Robotics 2

Iterative Learning for Gravity Compensation

Prof. Alessandro De Luca

Dipartimento di ingegneria Informatica
Automatica e gestionale Antonio Ruberti

Control goal

- regulation of arbitrary equilibrium configurations in the presence of gravity
- without explicit knowledge of robot dynamic coefficients (nor of the structure of the gravity term)
- without the need of "high" position gain
- without complex conditions on the control gains
- based on an iterative control scheme that uses

1. PD control on joint position error + constant feedforward term
2. iterative update of the feedforward term at successive steadystate conditions

- derive sufficient conditions for the global convergence of the iterative scheme with zero final error

Preliminaries

- robot dynamic model

$$
M(q) \ddot{q}+c(q, \dot{q})+g(q)=u
$$

- available bound on the gradient of the gravity term

$$
\left\|\frac{\partial g(q)}{\partial q}\right\| \leq \alpha
$$

- regulation attempted with a joint-based PD law (without gravity cancellation nor compensation)

$$
u=K_{P}\left(q_{d}-q\right)-K_{D} \dot{q} \quad K_{P}>0, K_{D}>0
$$

- at steady state, there is a non-zero error left

$$
q=\bar{q}, \dot{q}=0 \quad g(\bar{q})=K_{P}\left(q_{d}-\bar{q}\right) \quad \bar{e}=q_{d}-\bar{q} \neq 0
$$

Iterative control scheme

- control law at the i-th iteration (for $i=1,2, \ldots$)

$$
u=\gamma K_{P}\left(q_{d}-q\right)-K_{D} \dot{q}+u_{i-1} \quad \gamma>0
$$

with a constant compensation term u_{i-1} (feedforward)

- $K_{P}>0, K_{D}>0$ are chosen diagonal for simplicity
- q_{0} is the initial robot configuration
- $u_{0}=0$ is the 'easiest' initialization of the feedforward term
- at the steady state of the i-th iteration $\left(q=q_{i}, \dot{q}=0\right)$, one has

$$
g\left(q_{i}\right)=\gamma K_{P}\left(q_{d}-q_{i}\right)+u_{i-1}
$$

- update law of the compensation term (for next iteration)

$$
\begin{array}{rll}
u_{i}=\gamma K_{P}\left(q_{d}-q_{i}\right)+u_{i-1} & {\left[=g\left(q_{i}\right)\right]} \\
& \leftarrow \text { for implementation } \rightarrow & {[\text { for analysis }]}
\end{array}
$$

Convergence analysis

Theorem

> (a) $\lambda_{\min }\left(K_{P}\right)>\alpha$
> (b) $\gamma \geq 2$
guarantee that the sequence $\left\{q_{0}, q_{1}, q_{2}, \ldots\right\}$ converges to q_{d} (and $\dot{q}=0$) from any initial value q_{0} (and \dot{q}_{0}), i.e., globally

- condition (a) is sufficient for the global asymptotic stability of the desired equilibrium state when using

$$
u=K_{P}\left(q_{d}-q\right)-K_{D} \dot{q}+g\left(q_{d}\right)
$$

with a known gravity term and diagonal gain matrices

- the additional sufficient condition (b) guarantees the convergence of the iterative scheme, yielding

$$
\lim _{i \rightarrow \infty}\left\|u_{i}\right\|=g\left(q_{d}\right)
$$

Proof

- let $e_{i}=q_{d}-q_{i}$ be the error at the end of the i-th iteration; based on the update law, it is $u_{i}=g\left(q_{i}\right)$ and thus

$$
\begin{aligned}
\left\|u_{i}-u_{i-1}\right\| & =\left\|g\left(q_{i}\right)-g\left(q_{i-1}\right)\right\| \leq \alpha\left\|q_{i}-q_{i-1}\right\| \\
& \leq \alpha\left(\left\|e_{i}\right\|+\left\|e_{i-1}\right\|\right)
\end{aligned}
$$

- on the other hand, from the update law it is

$$
\left\|u_{i}-u_{i-1}\right\|=\gamma\left\|K_{P} e_{i}\right\|
$$

- combining the two above relations under (a), we have

$$
\begin{gathered}
\gamma \alpha\left\|e_{i}\right\|<\gamma \lambda_{\min }\left(K_{P}\right)\left\|e_{i}\right\| \leq \gamma\left\|K_{P} e_{i}\right\| \leq \alpha\left(\left\|e_{i}\right\|+\left\|e_{i-1}\right\|\right) \\
\text { or }\left\|e_{i}\right\|<\frac{1}{\gamma}\left(\left\|e_{i}\right\|+\left\|e_{i-1}\right\|\right)
\end{gathered}
$$

