
Robotics 2

Prof. Alessandro De Luca

Iterative Learning 
for Gravity Compensation



Control goal

n regulation of arbitrary equilibrium configurations in the 
presence of gravity
n without explicit knowledge of robot dynamic coefficients (nor of 

the structure of the gravity term) 
n without the need of “high” position gain
n without complex conditions on the control gains

n based on an iterative control scheme that uses
1. PD control on joint position error + constant feedforward term
2. iterative update of the feedforward term at successive steady-

state conditions

n derive sufficient conditions for the global convergence 
of the iterative scheme with zero final error
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Preliminaries
n robot dynamic model

n available bound on the gradient of the gravity term

n regulation attempted with a joint-based PD law 
(without gravity cancellation nor compensation)

n at steady state, there is a non-zero error left
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𝑀 𝑞 �̈� + 𝑐 𝑞, �̇� + 𝑔 𝑞 = 𝑢

𝜕𝑔(𝑞)
𝜕𝑞 ≤ 𝛼

𝑢 = 𝐾1 𝑞2 − 𝑞 − 𝐾4�̇� 𝐾1 > 0, 𝐾4 > 0

𝑔(7𝑞) = 𝐾1 𝑞2 − 7𝑞 �̅� = 𝑞2 − 7𝑞 ≠ 0𝑞 = 7𝑞, �̇� = 0



Iterative control scheme

n control law at the 𝑖-th iteration (for 𝑖 = 1, 2, …)

with a constant compensation term 𝑢?@A (feedforward)
n 𝐾1 > 0,𝐾4 > 0 are chosen diagonal for simplicity
n 𝑞B is the initial robot configuration
n 𝑢B = 0 is the ‘easiest’ initialization of the feedforward term
n at the steady state of the 𝑖-th iteration (𝑞 = 𝑞?, �̇� = 0), one has

n update law of the compensation term (for next iteration)
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← for implementation → [ for analysis ]

𝑢 = 𝛾𝐾1 𝑞2 − 𝑞 − 𝐾4�̇� + 𝑢?@A 𝛾 > 0

𝑔(𝑞?) = 𝛾𝐾1 𝑞2 − 𝑞? + 𝑢?@A

𝑢? = 𝛾𝐾1 𝑞2 − 𝑞? + 𝑢?@A = 𝑔(𝑞?)



Convergence analysis

n condition (a) is sufficient for the global asymptotic stability 
of the desired equilibrium state when using

with a known gravity term and diagonal gain matrices
n the additional sufficient condition (b) guarantees the 

convergence of the iterative scheme, yielding

Theorem
(a)
(b)

guarantee that the sequence {𝑞B, 𝑞A, 𝑞E, … } converges to 𝑞𝑑
(and �̇� = 0) from any initial value 𝑞B (and �̇�B), i.e., globally
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𝑢 = 𝐾1 𝑞2 − 𝑞 − 𝐾4�̇� + 𝑔(𝑞2)

𝜆IJK 𝐾1 > 𝛼
𝛾 ≥ 2

lim
?→Q

𝑢? = 𝑔(𝑞2)



Proof
n let 𝑒? = 𝑞2 − 𝑞? be the error at the end of the 𝑖-th iteration; 

based on the update law, it is 𝑢? = 𝑔(𝑞?) and thus

n on the other hand, from the update law it is

n combining the two above relations under (a), we have

Robotics 2 6

𝑢? − 𝑢?@A = 𝑔(𝑞?) − 𝑔(𝑞?@A) ≤ 𝛼 𝑞? − 𝑞?@A
≤ 𝛼 𝑒? + 𝑒?@A

𝑢? − 𝑢?@A = 𝛾 𝐾1𝑒?

