Robotics 2

Trajectory Tracking Control

Prof. Alessandro De Luca

Dipartimento di ingegneria Informatica
Automatica e gestionale Antonio Ruberti

Inverse dynamics control

given the robot dynamic model

$$
\overbrace{c(q, \dot{q})+g(q)+\text { friction model }}^{M(q) \ddot{q}+n(q, \dot{q})=u}
$$

and a twice-differentiable desired trajectory for $t \in[0, T]$

$$
q_{d}(t) \rightarrow \dot{q}_{d}(t), \ddot{q}_{d}(t)
$$

applying the feedforward torque in nominal conditions

$$
u_{d}=M\left(q_{d}\right) \ddot{q}_{d}+n\left(q_{d}, \dot{q}_{d}\right)
$$

yields exact reproduction of the desired motion, provided that $q(0)=q_{d}(0), \dot{q}(0)=\dot{q}_{d}(0)$ (initial matched state)

In practice ...

a number of differences from the nominal condition

- initial state is "not matched" to the desired trajectory $q_{d}(t)$
- disturbances on the actuators, truncation errors on data, ...
- inaccurate knowledge of robot dynamic parameters (link masses, inertias, center of mass positions)
- unknown value of the carried payload
- presence of unmodeled dynamics (complex friction phenomena, transmission elasticity, ...)

Introducing feedback

$$
\hat{u}_{d}=\widehat{M}\left(q_{d}\right) \ddot{q}_{d}+\hat{n}\left(q_{d}, \dot{q}_{d}\right)
$$

with \widehat{M}, \widehat{n} estimates of terms (or coefficients) in the dynamic model note: \widehat{u}_{d} can be computed off line [e.g., by $\widehat{N E}_{\alpha}\left(q_{d}, \dot{q}_{d}, \ddot{q}_{d}\right)$]
feedback is introduced to make the control scheme more robust
different possible implementations depending on amount of computational load share

- OFF LINE (\Leftrightarrow open loop)
- ON LINE (\Leftrightarrow closed loop)
two-step control design:

1. compensation (feedforward) or cancellation (feedback) of nonlinearities
2. synthesis of a linear control law stabilizing the trajectory error to zero

A series of trajectory controllers

1. inverse dynamics compensation (FFW) + PD

$$
u=\hat{u}_{d}+K_{P}\left(q_{d}-q\right)+K_{D}\left(\dot{q}_{d}-\dot{q}\right)
$$

typically, only local stabilization of trajectory error $e(t)=q_{d}(t)-q(t)$
2. inverse dynamics compensation (FFW) + variable PD

$$
u=\widehat{u}_{d}+\widehat{M}\left(q_{d}\right)\left[K_{P}\left(q_{d}-q\right)+K_{D}\left(\dot{q}_{d}-\dot{q}\right)\right]
$$

3. feedback linearization (FBL) + [PD+FFW] = "COMPUTED TORQUE"

$$
u=\widehat{M}(q)\left[\ddot{q}_{d}+K_{P}\left(q_{d}-q\right)+K_{D}\left(\dot{q}_{d}-\dot{q}\right)\right]+\hat{n}(q, \dot{q})
$$

4. feedback linearization (FBL) + [PID+FFW]

$$
u=\widehat{M}(q)\left[\ddot{q}_{d}+K_{P}\left(q_{d}-q\right)+K_{D}\left(\dot{q}_{d}-\dot{q}\right)+K_{I} \int\left(q_{d}-q\right) d t\right]+\hat{n}(q, \dot{q})
$$

more robust to uncertainties, but also more complex to implement in real time

Feedback linearization control

Interpretation in the linear domain

under feedback linearization control, the robot has a dynamic behavior that is invariant, linear and decoupled in its whole workspace ($\forall(q, \dot{q})$)
error transients $e_{i}=q_{d i}-q_{i} \rightarrow 0$ exponentially, prescribed by $K_{P i}, K_{D i}$ choice
decoupling
each joint coordinate q_{i} evolves independently from the others, forced by a_{i}

$$
\ddot{e}+K_{D} \dot{e}+K_{P} e=0 \quad \Leftrightarrow \quad \ddot{e}_{i}+K_{D i} \dot{e}_{i}+K_{P i} e_{i}=0
$$

