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Impedance control

n imposes a desired dynamic behavior to the interaction between  
robot end-effector and environment

n the desired performance is specified through a generalized dynamic 
impedance, namely a complete set of mass-spring-damper equations 
(typically chosen as linear and decoupled, but also nonlinear)

n a model describing how reaction forces are generated in association 
with environment deformation is not explicitly required

n suited for tasks in which contact forces should be “kept small”, while 
their accurate regulation is not mandatory

n since a control loop based on force error is missing, contact forces 
are only indirectly assigned by controlling position

n the choice of a specific stiffness in the impedance model along a 
Cartesian direction results in a trade-off between contact forces and 
position accuracy in that direction
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with              

generalized forces performing work on 𝑥̇

𝑀 𝑞 𝑞̈ + 𝑆 𝑞, 𝑞̇ 𝑞̇ + 𝑔 𝑞 = 𝑢 + 𝐽-. 𝑞 𝐹-
𝐹- = 𝑇-1. 𝜙 𝐹

Dynamic model of a robot in contact
generalized

Cartesian force
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𝑀 𝑞 𝑞̈ + 𝑆 𝑞, 𝑞̇ 𝑞̇ + 𝑔 𝑞 = 𝑢 + 𝐽. 𝑞 𝐹𝑞 ∈ ℝ5

forces

torques

performing work on

“geometric”
Jacobian

angular velocity derivative of
Euler angles

“analytic”
Jacobian 

𝐹 = 𝑓
𝑚 ∈ ℝ8

linear velocity

𝑉 = 𝑣
𝜔 = 𝐽 𝑞 𝑞̇ ≠ 𝑥̇ =

𝑝̇
𝜙̇ = 𝐽-(𝑞)𝑞̇

direct kinematics

𝐽- 𝑞 =
𝜕𝑓(𝑞)
𝜕𝑞 = 𝑇- 𝜙 𝐽(𝑞) 𝑥̇ = 𝑇- 𝜙 𝑉



Dynamic model in Cartesian coordinates

... and the usual structural properties
§ 𝑀A > 0, if 𝐽- is non-singular

§ 𝑀̇A − 2𝑆A is skew-symmetric, if 𝑀̇ − 2𝑆 satisfies the 
same property

§ the Cartesian dynamic model of the robot can be linearly 
parameterized in terms of a set of dynamic coefficients
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𝑀A 𝑞 𝑥̈ + 𝑆A 𝑞, 𝑞̇ 𝑥̇ + 𝑔A 𝑞 = 𝐽-1. 𝑞 𝑢 + 𝐹-
with
𝑀A 𝑞 = 𝐽-1.(𝑞)𝑀(𝑞)𝐽-1F(𝑞)
𝑆A 𝑞, 𝑞̇ = 𝐽-1. 𝑞 𝑆 𝑞, 𝑞̇ 𝐽-1F 𝑞 −𝑀A(𝑞) ̇𝐽-(𝑞)𝐽-1F(𝑞)
𝑔A 𝑞 = 𝐽-1.(𝑞)𝑔(𝑞)

assuming
𝑛 = 𝑚



Design of the control law

1. feedback linearization in the Cartesian space (with force measure)

2. imposition of a dynamic impedance model

designed in two steps:

closed-loop system

is realized by choosing

most of the times
it is “decoupled”

(diagonal matrices)

Note: 𝑥H(𝑡) is the desired motion, which typically “slightly penetrates” 
inside the compliant environment (inducing contact forces)...
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𝑢 = 𝐽-.(𝑞) 𝑀A 𝑞 𝑎 + 𝑆A 𝑞, 𝑞̇ 𝑥̇ + 𝑔A 𝑞 − 𝐹-

𝑀8 𝑥̈ − 𝑥̈H + 𝐷8 𝑥̇ − 𝑥̇H + 𝐾8 𝑥 − 𝑥H = 𝐹-

desired (apparent)
inertia (> 0)

desired
damping (≥ 0)

desired
stiffness (> 0)

external forces
from the environment

𝑥̈ = 𝑎

𝑎 = 𝑥̈H +𝑀81F 𝐷8 𝑥̇H − 𝑥̇ + 𝐾8 𝑥H − 𝑥 + 𝐹-



Examples of desired reference 𝑥𝑑
in impedance/compliance control

the desired motion 𝒙𝒅(𝒕) is slightly inside
the environment (keeping thus contact)
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𝒙𝒅(𝒕)𝒙𝒆

robot in grinding task robot writing on a surface

𝒙𝒅(𝒕)

𝑀8 𝑥̈ − 𝑥̈H + 𝐷8 𝑥̇ − 𝑥̇H + 𝐾8 𝑥 − 𝑥H = 𝐹-



Examples of desired reference 𝑥𝑑
in impedance/compliance control
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constant desired pose 𝒙𝒅 is the free Cartesian 
rest position in a human-robot interaction task

𝒙𝒅

KUKA iiwa robot with human operator KUKA LWR robot in pHRI (collaboration)