𝛾𝛼 𝑒? < 𝛾𝜆IJK 𝐾1 𝑒? ≤ 𝛾 𝐾1𝑒? ≤ 𝛼 𝑒? + 𝑒?@A

or 𝑒? <
1
𝛾

𝑒? + 𝑒?@A



Proof (cont)

n condition (b) guarantees that the error sequence {𝑒B, 𝑒A, 𝑒E, … }

is a contraction mapping, so that

with asymptotic convergence from any initial state

⇒ the robot progressively approaches the desired configuration  
through successive steady-state conditions
n 𝐾1 and 𝐾4 affect each transient phase
n coefficient 𝛾 drives the convergence rate of intermediate steady states 

to the final one
Robotics 2 7

lim
?→Q

𝑒? = 0

𝑒? <
A
T

1 − A
T
𝑒?@A =

1
𝛾 − 1

𝑒?@A



Remarks

n combining (a) and (b), the sufficient condition only requires the 
doubling of the proportional gain w.r.t. the known gravity case

n for a diagonal U𝐾1, this condition implies a (positive) lower bound 
on the single diagonal elements of the matrix

n again, it is only a sufficient condition
n the scheme may converge even if this condition is violated ... 

n the scheme can be interpreted as using an integral term
n updated only in correspondence of a discrete sequence of time 

instants
n with guaranteed global convergence (and implicit stability)
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U𝐾1 = 𝛾𝐾1 𝜆IJK U𝐾1 > 2𝛼



Numerical results
n 3R robot with uniform links, moving in the vertical plane

n three cases, from the downward position 𝑞B = (0, 0, 0)
I: 𝑞2 = (𝜋/2, 0, 0)

II: 𝑞2 = (3𝜋/4, 0, 0)

III: 𝑞2 = (3𝜋/4, 0, 0)
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n with saturations of the actuating torques

𝑙A = 𝑙E = 𝑙[ = 0.5 [m]
𝑚A = 30,𝑚E = 20,𝑚[ = 10 [kg] 𝛼 ≅ 400

𝑈A,Iab = 800, 𝑈E,Iab = 400, 𝑈[,Iab = 200 [Nm]

U𝐾1 = diag 1000, 600, 280
𝐾4 = diag 200, 100, 20

U𝐾1 = diag 500, 500, 500
𝐾4 = as before



Case I: 𝑞2 = (𝜋/2, 0, 0)

joint position errors (zero after 3 updates)
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Case II: 𝑞2 = (3𝜋/4, 0, 0)
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joint position errors (zero after 5 updates)



Case III: 𝑞2 = (3𝜋/4, 0, 0), reduced gains

joint position errors (limit cycles, no convergence!)
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Final comments
n only few iterations are needed for obtaining convergence, 

learning the correct gravity compensation at the desired 𝑞𝑑
n sufficiency of the condition on the 𝑃 gain

n even if violated, convergence can still be obtained (first two cases); 
otherwise, a limit motion cycle takes place between two equilibrium 
configurations that are both incorrect (as in the third case)

n this shows how ‘distant’ is sufficiency from necessity
n analysis can be refined to get lower bounds on the 𝐾𝑃𝑖 (diagonal 

case) that are smaller, but still sufficient for convergence
n intuitively, lower values for 𝐾𝑃𝑖 should be sufficient for distal joints

n in practice, update of the feedforward term occurs when the 
robot is close enough to a steady state (joint velocities and 
position variations are below suitable thresholds)
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Control experiments with flexible robots
without gravity
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rest-to-rest maneuver in given motion time
for a single flexible link (PD + feedforward)

end-effector trajectory tracking for FlexArm
—a planar 2R robot with flexible forearm

video

video



Extension to flexible robots
n the same iterative learning control approach has been extended to 

position regulation in robots with flexible joints and/or links under gravity
n at the motor/joint level
n at the Cartesian level (end-effector tip position, beyond flexibility), using a 

double iterative scheme
n experimentally validated on the Two-link FlexArm @ DIS (now DIAG!)
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with supporting base 
tilted by approx ∆ = 6°

(inclusion of gravity)

6° tilt
from horizontal ∆



Experimental results for tip regulation
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motion task:
(0o,0o) ⇒ (90o,0o) first link position tip angle w.r.t. first link

double iterative scheme

second link deflection
De Luca, Panzieri: Int J Adapt Cont & Sign Proc, 1996

(factor 𝛾 → ⁄1 𝛽 in the original paper) 

3 iterations!

final deflection

0g sin ∆