Addition of an integral term: PID

 whiteboard...

$$
\begin{aligned}
& \ddot{q}=a=\ddot{q}_{d}+K_{D}\left(\dot{q}_{d}-\dot{q}\right)+\stackrel{i}{K}_{P}\left(q_{d}-q\right)+K_{I} \int\left(q_{d}-q\right) d \tau \quad e=q_{d}-q \\
& \underset{\mathbf{(\mathbf { 1 })}}{\Rightarrow} e_{i}=q_{d i}-q_{i}(i=1, \ldots, N) \quad \text { (2) } \\
& \ddot{e}_{i}+K_{D i} \dot{e}_{i}+K_{P i} e_{i}+K_{P i} \int e_{i} d \tau=0
\end{aligned}
$$

Remarks

- desired joint trajectory can be generated from Cartesian data

$$
\ddot{p}_{d}(t), \dot{p}_{d}(0), p_{d}(0)
$$

$$
q_{d}(0)=f^{-1}\left(p_{d}(0)\right)
$$

$$
\dot{q}_{d}(0)=J^{-1}\left(q_{d}(0)\right) \dot{p}_{d}(0)
$$

$$
\ddot{q}_{d}(t)=J^{-1}\left(q_{d}\right)\left[\ddot{p}_{d}(t)-\dot{J}\left(q_{d}\right) \dot{q}_{d}\right]
$$

Further comments

- choice of the diagonal elements of K_{P}, K_{D} (and K_{I})
- for shaping the error transients, with an eye to motor saturations...

$$
\begin{equation*}
e(t)=q_{d}(t)-q(t) \tag{0}
\end{equation*}
$$

critically damped transient

- parametric identification
- to be done in advance, using the property of linearity in the dynamic coefficients of the robot dynamic model
- choice of the sampling time of a digital implementation
- compromise between computational time and tracking accuracy, typically $T_{c}=0.5 \div 10 \mathrm{~ms}$
- exact linearization by (state) feedback is a general technique of nonlinear control theory
- can be used for robots with elastic joints, wheeled mobile robots, ...
- non-robotics applications: satellites, induction motors, helicopters, ...

Another example of feedback linearization design

- dynamic model of robots with elastic joints
- $q=$ link position $\} 2 N$ generalized
- $\theta=$ motor position (after reduction gears) $\int \operatorname{coordinates~}(q, \theta)$
- $B_{m}=$ diagonal matrix (>0) of inertia of the (balanced) motors
- $K=$ diagonal matrix (>0) of (finite) stiffness of the joints

$$
\begin{array}{r}
4 N \text { state } \\
x=(q, \theta, \dot{q}, \dot{\theta})
\end{array}\left\{\begin{array}{r}
M(q) \ddot{q}+c(q, \dot{q})+g(q)+K(q-\theta)=0 \\
B_{m} \ddot{\theta}+K(\theta-q)=u \tag{2}
\end{array}\right.
$$

- is there a control law that achieves exact linearization via feedback?

$$
u=\alpha(q, \theta, \dot{q}, \dot{\theta})+\beta(q, \theta, \dot{q}, \dot{\theta}) a
$$

YES and it yields $\frac{d^{4} q_{i}}{d t^{4}}=a_{i}, \quad i=1, \ldots, N$ linear and decoupled system: N chains of 4 integrators (to be stabilized by linear control design)
Hint: differentiate (1) w.r.t. time until motor acceleration $\ddot{\theta}$ appears; substitute this from (2); choose u so as to cancel all nonlinearities ...

