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Inverse dynamics control

given the robot dynamic model
M(q)q +n(q,q) = u

c(q,q) + g(q) + friction model

and a twice-differentiable desired trajectory for t € [0, T]
qa(t) = qq(t),q4(t)
applying the feedforward torgue in nominal conditions

ug = M(qq)4q +n(qq,q4)

yields exact reproduction of the desired motion, provided
that g(0) = q4(0),g(0) = g,4(0) (initial matched state)
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In practice ...

a number of differences from the nominal condition

= initial state is "not matched” to the desired trajectory g, (t)
= disturbances on the actuators, truncation errors on data, ...

= inaccurate knowledge of robot dynamic parameters (link
masses, inertias, center of mass positions)

= unknown value of the carried payload

= presence of unmodeled dynamics (complex friction
phenomena, transmission elasticity, ...)
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Introducing feedback

~  _ ij y ~ : with M, fA estimates of terms
Ya = M(qd)qd T n(qd’ qd) (or coefficients) in the dynamic model

note: 1, can be computed off line [e.g., by NEy(qg, dg, tig)]

feedback is introduced to make the control scheme more robust

different possible implementations depending on
amount of computational load share

= OFF LINE ( 4= open loop)
= ON LINE ( 4= closed loop)

two-step control design:
1. compensation (feedforward) or cancellation (feedback) of nonlinearities
2. synthesis of a linear control law stabilizing the trajectory error to zero

Robotics 2 4



A series of trajectory controllers
1. inverse dynamics compensation (FFW) + PD typically, only local
stabilization of
u=1t;+Kp(qs —q) +Kp(Gg — q) | trajectory error
e(t) = qq(t) —q(t)
2. inverse dynamics compensation (FFW) + variable PD
u =1+ M(qy)Kp(qq — q) + Kp(Gq — 9)] |
3. feedback linearization (FBL) + [PD+FFW] = "COMPUTED TORQUE"
u = M(Qlia +Kp(qa — @) + Kp(Ga — 91 +7(q, ) |
4. feedback linearization (FBL) + [PID+FFW]

u = M(q) éid+Kp(qd—q)+KD(61d—6'1)+K1j(qd—q)dt + 7(q, q)

more robust to uncertainties, but also more complex to implement in real time
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Feedback linearization control

a + u

da + Kpqa + o + 149 q q
 Kpgy M (@) @—i O-po—{ [ /71 =
n(q, q)

symmetric and

positive definite A(q,d)
matrices Kp, K 1.9
K, |

in nominal

conditions :> M(q)§ +n(q,q) =u=M(q)a+n(q,q) ‘ q = al
(M =M, =n) > ~ 7 v ~ linear and

nonlinear robot dynamics nonlinear control law decoupled
global asymptotic system

stabilization a={dq+Kp(qq —q) + Kp(qq —q)
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Interpretation in the linear domain

. . a=q
da + KTDQd + ?PQd;Q
> 0, diagonal Kp

v

J

q

q

Kp [—

under feedback linearization control, the robot has a dynamic behavior that is
invariant, linear and decoupled in its whole workspace (V (g, c']))\

linearity

a unitary mass (m = 1) in the joint space !!

error transients e; = q4; — q; — 0 exponentially, prescribed by Kp;, Kp; choice |

decoupling

each joint coordinate g; evolves independently from the others, forced by a; ‘

e + KDe ~+ er =0 & el +KDiéi + Kpiei =0
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Addition of an integral term: PID

whiteboard...
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3 ¢ = dai ~ i=1,..,N) o) e+ Kp;e; + Kpje; + KPijeidT =0
1 =(6
L[ei(t)](?’) (52 + Kpis + Kp; + Kj; —) ei(s)=0 3 1 Kp; expon(en)tial
; 5 > 2 Kb Kri stability
s X (?) (s® + Kp;s* + Kp;s + K;;)e;(s) =0 (=>5) 1 |(KpiKp; — K;3)/Kp; conditions by
0 Ki; Routh criterion
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Remarks

= desired joint trajectory can be generated from Cartesian data
: ﬁd (t)' pd (O)' Pd (O)
qdl<0> qdl<0> q4(0) = £ (pa(0))

) 9a(t) 44 (0) = J7(94(0))pa (0)

1@ — ] 1 9% O 4,0) = ] @) [Fa(® - J@0)d]

= real-time computation by Newton-Euler algo: urz; = NE,(q,q, a)

