
Introduction Continuous Query Model Low Latency Query Design

Designing Low Latency Continuous Queries
in Stream Processing Systems

Winter School: ‘’Hot Topics in Secure and Dependable
Computing for Critical Infrastructures”

Donatella Firmani◦

◦ Sapienza, University of Rome
Dipartimento di Ingegneria Informatica, Automatica e Gestionale

“A. Ruberti”

17 January 2012

Introduction Continuous Query Model Low Latency Query Design

Evolution of Systems and Models of Computation I

1/26

Introduction Continuous Query Model Low Latency Query Design

Evolution of Systems and Models of Computation II

Continuous Distributed Monitoring

I Given a set S of n streams (of items, evtents, etc.)

I Given a property p defined over S
I When the property p “happens”, alert the user · · ·

I · · · as soon as the property p happens

stream 1 stream n...

output

stream

MUD model

stream 1 stream n...

output

stream

unfolding query→ hierarchies

2/26

Introduction Continuous Query Model Low Latency Query Design

Pros of a Model of Computation I

What a model of computation is not

I profile tool → it cannot assess performances of a code
fragment

I simulation tool → it cannot forecast how many seconds a
code fragment will take

What a model of computation should do

Provide a way to evaluate an algorithm independently from its
implementation / deployment on the real system that it models

3/26

Introduction Continuous Query Model Low Latency Query Design

Pros of a Model of Computation II

function insertionSort(array A)
i ← 1
for i < length[A] do

value ← A[i]
j ← i − 1
while j ≥ 0 and A[j] > value
do

A[j + 1] ← A[j]
j ← j − 1
A[j + 1] ← value

end while
end for

function quickSort(array A)
n← length[A]
if n < 1 then

return

else
p ← random element ∈ A
A1 ← elements ∈ A ≤ p
A2 ← elements ∈ A > p
quickSort(A1)
quickSort(A2)
merge(A1, A2)

end if

4/26

Introduction Continuous Query Model Low Latency Query Design

Pros of a Model of Computation III

TCP

syn

syn-ack

rst

rst-ack

ack

Ho-patternTHo-patternB

Ho-patternA

Ho-patternO

Cp-pattern

Hu-patternT

Hu-patternO

groupby

count

UDO TCP

syn

syn-ack

rst

rst-ack

ack

Ho-patternTHo-patternB

Ho-patternA

Ho-patternO

Cp-pattern

Hu-patternT

Hu-patternO

groupby

count

UDO

5/26

Introduction Continuous Query Model Low Latency Query Design

Problem Statement

Time from the occurrence of the

monitored property to the update of

the output stream

t

Output Latency

Reactivity Latency
stream #1 cons.

stream #2 consumption

output production

Latency

I Find a significative abstraction of the system

I Find a metric that models the latency of the continuous query

I Results, Work in Progress and Open Issues . . .

6/26

Introduction Continuous Query Model Low Latency Query Design

Introduction

Continuous Query Model

Low Latency Query Design

Introduction Continuous Query Model Low Latency Query Design

Data-Flow Graph

I EPU. An Event Processing Unit is a function that takes
streams as input and originates a single stream as output for
downstream consumption.

I a relational operator (e.g., Esper);
I any user-defined operator (e.g., Spade).

I DFG. A data-flow graph is a DAG G = (V ,E) s.t.
I V contains all the EPU nodes needed for the computation;
I in E there exists an edge (v , u) iff there exists an EPU v ∈ V

that produces an event stream which is consumed by an EPU
u ∈ V .

7/26

Introduction Continuous Query Model Low Latency Query Design

Data-Flow Graph Example: market data feed

EPU operation

u1

String symbol;

FeedEnum feed;

double bidPrice;

double askPrice;

u2

insert into TicksPerSecond

select feed, count(∗) as cnt

from MarketDataEvent.win:time batch(1

second)

group by feed

u3

select feed, avg(cnt) as avgCnt, cnt as

feedCnt

from TicksPerSecond.win:time(10

seconds)

group by feed

having cnt < avg(cnt) ∗ 0.75

Data-Flow Graph

producer

u1

market data stream

time based

u2

ticks per sec

event based

consumer

u3

detect fall-off

Query: Process a raw market data feed and detect when the data rate of

a feed falls off unexpectedly, in order to alert when there is a possible

problem with the feed.

8/26

Introduction Continuous Query Model Low Latency Query Design

Model Abstraction I

Let a burst be a continuous sequence of events. During the execution of a
continuous query, bursts and silence periods happen: an EPU updates the
output stream by producing a burst, and then a silence period follows.

Bursts and silence periods can either be propagated from an EPU u to the

consumer or disappear during the computation.

v u w

burst burst burst burst

output silence period
(σ(u))

input silence period
(σu(v))

input duration
(λu(v))

Evaluation of DFG metrics is performed on the basis of EPU bursts
consumption and bursts / silence periods production.