Alternative global trajectory controller

$u=M(q) \ddot{q}_{d}+S(q, \dot{q}) \dot{q}_{d}+g(q)+F_{V} \dot{q}_{d}+K_{P} e+K_{D} \dot{e}$

SPECIAL factorization such that
$\dot{M}-2 S$ is skew-symmetric
symmetric and positive definite matrices

- global asymptotic stability of $(e, \dot{e})=(0,0)$ (trajectory tracking)
- proven by Lyapunov+Barbalat+LaSalle
- does not produce a complete cancellation of nonlinearities
- the \dot{q} and \ddot{q} that appear linearly in the model are evaluated on the desired trajectory
- does not induce a linear and decoupled behavior of the trajectory error $e(t)=q_{d}(t)-q(t)$ in the closed-loop system
- lends itself more easily to an adaptive version
- cannot be computed directly by the standard NE algorithm...

Analysis of asymptotic stability
 of the trajectory error - 1

$M(q) \ddot{q}+S(q, \dot{q}) \dot{q}+g(q)+F_{V} \dot{q}=u$ robot dynamics (including friction) control law $u=M(q) \ddot{q}_{d}+S(q, \dot{q}) \dot{q}_{d}+g(q)+F_{V} \dot{q}_{d}+K_{P} e+K_{D} \dot{e}$

- Lyapunov candidate and its time derivative

$$
\begin{aligned}
& V=\frac{1}{2} \dot{e}^{T} M(q) \dot{e}+\frac{1}{2} e^{T} K_{P} e \geq 0 \Rightarrow \dot{V}=\frac{1}{2} \dot{e}^{T} \dot{M}(q) \dot{e}+\dot{e}^{T} M(q) \ddot{e}+e^{T} K_{P} \dot{e} \\
& \text { the closed-loop system equations yield }
\end{aligned}
$$

$$
M(q) \ddot{e}=-S(q, \dot{q}) \dot{e}-\left(K_{D}+F_{V}\right) \dot{e}-K_{P} e
$$

- substituting and using the skew-symmetric property

$$
\dot{V}=-\dot{e}^{T}\left(K_{D}+F_{V}\right) \dot{e} \leq 0 \quad \dot{V}=0 \Leftrightarrow \dot{e}=0
$$

- since the system is time-varying (due to $q_{d}(t)$), direct application of LaSalle theorem is NOT allowed \Rightarrow use Barbalat lemma...

$$
q=q_{d}(t)-e, \dot{q}=\dot{q}_{d}(t)-\dot{e} \Rightarrow V=V(\underbrace{e, \dot{e}, t)}_{\text {error state } x}=V(x, t)
$$

Analysis of asymptotic stability
 of the trajectory error - 2

- since i) V is lower bounded and ii) $\dot{V} \leq 0$, we can check condition iii) in order to apply Barbalat lemma

$$
\ddot{V}=-2 \dot{e}^{T}\left(K_{D}+F_{V}\right) \ddot{e} \quad \ldots \text { is this bounded? }
$$

- from i$)+\mathrm{ii}), V$ is bounded $\Rightarrow e$ and \dot{e} are bounded
- assume that the desired trajectory has bounded velocity $\left.\dot{q}_{d}\right] \Rightarrow \begin{gathered}\dot{q} \text { is } \\ \text { bounded }\end{gathered}$
- using the following two properties of dynamic model terms

$$
0<m \leq\left\|M^{-1}(q)\right\| \leq M<\infty \quad\|S(q, \dot{q})\| \leq \alpha_{S}\|\dot{q}\|
$$

then also \ddot{e} will be bounded (in norm) since

$$
\ddot{e}=-M^{-1}(q)\left[S(q, \dot{q}) \dot{e}+K_{P} e+\left(K_{D}+F_{V}\right) \dot{e}\right]
$$