𝒙𝒅

𝑀8 𝑥̈ − 𝑥̈H + 𝐷8 𝑥̇ − 𝑥̇H + 𝐾8 𝑥 − 𝑥H = 𝐹-



Control law in joint coordinates

matrix weighting the measured contact forces

§ while the control design is based on dynamic analysis and desired 
(impedance) behavior described in the Cartesian space, the final 
control implementation is always at the robot joint level

§ the following identity holds for the term involving contact forces

which eliminates from the control law also the appearance of the 
last remaining Cartesian quantity (the Cartesian inertia matrix)

substituting and simplifying…
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𝑢 = 𝑀 𝑞 𝐽-1F(𝑞)S𝑥̈H − ̇𝐽- 𝑞 𝑞̇ +𝑀81F }𝐷8 𝑥̇H − 𝑥̇ + 𝐾8 𝑥H − 𝑥
+ 𝑆 𝑞, 𝑞̇ 𝑞̇ + 𝑔 𝑞 + 𝐽-.(𝑞) 𝑀A 𝑞 𝑀81F − 𝐼 𝐹-

𝐽-. 𝑞 𝑀A 𝑞 𝑀81F − 𝐼 𝐹- = 𝑀 𝑞 𝐽-1F(𝑞)𝑀81F − 𝐽-. 𝑞 𝐹-



Choice of the impedance model

n avoid large impact forces due to uncertain geometric characteristics 
(position, orientation) of the environment

n adapt/match to the dynamic characteristics of the environment (in 
particular, of its estimated stiffness) in a complementary way

n mimic the behavior of a human arm
è fast and stiff in “free” motion, slow and compliant in “guarded” motion 

n large 𝑀8,V and small 𝐾8,V in Cartesian directions where contact is 
foreseen (➔ low contact forces)

n large 𝐾8,V and small 𝑀8,V in Cartesian directions that are supposed 
to be free (➔ good tracking of desired motion trajectory)

n damping coefficients 𝐷8,V are used then to shape transient behaviors

rationale ...
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Human arm behavior
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hard environment

expected free motion
= stiff motion control 

expected contact motion
= soft motion control 

in the selected 𝑖-th Cartesian direction:
the stiffer is the environment, the softer is the chosen model stiffness 𝐾8,V



A notable simplification - 1

choose the apparent inertia equal to the natural Cartesian inertia of the robot

this is a pure motion control applied also during interaction,
but designed so as to keep limited contact forces at the end-effector level

(as before, 𝐾𝑚 is chosen as a function of the expected environment stiffness)
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then, the control law becomes

WITHOUT contact force feedback! (a F/T sensor is no longer needed…)

𝑢 = 𝑀 𝑞 𝐽-1F(𝑞)S𝑥̈H − ̇𝐽- 𝑞 }𝑞̇ + 𝑆 𝑞, 𝑞̇ 𝑞̇ + 𝑔 𝑞
+ 𝐽-.(𝑞) 𝐷8 𝑥̇H − 𝑥̇ + 𝐾8 𝑥H − 𝑥

𝑀8 = 𝑀A 𝑞 = 𝐽-1. 𝑞 𝑀(𝑞)𝐽-1F(𝑞)



A notable simplification - 2

technical issue: if the impedance model (now, nonlinear) is still supposed to 
represent a real mechanical system, then in correspondence to a desired
non-constant inertia (𝑀A(𝑞)) there should be Coriolis and centrifugal terms...

§ guarantee of asymptotic convergence to zero tracking error (on 𝑥𝑑(𝑡))
when 𝐹- = 0 (no contact situation) ⇒ Lyapunov + skew-symmetry of 𝑀̇A − 2𝑆A

§ further simplifications when 𝑥𝑑 is constant
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nonlinear impedance model (“only” gravity terms disappear)

𝑀A(𝑞) 𝑥̈ − 𝑥̈H + 𝑆A 𝑞, 𝑞̇ + 𝐷8 𝑥̇ − 𝑥̇H + 𝐾8 𝑥 − 𝑥H = 𝐹-

redoing computations, the control law becomes

which is indeed slightly more complex, but has the following advantages:

𝑢 = 𝑀 𝑞 𝐽-1F(𝑞)S𝑥̈H − ̇𝐽- 𝑞 }𝐽-1F 𝑞 𝑥̇H + 𝑆 𝑞, 𝑞̇ 𝐽-1F(𝑞)𝑥̇H + 𝑔 𝑞
+ 𝐽-.(𝑞) 𝐷8 𝑥̇H − 𝑥̇ + 𝐾8 𝑥H − 𝑥



Cartesian regulation revisited 
(without contact, 𝐹- = 0)

when 𝑥𝑑 is constant (𝑥̇H = 0, 𝑥̈H = 0), from the previous expression we get 
the control law 

Cartesian PD control with gravity cancellation…

when 𝐹- = 0 (absence of contact), we know already that this control law 
ensures asymptotic stability of 𝑥H, provided 𝐽-(𝑞) has full rank

proof
(alternative) Lyapunov candidate

using skew-symmetry of 𝑀̇A − 2𝑆A and 𝑔A = 𝐽-1.𝑔

(★)
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𝑢 = 𝑔 𝑞 + 𝐽-. 𝑞 𝐾8 𝑥H − 𝑥 −𝐷8𝑥̇