9/26

Introduction Continuous Query Model Low Latency Query Design

Model Abstraction II

EPU u behavior, or ”modes”:

I ASB/O All-Streams Batch/Online Processing
(e.g., logical and/or)

I EB/TB Event/Time Based
(e.g., detect fall-off/ticks per sec)

EPU u parameters:

I input size producing an output update:

I TB → tu(v). time window w.r.t. output stream produced by v
I EB → nu(v). # events w.r.t. output stream produced by v

I output update length: n(u)

I time in which u computes the function
(and update the output stream): p(u).

10/26

Introduction Continuous Query Model Low Latency Query Design

EPU Input Silence Period

v u w

burst burst burst burst

output silence period
(σ(u))

input silence period
(σu(v))

input duration
(λu(v))

I input silence period

σu(v) =

{
σ(v) if u is EB ∧ nu(v) mod n(v) = 0

0 otherwise, e.g., u is TB

11/26

Introduction Continuous Query Model Low Latency Query Design

EPU Output Silence Period

v u w

burst burst burst burst

output silence period
(σ(u))

input silence period
(σu(v))

input duration
(λu(v))

I output silence period

σ(u) = p(u) + σu(ṽ)

ṽ =

argmax
v∈I (u)

λu(v) if u ASB

argmin
v∈I (u)

λu(v) otherwise

12/26

Introduction Continuous Query Model Low Latency Query Design

EPU Input Duration

v u w

burst burst burst burst

output silence period
(σ(u))

input silence period
(σu(v))

input duration
(λu(v))

I input duration producing an output update

λu(v) =

{
nu(v) + σ(v)(nu(v)

n(v) − 1) if u is EB

tu(v) otherwise

13/26

Introduction Continuous Query Model Low Latency Query Design

Data-Flow Graph Metrics

t

Output Latency

Reactivity Latency
stream #1 cons.

stream #2 consumption

output production

Given a data-flow graph G and a set of input streams S that produces an
output stream update, compute:

I Output Lat: begin of the input → begin of the output update

I Complexity: event consumption period producing an output update

I Reactivity Lat:
event triggering output update → begin of the output update

Metric proposal to model continuous query latency: Reactivity.

14/26

Introduction Continuous Query Model Low Latency Query Design

Latency Evaluation

Computation of Output Latency and Complexity of a DFG G

I compute σu(∗), σ(u) and λu(∗) for each u
(use a topological sort of G)

I execute the OL (resp. C) algorithm
it consists a graph visit that finds the OL-critical path
(resp. C), i.e., the set of EPUs determining its final value

Definition of Reactivity Latency:

RL(G) = OL(G)− C (G) (1)

OL(G) DFG G Output Latency, C(G) DFG Complexity

15/26

Introduction Continuous Query Model Low Latency Query Design

Latency Analysis Example: market data feed

I “x” variables depend on
the semantic of the input

I “y” variables do not

I compute mdf reactivity

producer

u1

market data stream

time based

u2

ticks per sec

event based

consumer

u3

detect fall-off

I (u) nu(∗) tu(∗) n(u) p(u)

u1 ∅ <> ¡¿ 1 y1
u2 {u1} - < 1 > 1 y2

u3 {u2}
<x3>

x3∈[1,∞)
- 1 y3

σu(∗) σ(u) λu(∗)

u1 < 0 > y1 < 0 >
u2 < 0 > y2 < 1 >
u3 < y2 > y2 + y3 < x3 + y2(x3 − 1) >

EPU metrics:

C(u) OL(u) RL(u)

u1 1 y1 y1
u2 1 y2 + 1 y2
u3 x3 + y2(x3 − 1) x3 + y2(x3 − 1) + y3 y3

16/26

Introduction Continuous Query Model Low Latency Query Design

Reactivity Analysis in market data feed I

for all u in V do
// Initialization.
if u.isASB() then

outputlat to[u]= 0;
else

outputlat to[u]=∞;
end if

end for
for all v in topological sort(G) do

for all u s.t. v ∈ I (u) do
// Weight of the edge.
weight vu =OL(v);
// Does v belong to the OL-critical path?
if (u.isASB() ∧ outputlat to[u] ≤ outputlat to[v] + weight vu) ∨ (u.isASO() ∧ outputlat to[u] ≥
outputlat to[v] + weight vu) then

// Edge contribution.
outputlat to[u] = outputlat to[v] + weight vu;

end if
end for

end for
return outputlat to[c] + OL(c);

(1) Output Latency evaluation. y1 + y2 + 1 + x3 + y2(x3− 1) + y3

Dependency from input stream due to x3.