= Ssimulation of feedback linearization control
true parameters

da (t), qd (t); ]
. > {q
Ga(t) feedback robot .
linearization > 4
estimated parameters &# I ¥

Hint: there is no use in simulating this control law in ideal case (it = m); robot behavior
will be identical to the linear and decoupled case of stabilized double integrators!!
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Further comments

= choice of the diagonal elements of K,, K, (and K,)
= for shaping the error transients, with an eye to motor saturations...

e(t) = qq(t) —q(t)

critically damped transient

t
= parametric identification
= to be done in advance, using the property of linearity in the dynamic
coefficients of the robot dynamic model
= choice of the sampling time of a digital implementation
= compromise between computational time and tracking accuracy,
typically T, = 0.5 +- 10 ms
= exact linearization by (state) feedback is a general technique
of nonlinear control theory
= can be used for robots with elastic joints, wheeled mobile robots, ...

= non-robotics applications: satellites, induction motors, helicopters, ...
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Another example of feedback linearization design

= dynamic model of robots with elastic joints
= g = link position } 2N generalized
= 6 = motor position (after reduction gears) coordinates (q, 6)

= B,, = diagonal matrix (> 0) of inertia of the (balanced) motors
= K = diagonal matrix (> 0) of (finite) stiffness of the joints

H state {M(q)éi tc@d+9@+K@-0=0 (@

= IS there a control law that achieves exact linearization via feedback?
u = a(q, 0, q,e’) + ,B(q, 0, q,é) a

d q; linear and decoupled system:
YES | and it YIeldS L __ =q;, i=1,.., N N chains of 4 integrators
dt? (to be stabilized by linear

control design)

Hint: differentiate (1) w.r.t. time until motor acceleration 8 appears;,
substitute this from (2),; choose u so as to cancel all nonlinearities ...
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u=M(@)4s +S5(q,9)qq + 9(q) + Fyq, + Kpe + Kpé

SPECIAL factorization such that symmetric and
M — 25 is skew-symmetric positive definite matrices

= global asymptotic stability of (e, é) = (0,0) (trajectory tracking)
= proven by Lyapunov+Barbalat+LaSalle

= does not produce a complete cancellation of nonlinearities

« the g and ¢ that appear linearly in the model are evaluated on the
desired trajectory

= does not induce a linear and decoupled behavior of the
trajectory error e(t) = q4(t) — q(t) in the closed-loop system

= lends itself more easily to an adaptive version
= cannot be computed directly by the standard NE algorithm...
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Analysis of asymptotic stability

of the trajectory error - 1

M(q)g +S(q,q9)qg + g(q) + F,q = u robot dynamics (including friction)
control law u = M(q)Gz + S(q,9)q,; + g(q) + F,q,; + Kpe + Kpé

= Lyapunov candidate and its time derivative

1 1 o1 .
V= EéTM(q)é + EeTer >0 = V= > eTM(q)ée +eé"M(q)é + e Kpé

= the closed-loop system equations vyield
M(q)é = —S(q,q)é — (Kp + Fy)é — Kpe
= substituting and using the skew-symmetric property
V=-eT(Kyp+ Fyeée <0 V=0 & ¢=0

= since the system is time-varying (due to g4(t)), direct application

of LaSalle theorem is NOT allowed = use Barbalat lemma... S“:;egiot?n

q=q;,(t)—e,qg=q4(t)—é = V=V(eet)=V(xt) blocks

-

rror state x
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Analysis of asymptotic stability

of the trajectory error - 2

= since i) V is lower bounded and i) V < 0, we can check condition iii)
in order to apply Barbalat lemma

V =-2eT(Kp + F,)é ... is this bounded?
= from i) + ii), V is bounded = e and é are bounded _ gis
= assume that the desired trajectory has bounded velocity g4 bounded
= using the following two properties of dynamic model terms
o<m<|IMIPIlsM<o  |IS(q DI < asllgll
then also e will be bounded (in norm) since -
é=-M""(q)[S(q,q)é + Kpe + (Kp + Fy)é]
T I T T T L lim V() =0
bounded bounded bounded bounded t—oo
in norm by M
bounded
in norm by asl||¢|| €<— bounded |
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Analysis of asymptotic stability

of the trajectory error — end of proof

= We can now conclude by proceeding as in LaSalle theorem
V=0 © =0
= the closed-loop dynamics in this situation is

M(q)é = —Kpe

= =0 © e=0 = (¢¢)=(0,0)
is the largest
invariant setin IV = 0

- (global) asymptotic tracking
will be achieved 4
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Reqgulation as a special case

= What happens to the control laws designed for trajectory
tracking when g, is constant? are there simplifications?