Proof (cont)

- condition (b) guarantees that the error sequence $\left\{e_{0}, e_{1}, e_{2}, \ldots\right\}$

$$
\left\|e_{i}\right\|<\frac{\frac{1}{\gamma}}{1-\frac{1}{\gamma}}\left\|e_{i-1}\right\|=\frac{1}{\gamma-1}\left\|e_{i-1}\right\|
$$

is a contraction mapping, so that

$$
\lim _{i \rightarrow \infty}\left\|e_{i}\right\|=0
$$

with asymptotic convergence from any initial state
\Rightarrow the robot progressively approaches the desired configuration through successive steady-state conditions

- K_{P} and K_{D} affect each transient phase
- coefficient γ drives the convergence rate of intermediate steady states to the final one

Remarks

- combining (a) and (b), the sufficient condition only requires the doubling of the proportional gain w.r.t. the known gravity case

$$
\widehat{K}_{P}=\gamma K_{P} \quad \Rightarrow \lambda_{\text {min }}\left(\widehat{K}_{P}\right)>2 \alpha
$$

- for a diagonal \widehat{K}_{P}, this condition implies a (positive) lower bound on the single diagonal elements of the matrix
- again, it is only a sufficient condition
- the scheme may converge even if this condition is violated ...
- the scheme can be interpreted as using an integral term
- updated only in correspondence of a discrete sequence of time instants
- with guaranteed global convergence (and implicit stability)

Numerical results

- 3 R robot with uniform links, moving in the vertical plane

$$
\begin{aligned}
& l_{1}=l_{2}=l_{3}=0.5[\mathrm{~m}] \\
& m_{1}=30, m_{2}=20, m_{3}=10[\mathrm{~kg}] \quad \square
\end{aligned}
$$

- with saturations of the actuating torques

$$
U_{1, \max }=800, U_{2, \max }=400, U_{3, \max }=200[\mathrm{Nm}]
$$

- three cases, from the downward position $q_{0}=(0,0,0)$

$$
\begin{aligned}
& \text { I: } \left.\quad q_{d}=(\pi / 2,0,0)\right\}\left\{\widehat{K}_{P}=\operatorname{diag}\{1000,600,280\}\right. \\
& \text { II: } \left.q_{d}=(3 \pi / 4,0,0)\right\}\left\{K_{D}=\operatorname{diag}\{200,100,20\}\right. \\
& \text { III: } q_{d}=(3 \pi / 4,0,0) \quad\left\{\begin{array}{l}
\widehat{K}_{P}=\operatorname{diag}\{500,500,500\} \\
K_{D}=\text { as before }
\end{array}\right.
\end{aligned}
$$

Case I: $q_{d}=(\pi / 2,0,0)$

joint position errors (zero after 3 updates)

control torques

Case II: $q_{d}=(3 \pi / 4,0,0)$

joint position errors (zero after 5 updates)

Robotics 2

control torques

Case III: $q_{d}=(3 \pi / 4,0,0)$, reduced gains

joint position errors (limit cycles, no convergence!)

Robotics 2

control torques

Final comments

- only few iterations are needed for obtaining convergence, learning the correct gravity compensation at the desired q_{d}
- sufficiency of the condition on the P gain
- even if violated, convergence can still be obtained (first two cases); otherwise, a limit motion cycle takes place between two equilibrium configurations that are both incorrect (as in the third case)
- this shows how 'distant' is sufficiency from necessity
- analysis can be refined to get lower bounds on the $K_{P_{i}}$ (diagonal case) that are smaller, but still sufficient for convergence
- intuitively, lower values for $K_{P i}$ should be sufficient for distal joints
- in practice, update of the feedforward term occurs when the robot is close enough to a steady state (joint velocities and position variations are below suitable thresholds)

Control experiments with flexible robots without gravity

video

rest-to-rest maneuver in given motion time for a single flexible link (PD + feedforward)
video

end-effector trajectory tracking for FlexArm -a planar 2 R robot with flexible forearm

Extension to flexible robots

- the same iterative learning control approach has been extended to position regulation in robots with flexible joints and/or links under gravity
- at the motor/joint level
- at the Cartesian level (end-effector tip position, beyond flexibility), using a double iterative scheme
- experimentally validated on the Two-link FlexArm @ DIS (now DIAG!)

with supporting base tilted by approx $\Delta=6^{\circ}$ (inclusion of gravity)

Experimental results for tip regulation