17/26

Introduction Continuous Query Model Low Latency Query Design

Reactivity Analysis in market data feed II

for all u in V do
// Initialization.
complexity to[u]= 1;

end for
for all v in topological sort(G) do

for all u s.t. v ∈ I (u) do
// Weight of the edge.

weight vu =
C(u)
n(v)

;

// Does v belong to the C-critical path?
if complexity to[u] ≤ complexity to[v] · weight vu then

// Edge Contribution.
complexity to[u] = complexity to[v] · weight vu;

end if
end for

end for
return complexity to[c];

(2) Complexity evaluation. x3 + y2(x3 − 1)
Dependency from input stream due to x3.

18/26

Introduction Continuous Query Model Low Latency Query Design

Reactivity Analysis in market data feed III

(3) Apply Reactivity Latency definition.

OL(G)− C (G) = (y1 + y2 + 1 + x3 + y2(x3− 1) + y3)

− (x3 + y2(x3− 1))

= y1 + y2 + 1 + y3

I In mdf no dependency from input stream!

I Formal proof still missing...

19/26

Introduction Continuous Query Model Low Latency Query Design

Introduction

Continuous Query Model

Low Latency Query Design

Introduction Continuous Query Model Low Latency Query Design

CQMTool

Software tool for Metrics evaluation

I written in Python

I symbolic calculus with SymPy

Input XML file

<query>

<epu>

<name> MarketDat </name>

<mode> ASB , EB </mode>

<max_ou > 1 </max_ou >

<proc_t > y1 </proc_t >

</epu>

<epu>

<name> TicksPerS </name>

[...]

</query >

Output XML file

[...]

<output_lat >

x3+y1+y2+y3+ (y2 +1.0)*(ceil(x3)-1) +1.0

</output_lat >

[...]

[...]

[...]

<reactivity_lat >

x3+y1+y2+y3+ (y2 +1.0)*(ceil(x3)-1) +1.0

</reactivity_lat >

[...]

20/26

Introduction Continuous Query Model Low Latency Query Design

Target Application I

Real case study

Distributed Half Open port scan detection problem

The scanner S sends a SYN packet to a target T on port P:

I SYN-ACK received: P is open

I RST-ACK received: P is closed

I no packet and T reachable: P is filtered

I otherwise: unknown state of P

21/26

Introduction Continuous Query Model Low Latency Query Design

Target Application II

Design of a continuous query: Line Fitting [Aniello et al. [Ani+11]]

I implemented using the CEP engine Esper

I two data flow graphs are used to represent Line Fitting

I their performances are evaluated through the tool

22/26

Introduction Continuous Query Model Low Latency Query Design

Line Fitting Analysis I

TCP

syn

syn-ack

rst

rst-ack

ack

Ho-patternTHo-patternB

Ho-patternA

Ho-patternO

Cp-pattern

Hu-patternT

Hu-patternO

groupby

count

UDO

User Defined Operator

count groupby

pattern

producer consumer

filter

Ga

TCP

syn

syn-ack

rst

rst-ack

ack

Ho-patternTHo-patternB

Ho-patternA

Ho-patternO

Cp-pattern

Hu-patternT

Hu-patternO

groupby

count

UDO

Gb

Figure: The data-flow graphs for Line Fitting, namely Ga and Gb.

I Ga represents actual Line Fitting implementation

I Gb represents a different solution, to evaluate CQMTool

I up to 30 parameters involved

23/26

Introduction Continuous Query Model Low Latency Query Design

Line Fitting Analysis II

-100

 0

 100

 200

 300

 400

 500

 0 10000 20000 30000 40000 50000 60000

R
L(

G
a)

U

oT

x

LineFitting Ga Reactivity Latency Analysis

RL(Ga)

Data Representation →

metric M(G) : X → R

I X : N-dimensional

I Xd,b ⊆ X : 0-dimensional space
containing only the vectors in
X s.t. ∀ixi equal to bdi

(d sampling factor, with
0 ≤ di < d , and b base)

I Md,b(G) : Xd,b → R
can be easily analyzed!

d = 2, b = 10 and dN = 65535 points

24/26

Introduction Continuous Query Model Low Latency Query Design

Line Fitting Analysis III

-100

 0

 100

 200

 300

 400

 500

 0 10000 20000 30000 40000 50000 60000

R
L(

G
a)

U

oT

x

LineFitting Ga Reactivity Latency Analysis

RL(Ga)

-100

 0

 100

 200

 300

 400

 500

 0 10000 20000 30000 40000 50000 60000

R
L(

G
b)

-R
L(

G
a)

U

oT

x

Difference between Reactivity Latency in Ga and in Gb

RL(Gb)-RL(Ga)

Ga is more reactive than RL(Gb): quantify the performance gain

I RL(Gb)− RL(Ga) it is never negative: RL(Ga) < RL(Gb) in 65535 points

RL difference points

∈ [300, 200] 1%
∈ (200, 100] 4%
∈ (100, 50] 10%
∈ (50, 0] remaining

25/26

Introduction Continuous Query Model Low Latency Query Design

THANK YOU.

¨̂

26/26

	Introduction
	Continuous Query Model
	Low Latency Query Design