»s feedback linearization
u=M()|Kp(qqa —q) — Kpql +c(q,q) + g(q)

= no special simplifications

= however, this is a solution to the regulation problem with
exponential stability (and decoupled transients at each joint!)

= alternative global controller
u=Kp(qa —q) —Kpq+9(q)

= we recover the PD + gravity cancellation control law!!
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Trajectory execution without a model

= IS it possible to accurately reproduce a desired smooth joint-
space reference trajectory with reduced or no information on
the robot dynamic model?

= this is feasible in case of repetitive motion tasks over a finite
interval of time

= trials are performed iteratively, storing the trajectory error
information of the current execution [k-th iteration] and

processing it off line before the next trial [(k + 1)-iteration] starts

= the robot should be reinitialized in the same initial position at the
beginning of each trial

= the control law is made of a non-model based part (typically, a
decentralized PD law) + a time-varying feedforward which is
updated at every trial

= this scheme is called iterative trajectory learning
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Scheme of iterative trajectory Iearning

= control design can be illustrated on a SISO linear system
in the Laplace domain

Vies (1)

Learning - Memory (k+1)
Algornithm . _
Memory (k) “plug-in” signal:
u'(t) < v1(t) =0 at

ya) + _ elt) yay first (k = 1) iteration
Controller Plant .
C(s) u(t) P(s)
W(s) = y(s) _ P(s)C(s) closed-loop system without learning
yq(s) 14+ P(s)C(s) (C(s)is, e.g., a PD control law)

U (s) = uy,(s) + vi(s) = C(s)ex(s) + vi(s) control law at iteration k
P(s)
1+ P(s)C(s)
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Background math on feedback loops

whiteboard...

= algebraic manipulations on block diagram signals in the Laplace domain:
x(s) = L[x(®)], x ={yg, y,u',v,e} = {yq, Vi, U, Vi, €r}, With transfer functions

earmng. o[ wamary g y(s) = P(s)u(s) = P(s)(v(s) +u'(s))

Algorithm Memory (k) = P(s)v(s) + P(s)C(s)e(s)
= P(s)v(s) + P(s)C(s)(ya(s) — y(s))

o Pis) e = (LH+PECE) () =

yal) +__elt)

C(s) m
= PSV(s) + PECEYa(s)
P(s)C P
= V) = o s Yl F T p e V) = W) + W ()

= feedback control law at iteration k
u}, (5) = C()(ya(s) — yi(s)) = C()ya(s) — P(s)C(5) (v (s) + up(s))

C(s) P(s)C(s) v, (5) = W.(5)y(s) — W(s)v,(s)

= UG =1 5mem S TTrrece)

= error at iteration k
er(s) = yq(8) —yp(s) = yu(s) — (W(S)Yd (s) + Wv(S)Vk(S)) = (1 — W(S))Yd(s) — W, (s)v (s)

cobotiee 2 We(s) = 1/(1 +PEIC) p



Learning update law

= the update of the feedforward term is designed as

with a and [ suitable filters
Vi+1(8) = a(S)ug(s) + B(5)vk(s) (also non—causfl, of the FIR type)

recursive expression _a(s)C(s) B
of feedforward term "¥+10) = T (e el T (BS) — als)W(s)vi(s)
recursive expression 1—L(s)

of error e = vy %1 = T pi o0 Ya®) + (B6) — a&W)er(s)

= if @ contraction condition can be enforced
|IB(s) — a(s)W(s)| < 1| (for all s = jw frequencies such that ...)

then convergence is obtained for k — o

Ya(s) a(s)W(s) () = — (s) 1—B(s)
P(s) 1-B(s) +a®W(s) ) T1+PGE)C(s)1—B() + a(s)W(s)

Voo (S) =
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Proof of recursive updates

whiteboard...

