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Impedance control

= imposes a desired dynamic behavior to the interaction between
robot end-effector and environment

= the desired performance is specified through a generalized dynamic
impedance, namely a complete set of mass-spring-damper equations
(typically chosen as linear and decoupled, but also nonlinear)

= a model describing how reaction forces are generated in association
with environment deformation is not explicitly required

= suited for tasks in which contact forces should be “kept small”, while
their accurate regulation is not mandatory

= Since a control loop based on force error is missing, contact forces
are only indirectly assigned by controlling position

= the choice of a specific stiffness in the impedance model along a
Cartesian direction results in a trade-off between contact forces and
position accuracy in that direction

Robotics 2 2



Dynamic model of a robot in contact
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q€R M(q)g +S(q,q)q+ g(q) =u + ] (QF | Cgrigsei;anlégrce
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— forces iinear velouty\\ Jaccibian Jacobian
F = (f) € R™ performing work on V = (v) =J(@Q)q#x = (p) =Ja(q)q
m W ¢ .
=~ torques ¢ _ 0
. . . angular velocity derivative of
direct kinematics \)f(q) Euler angles
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generalized forces performing work on x
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- . ] . S/
Dynamic model in Cartesian coordinates @il

T My (@)% + Sx(q, D + 92(@) = Ja"T (@Qu + F |
with
M, (q) = Jz" (@M@ (@)
Se(a, @) =J"(@S(q, D] (@) — My(@)]a(@)]z (q)

9x(@) =Ja" (@)g(q)
... and the usual structural properties

= M, >0, if J, is non-singular
= M, — 25, is skew-symmetric, if M — 2S satisfies the
same property

= the Cartesian dynamic model of the robot can be linearly
parameterized in terms of a set of dynamic coefficients
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Design of the control law

designed in two steps:
1. feedback linearization in the Cartesian space (with force measure)

u= ]Z;(CI)[Mx(CI)a + 5x(q,9)x + gx(q) — F,]

‘ ¥ =a| closed-loop system
2. imposition of a dynamic impedance model

t of the i T - _
e “aecoipIIQde’? M, (¥ —%3) + D, (x —x5) + K,(x —x4) = F,

(diagonal matrices)

desired (apparent) desired desired external forces
inertia (> 0) damping (= 0) stiffness (> 0) from the environment

is realized by choosing
a = Xq+ Mp[Dp(Xq — %) + Kpp(xq — x) + F|

Note: x4 (t) is the desired motion, which typically “slightly penetrates”

inside the compliant environment (inducing contact forces)...
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Examples of desired reference x,
in impedance/compliance control

M (% — Xg) + Dip(x — Xg) + Kip(x — xq) = Fy

the desired motion x4(t) is slightly inside
the environment (keeping thus contact)

- Narmoles-Vektor

robot in grinding task robot writing on a surface
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Examples of desired reference x,
in impedance/compliance control

M (% — Xq) + D (X — %g) + Kip(x — xg) = F,

constant desired pose x, is the free Cartesian
rest position in @ human-robot interaction task

Left Hand: contact Link &§
Right Hand: no contact

KUKA iiwa robot with human operator KUKA LWR robot in pHRI (collaboration)
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Control law in joint coordinates
substituting and simplifying...

u=M@QJN(D{Ea — (@G + Mt Dy (g — %) + Ky (xg — )13
+5(q,9)q + 9(@) +Ji (@M (@M —1]F,

\ J

matrix weighting the measured contact forces

= the following identity holds for the term involving contact forces

JE@Q M (@Mt = IF, = M)z (@Mt — JE(Q]F,

which eliminates from the control law also the appearance of the
last remaining Cartesian quantity (the Cartesian inertia matrix)

= while the control design is based on dynamic analysis and desired
(impedance) behavior described in the Cartesian space, the final
control implementation is always at the robot joint level
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Choice of the impedance model

rationale ...
= avoid large impact forces due to uncertain geometric characteristics
(position, orientation) of the environment

= adapt/match to the dynamic characteristics of the environment (in
particular, of its estimated stiffness) in a complementary way

=  mimic the behavior of a human arm
=» fast and stiff in “free” motion, slow and compliant in "guarded” motion

-

= large My, ; and small K, ; in Cartesian directions where contact is
foreseen (= low contact forces)

= large K, ; and small M, ; in Cartesian directions that are supposed
to be free (= good tracking of desired motion trajectory)

= damping coefficients D, ; are used then to shape transient behaviors
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Human arm behavior

expected free motion
= stiff motion control

in the selected i-th Cartesian direction:
the stiffer is the environment, the softer is the chosen model stiffness K, ;
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A notable simplification - 1

choose the apparent inertia equal to the natural Cartesian inertia of the robot
My = My(q) = Jz" (@M (q)]z" (@)
then, the control law becomes

u =M@/ (D{%s —Jo(@a}+ S(q.¢)g+ g(q)
+]£(Q) [Dm(xd —X) + Km(xd —x)]

WITHOUT contact force feedback! (a F/T sensor is no longer needed...)

