects related to security

18 PhD Students Session - Leonardo Montecchi SDCI2012 - 17/01/2012

Thank youl!

PhD Students Session - Leonardo Montecchi

Questions?

SDCI2012 - 17/01/2012