= recursive expression for the feedworward v,
Vis1(8) = a($)ur(s) + B()vi(s) = als)C(s)er(s) + B(s)vy(s)
= a(s)C(s)[We(s)ya(s) — Wy (s)vi(s)] + B(s)vy(s)

a(s)C(s)
=1 P()C(S) ya(s) + (B(s) — a(s)W(s)) vy (s)

= recursive expression for the error e,
ex(s) = ya(s) —yr(s) = Yd(S) — P(s)(vr(s) + u(s))

= ) = 5 (a6 - () =) =y

Vi+1(8) = P(S)(vk+1(s) + uk+1(5)) P(S)(Q(S)UR(S) + B(s)vg(s) + uk+1(5))
= P(5) (a()C()en(s) + BS) 5 (va(s) — () = BGIC()en(s) + C(Seras (5)
ex+1(8) = y4(s) — yi41(s)
= (1 - B()) yals) —[(als) = B(s))P(s)C(s) — B(s)]er(s) — P(s)C(s)ej41(s)

1-p(s)
14+ P(s)C(s)

P()

Ya(s) + (B(s) — a(s)W(s)) ex(s)

= ep41(s) =
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Proof of convergence

whiteboard...

from recursive expressions

C
s (5) = T e = a(5) + (BS) — €W () w49
1 —
() = o Dy (5) + (B() - AW (S)) ex(s)

1+ P(s)C(s)
compute variations from k to k + 1 (repetitive term in trajectory y, vanishes!)

AV 1(S) = Vy1(S) — vi(s) = (B(s) — a(s)W(s)) Avg(s)

Aey11(s) = epi1(s) — ex(s) = (B(s) — als)W(s)) Aex(s)
by contraction mapping condition |S(s) — a(s)W(s)| < 1 = {v,} = vy, {er} = ew

C
al5) = T e TS a(s) + (B) — W) va(s)
1 —
cals) = T p i = a(s) + (B(5) — aGIW () a(s
L e 2 aOW ) o) = Vi) 1 - B(s)

P(s) 1—LB(s) + a(s)W(s) 1+ P(s)C(s)1—B(s) + a(s)W(s)
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Comments on convergence

= if the choice [/ = 1 allows to satisfy the contraction condition, then
convergence to zero tracking error is obtained

€xo(s) =0
and the inverse dynamics command has been learned
Va(s)
Voo (S) =
p(s)

= in particular, for a(s) = 1/w(s) convergence would be in 1 iteration only!

= the use of filter B(s) # 1 allows to obtain convergence (but with residual
tracking error) even in presence of unmodeled high-frequency dynamics

= the two filters can be designed from very poor  E——
information on system dynamics, using classic o e
tools (e.g., Nyquist plots) )
f J
/
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Application to robots

= for N-dof robots modeled as
(B + M(]G + [Fvy +S(q, Plg + 9(q) = u
we choose as (initial = pre-learning) control law
u=u =Kp(qq —q) +Kp(Ga —¢) + 5(q)

and design the learning filters (at each joint) using
the linear approximation

. Kn:s 4+ Ko
Wi(S) _ CIL(S) — — 1315 P1 i = 1,---,N
Qai(s)  Bps?+ (Fy; + Kpi)s + Kp;
= initialization of feedforward uses the best estimates
vy = By + M(q0)|Ga + [Fv + 5(qa, ) |ga + §(qa)
or simply v, = 0 (in the worst case) at first trial k = 1
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Experimental set-up

= joints 2 and 3 of 6R MIMO CRF robot prototype @DIS
n'\ ?zm‘

~ 90% gravity
balanced
through springs

high level of
dry friction

Harmonic Drives
transmissions
with ratio 160:1

DSP T, = 400us

desired velocity/position for both jointsg

e /1600 T T

s0Us :
! \ |

|
|
|
\ 1

D/A = 12 bit
R/D = 16 bit/2m

A/D = 11 bit/(rad/s)

-+

) R L ]
0 1 2 3 4 o 6 7 8 9 10
r\‘ J
Amplifier ' .
— M o/a [ “Moor DC motors with
) T i .
o §|_ oigital (%] tms | |& el current amplifiers
XT286 e 32025 g V) q,
l_ Ports | |-=5=<-- R/D f—
Ports - resolvers and
3 Sensors
S Pasition tachometers
o . A/D ‘il and Speed
e — > - —> < >

Supervision and Learning  Digital Controller
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Interface to the Robot Robot Arm

De Luca, Paesano, Ulivi: IEEE Trans Ind Elect, 1992
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joint 2

Experimental results
oo e‘rrorvforkz1,2;,506,'12'

Robotics 2 feedback u,, for k = 1,3,6,12

¢ quiof
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