8

this is a pure motion control applied also during interaction,
but designed so as to keep limited contact forces at the end-effector level
(as before, K, is chosen as a function of the expected environment stiffness)
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A notable simplification - 2

technical issue: if the impedance model (now, nonlinear) is still supposed to
represent a real mechanical system, then in correspondence to a desired
non-constant inertia (M,.(q)) there should be Coriolis and centrifugal terms...

) M () —%a) + (Sx(q,§) + D) (& — %q) + Ky (x — %) = Fy |

nonlinear impedance model (“only” gravity terms disappear)
redoing computations, the control law becomes

u = M@ (OXa — Jo(@IZ (@ %a} + S, DIt ( @Dxa + g(@)
+]£(Q) [Dm(xd _ X) + Km(xd _ x)]

which is indeed slightly more complex, but has the following advantages:

= guarantee of asymptotic convergence to zero tracking error (on x4(t))
when F, = 0 (no contact situation) = Lyapunov + skew-symmetry of M, — 2S,
= further simplifications when x, is constant
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Cartesian regulation revisited
(without contact, £, = 0)

when x, is constant (x; = 0, Xz = 0), from the previous expression we get
the control law

/» u=g(q) +JI(@Q[Km(xg — x) = Dppx]| (%)

Cartesian PD control with gravity cancellation...

when F, = 0 (absence of contact), we know already that this control law
ensures asymptotic stability of x4, provided J,(q) has full rank

proof _ 1 1 .
(alternative)  Lyapunov candidate V; = Ex M, (q)x + 5 (xg — %) K (xq — x)
° .T .o 1 .T Y o .T .T .
» Vi=x"M,(q)X +Ex M,(g)x —x"K,(xg—x)=+=—xD,x<0

using skew-symmetry of M, — 2S5, and g, = J; g
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Cartesian stiffness control
(with contact, F, + 0)

when F, # 0, convergence to x, is not assured
(it may not even be a closed-loop equilibrium...)

= for analysis, assume an elastic contact model for the environment

F, = Ko(xe — x)| with stiffness K, = 0 and rest position x,

= closed-loop system behavior

Lyapunov candidate
1 - 1 . 1 .
V, = Ex Mx(CI)x +§(xd - X) Km(xd — X) +§ (xe — X) Ke(xe - X)
1
= Vl + E(xe o x)TKe(xe _ X)
°, - T .o 1 . T y . - T . T
W)V, = £TM (@ + %M (9)% = %7Ky (g = %) = %7K, (x, = %)

= o= —xTDpx + %7 (F, — Ko (xo — %)) = —%" D < 0
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Stability analysis (with E, # 0)

when x = X = 0, at a closed-loop system equilibrium it is
Kn(xg—x)+Ko(x, —x) =0

which has the unique solution
X = (K + Ke) 7 (Kxg + Kexe) =: xg
(check that the Lyapunov candidate I/, has in fact its minimum in xg!)

LaSalle mp x asymptotically stable equilibrium

X for K, > K,,, (rigid environment)
Xgp =
x4 for K, > K, (rigid controller)

Note: the Cartesian stiffness control law () is often
called compliance control in the literature
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Active equivalent of RCC device

IF = displacements from the desired position x; are small, namely

(Xa —x) = Ja(qa — q)
= g(q) = 0 (gravity is compensated/cancelled, e.g., mechanically)

=D, =0
THEN u=Jq (Q)KnJa(qa —q) = K(q)(qa — 9)
‘ C
Ax — K, — F Ax &
0 | constant Cartesian-level stiffness K,
Ja(@) m Ja (@) corresponds to Ja 1(61) m]aT(q)
| variable joint-level stiffness K(q)
Aq T) u (and vice versa on compliance) Aq «—C,,
K(q

is the “active” counterpart of a Remote Center of Compliance (RCC) device
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Admittance control

= in some cases, we don‘t have access to low-level robot torque (or
motor current) commands = closed control architecture

= for handling the interaction with the environment, one uses then
admittance control: contact forces = velocity commands

= implementation (with compliant matrices C)
= at the velocity or incremental position level
= in the joint or Cartesian (or task) space

:]T(Q)Fc_)qchuc_) q:Cq]T(Q)Fc CqZO

)
Aq (to be added to the current q)

F,.—x=CF, — q:]_l(Q)Cch C, =0

)
(in case of redundancy) ]# (q)
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