Analysis of asymptotic stability of the trajectory error - end of proof

- we can now conclude by proceeding as in LaSalle theorem

$$
\dot{V}=0 \Leftrightarrow \dot{e}=0
$$

- the closed-loop dynamics in this situation is

$$
\begin{gathered}
M(q) \ddot{e}=-K_{P} e \\
\Rightarrow \quad \ddot{e}=0 \Leftrightarrow e=0 \quad \Rightarrow \quad(e, \dot{e})=(0,0)
\end{gathered}
$$

is the largest invariant set in $\dot{V}=0$
(global) asymptotic tracking will be achieved

Regulation as a special case

- what happens to the control laws designed for trajectory tracking when q_{d} is constant? are there simplifications?
- feedback linearization

$$
u=M(q)\left[K_{P}\left(q_{d}-q\right)-K_{D} \dot{q}\right]+c(q, \dot{q})+g(q)
$$

- no special simplifications
- however, this is a solution to the regulation problem with
exponential stability (and decoupled transients at each joint!)
- alternative global controller

$$
u=K_{P}\left(q_{d}-q\right)-K_{D} \dot{q}+g(q)
$$

- we recover the PD + gravity cancellation control law!!

Trajectory execution without a model

- is it possible to accurately reproduce a desired smooth jointspace reference trajectory with reduced or no information on the robot dynamic model?
- this is feasible in case of repetitive motion tasks over a finite interval of time
- trials are performed iteratively, storing the trajectory error information of the current execution [k-th iteration] and processing it off line before the next trial [($k+1$)-iteration] starts
- the robot should be reinitialized in the same initial position at the beginning of each trial
- the control law is made of a non-model based part (typically, a decentralized PD law) + a time-varying feedforward which is updated at every trial
- this scheme is called iterative trajectory learning

Scheme of iterative trajectory learning

- control design can be illustrated on a SISO linear system in the Laplace domain

$$
\begin{aligned}
& W(s)=\frac{y(s)}{y_{d}(s)}=\frac{P(s) C(s)}{1+P(s) C(s)} \quad \begin{array}{c}
\text { closed-loop system without learning } \\
(C(s) \text { is, e.g., a PD control law })
\end{array} \\
& u_{k}(s)=u_{k}^{\prime}(s)+v_{k}(s)=C(s) e_{k}(s)+v_{k}(s) \text { control law at iteration } k \\
& y_{k}(s)=W(s) y_{d}(s)+\frac{P(s)}{1+P(s) C(s)} v_{k}(s) \quad \text { system output at iteration } k
\end{aligned}
$$

Background math on feedback loops

 whiteboard...- algebraic manipulations on block diagram signals in the Laplace domain: $x(s)=\mathcal{L}[x(t)], x=\left\{y_{d}, y, u^{\prime}, v, e\right\} \Rightarrow\left\{y_{d}, y_{k}, u_{k}^{\prime}, v_{k}, e_{k}\right\}$, with transfer functions

- feedback control law at iteration k

$$
\begin{aligned}
u_{k}^{\prime}(s)=C & (s)\left(y_{d}(s)-y_{k}(s)\right)=C(s) y_{d}(s)-P(s) C(s)\left(v_{k}(s)+u_{k}^{\prime}(s)\right) \\
& \Rightarrow u_{k}^{\prime}(s)=\frac{C(s)}{1+P(s) C(s)} y_{d}(s)-\frac{P(s) C(s)}{1+P(s) C(s)} v_{k}(s)=W_{c}(s) y_{d}(s)-W(s) v_{k}(s)
\end{aligned}
$$

- error at iteration k

$$
\begin{aligned}
& \qquad e_{k}(s)=y_{d}(s)-y_{k}(s)=y_{d}(s)-\left(W(s) y_{d}(s)+W_{v}(s) v_{k}(s)\right)=(1-W(s)) y_{d}(s)-W_{v}(s) v_{k}(s) \\
& \text { Robotics 2 } \\
& W_{e}(s)=1 /(1+P(s) C(s))
\end{aligned}
$$