𝑉F =
1
2 𝑥̇

.𝑀A 𝑞 𝑥̇ +
1
2 𝑥H − 𝑥 .𝐾8 𝑥H − 𝑥

𝑉̇F = 𝑥̇.𝑀A 𝑞 𝑥̈ +
1
2
𝑥̇.𝑀̇A 𝑞 𝑥̇ − 𝑥̇.𝐾8 𝑥H − 𝑥 = ⋯ = −𝑥̇.𝐷8𝑥̇ ≤ 0



Cartesian stiffness control
(with contact, 𝐹- ≠ 0)

when 𝐹- ≠ 0, convergence to 𝑥H is not assured 
(it may not even be a closed-loop equilibrium…)

§ for analysis, assume an elastic contact model for the environment

𝐹- = 𝐾\(𝑥\ − 𝑥) with stiffness 𝐾\ ≥ 0 and rest position 𝑥\
§ closed-loop system behavior

Lyapunov candidate
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𝑉] =
1
2 𝑥̇

.𝑀A 𝑞 𝑥̇ +
1
2 𝑥H − 𝑥 .𝐾8 𝑥H − 𝑥 +

1
2 𝑥\ − 𝑥 .𝐾\ 𝑥\ − 𝑥

= 𝑉F +
1
2
𝑥\ − 𝑥 .𝐾\ 𝑥\ − 𝑥

𝑉̇] = 𝑥̇.𝑀A 𝑞 𝑥̈ +
1
2
𝑥̇.𝑀̇A 𝑞 𝑥̇ − 𝑥̇.𝐾8 𝑥H − 𝑥 − 𝑥̇.𝐾\ 𝑥\ − 𝑥

= ⋯ = −𝑥̇.𝐷8𝑥̇ + 𝑥̇.(𝐹- − 𝐾\ 𝑥\ − 𝑥 ) = −𝑥̇.𝐷8𝑥̇ ≤ 0



Stability analysis (with 𝐹- ≠ 0)

when 𝑥̇ = 𝑥̈ = 0, at a closed-loop system equilibrium it is

𝐾8(𝑥H − 𝑥) + 𝐾\(𝑥\ − 𝑥) = 0

𝑥 = 𝐾8 +𝐾\ 1F 𝐾8𝑥H + 𝐾\𝑥\ =: 𝑥_

𝑥\ for 𝐾\ ≫ 𝐾8 (rigid environment)

𝑥H for 𝐾8 ≫ 𝐾\ (rigid controller)
𝑥_ ≈

(check that the Lyapunov candidate 𝑉2 has in fact its minimum in 𝑥_!)

Note: the Cartesian stiffness control law (★) is often
called compliance control in the literature
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LaSalle        𝑥𝐸 asymptotically stable equilibrium

which has the unique solution



Active equivalent of RCC device
§ displacements from the desired position 𝑥H are small, namely

§ 𝑔(𝑞) = 0 (gravity is compensated/cancelled, e.g., mechanically)
§ 𝐷8 = 0

(𝑥H − 𝑥) ≈ 𝐽-(𝑞H − 𝑞)
IF

constant Cartesian-level stiffness 𝐾8
corresponds to

variable joint-level stiffness 𝐾(𝑞)

is the ‘‘active’’ counterpart of a Remote Center of Compliance (RCC) device
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THEN 𝑢 = 𝐽-. 𝑞 𝐾8 𝐽- 𝑞H − 𝑞 = 𝐾(𝑞)(𝑞H − 𝑞)

∆𝑥 𝐾8 𝐹

∆𝑞

𝐽-(𝑞) 𝐽-.(𝑞)

𝑢
𝐾(𝑞)

𝐶(𝑥)
∆𝑥 𝐹

𝐽-1F(𝑞) 𝐽-1.(𝑞)

∆𝑞 𝑢𝐶8(and vice versa on compliance)



Admittance control
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§ in some cases, we don’t have access to low-level robot torque (or 
motor current) commands ⇒ closed control architecture

§ for handling the interaction with the environment, one uses then 
admittance control: contact forces ⇒ velocity commands

§ implementation (with compliant matrices 𝐶)
§ at the velocity or incremental position level
§ in the joint or Cartesian (or task) space

𝐹e ⟶ 𝑥̇ = 𝐶A𝐹e ⟶ 𝑞̇ = 𝐽1F(𝑞)𝐶A𝐹e

𝑢e = 𝐽.(𝑞)𝐹e ⟶ 𝑞̇ = 𝐶g𝑢e ⟶ 𝑞̇ = 𝐶g 𝐽.(𝑞)𝐹e
↕
∆𝑞 (to be added to the current 𝑞)

↕
𝐽#(𝑞)(in case of redundancy)

𝐶g ≥ 0

𝐶A ≥ 0