Learning update law

- the update of the feedforward term is designed as

$$
v_{k+1}(s)=\alpha(s) u_{k}^{\prime}(s)+\beta(s) v_{k}(s)
$$

recursive expression of feedforward term

$$
v_{k+1}(s)=\frac{\alpha(s) C(s)}{1+P(s) C(s)} y_{d}(s)+(\beta(s)-\alpha(s) W(s)) v_{k}(s)
$$

recursive expression of error $e=y_{d}-y$

$$
e_{k+1}(s)=\frac{1-\beta(s)}{1+P(s) C(s)} y_{d}(s)+(\beta(s)-\alpha(s) W(s)) e_{k}(s)
$$

- if a contraction condition can be enforced

$$
|\beta(s)-\alpha(s) W(s)|<1 \quad \text { (for all } s=j \omega \text { frequencies such that } \ldots \text {) }
$$

then convergence is obtained for $k \rightarrow \infty$
$v_{\infty}(s)=\frac{y_{d}(s)}{P(s)} \frac{\alpha(s) W(s)}{1-\beta(s)+\alpha(s) W(s)} \quad e_{\infty}(s)=\frac{y_{d}(s)}{1+P(s) C(s)} \frac{1-\beta(s)}{1-\beta(s)+\alpha(s) W(s)}$

Proof of recursive updates

whiteboard...

- recursive expression for the feedworward v_{k}

$$
\begin{aligned}
v_{k+1}(s) & =\alpha(s) u_{k}^{\prime}(s)+\beta(s) v_{k}(s)=\alpha(s) C(s) e_{k}(s)+\beta(s) v_{k}(s) \\
& =\alpha(s) C(s)\left[W_{e}(s) y_{d}(s)-W_{v}(s) v_{k}(s)\right]+\beta(s) v_{k}(s) \\
& =\frac{\alpha(s) C(s)}{1+P(s) C(s)} y_{d}(s)+(\beta(s)-\alpha(s) W(s)) v_{k}(s)
\end{aligned}
$$

- recursive expression for the error e_{k}

$$
\begin{gathered}
\begin{array}{c}
e_{k}(s)=y_{d}(s)-y_{k}(s)=y_{d}(s)-P(s)\left(v_{k}(s)+u_{k}^{\prime}(s)\right) \\
\Rightarrow v_{k}(s)=\frac{1}{P(s)}\left(y_{d}(s)-e_{k}(s)\right)-u_{k}^{\prime}(s) \\
y_{k+1}(s)=P(s)\left(v_{k+1}(s)+u_{k+1}^{\prime}(s)\right)=P(s)\left(\alpha(s) u_{k}^{\prime}(s)+\beta(s) v_{k}(s)+u_{k+1}^{\prime}(s)\right) \\
=P(s)\left(\alpha(s) C(s) e_{k}(s)+\beta(s) \frac{1}{P(s)}\left(y_{d}(s)-e_{k}(s)\right)-\beta(s) C(s) e_{k}(s)+C(s) e_{k+1}(s)\right) \\
e_{k+1}(s)=y_{d}(s)-y_{k+1}(s) \\
= \\
\\
\Rightarrow e_{k+1}(s)=\frac{1-\beta(s)) y_{d}(s)-[(\alpha(s)-\beta(s)) P(s) C(s)-\beta(s)] e_{k}(s)-P(s) C(s) e_{k+1}(s)}{1+P(s) C(s)} y_{d}(s)+(\beta(s)-\alpha(s) W(s)) e_{k}(s)
\end{array}
\end{gathered}
$$

Proof of convergence

from recursive expressions

$$
\begin{aligned}
& v_{k+1}(s)=\frac{\alpha(s) C(s)}{1+P(s) C(s)} y_{d}(s)+(\beta(s)-\alpha(s) W(s)) v_{k}(s) \\
& e_{k+1}(s)=\frac{1-\beta(s)}{1+P(s) C(s)} y_{d}(s)+(\beta(s)-\alpha(s) W(s)) e_{k}(s)
\end{aligned}
$$

compute variations from k to $k+1$ (repetitive term in trajectory y_{d} vanishes!)

$$
\begin{aligned}
& \Delta v_{k+1}(s)=v_{k+1}(s)-v_{k}(s)=(\beta(s)-\alpha(s) W(s)) \Delta v_{k}(s) \\
& \Delta e_{k+1}(s)=e_{k+1}(s)-e_{k}(s)=(\beta(s)-\alpha(s) W(s)) \Delta e_{k}(s)
\end{aligned}
$$

by contraction mapping condition $|\beta(s)-\alpha(s) W(s)|<1 \Rightarrow\left\{v_{k}\right\} \rightarrow v_{\infty},\left\{e_{k}\right\} \rightarrow e_{\infty}$

$$
\begin{gathered}
v_{\infty}(s)=\frac{\alpha(s) C(s)}{1+P(s) C(s)} y_{d}(s)+(\beta(s)-\alpha(s) W(s)) v_{\infty}(s) \\
e_{\infty}(s)=\frac{1-\beta(s)}{1+P(s) C(s)} y_{d}(s)+(\beta(s)-\alpha(s) W(s)) e_{\infty}(s) \\
\Rightarrow \quad v_{\infty}(s)=\frac{y_{d}(s)}{P(s)} \frac{\alpha(s) W(s)}{1-\beta(s)+\alpha(s) W(s)} \quad e_{\infty}(s)=\frac{y_{d}(s)}{1+P(s) C(s)} \frac{1-\beta(s)}{1-\beta(s)+\alpha(s) W(s)}
\end{gathered}
$$

Comments on convergence

- if the choice $\beta=1$ allows to satisfy the contraction condition, then convergence to zero tracking error is obtained

$$
e_{\infty}(s)=0
$$

and the inverse dynamics command has been learned

$$
v_{\infty}(s)=\frac{y_{d}(s)}{p(s)}
$$

- in particular, for $\alpha(s)=1 / w(s)$ convergence would be in 1 iteration only!
- the use of filter $\beta(s) \neq 1$ allows to obtain convergence (but with residual tracking error) even in presence of unmodeled high-frequency dynamics
- the two filters can be designed from very poor information on system dynamics, using classic tools (e.g., Nyquist plots)

Application to robots

- for N-dof robots modeled as

$$
\left[B_{m}+M(q)\right] \ddot{q}+\left[F_{V}+S(q, \dot{q})\right] \dot{q}+g(q)=u
$$

we choose as (initial = pre-learning) control law

$$
u=u^{\prime}=K_{P}\left(q_{d}-q\right)+K_{D}\left(\dot{q}_{d}-\dot{q}\right)+\hat{g}(q)
$$

and design the learning filters (at each joint) using the linear approximation

$$
W_{i}(s)=\frac{q_{i}(s)}{q_{d i}(s)}=\frac{K_{D i} s+K_{P i}}{\hat{B}_{m} s^{2}+\left(\hat{F}_{V i}+K_{D i}\right) s+K_{P i}} \quad i=1, \cdots, N
$$

- initialization of feedforward uses the best estimates

$$
v_{1}=\left[\hat{B}_{m}+\widehat{M}\left(q_{d}\right)\right] \ddot{c}_{d}+\left[\hat{F}_{V}+\hat{S}\left(q_{d}, \dot{q}_{d}\right)\right] \dot{q}_{d}+\hat{g}\left(q_{d}\right)
$$

or simply $v_{1}=0$ (in the worst case) at first trial $k=1$

Experimental set-up

- joints 2 and 3 of 6R MIMO CRF robot prototype @DIS
$\approx 90 \%$ gravity balanced through springs high level of dry friction

Harmonic Drives transmissions with ratio 160:1

DC motors with current amplifiers resolvers and tachometers

Experimental results

