Robotics 2

Position Regulation
 (with an introduction to stability)

Prof. Alessandro De Luca

Equilibrium states of a robot

$$
M(q) \ddot{q}+c(q, \dot{q})+g(q)=u \quad x=\binom{x_{1}}{x_{2}}=\binom{q}{\dot{q}}
$$

$$
\begin{aligned}
\dot{x}=\binom{\dot{x}_{1}}{\dot{x}_{2}} & =\binom{x_{2}}{-M^{-1}\left(x_{1}\right)\left[c\left(x_{1}, x_{2}\right)+g\left(x_{1}\right)\right]}+\binom{0}{M^{-1}\left(x_{1}\right)} u \\
& =f(x)+G\left(x_{1}\right) u
\end{aligned}
$$

x_{e} unforced equilibrium

$$
(u=0)
$$

$$
f\left(x_{e}\right)=0 \Rightarrow\left\{\begin{array}{r}
x_{e 2}=0 \\
g\left(x_{e 1}\right)=0
\end{array}\right.
$$

$\underset{(u=u(x))}{x_{e} \text { forced equilibrium }} \Rightarrow f\left(x_{e}\right)+G\left(x_{e 1}\right) u\left(x_{e}\right)=0 \Rightarrow\left\{\begin{array}{c}x_{e 2}=0 \\ u\left(x_{e}\right)=g\left(x_{e 1}\right)\end{array}\right.$
all equilibrium states of mechanical systems have zero velocity! at the equilibrium!

Stability of dynamical systems

 definitions - 1$$
\dot{x}=f(x) \quad \begin{gathered}
\text { e.g., a closed-loop system } \\
\text { (under feedback control) }
\end{gathered}
$$

x_{e} equilibrium: $f\left(x_{e}\right)=0$
(sometimes we consider as equilibrium state $x_{e}=0$, e.g., when using errors as variables)
stability of x_{e}
$\forall \varepsilon>0, \exists \delta_{\varepsilon}>0:\left\|x\left(t_{0}\right)-x_{e}\right\|<\delta_{\varepsilon} \Rightarrow\left\|x(t)-x_{e}\right\|<\varepsilon, \forall t \geq t_{0}$
asymptotic stability of $x_{e} \quad$ stability +

$$
\exists \delta>0:\left\|x\left(t_{0}\right)-x_{e}\right\|<\delta \Rightarrow\left\|x(t)-x_{e}\right\| \rightarrow 0 \text {, for } t \rightarrow \infty
$$

asymptotic stability may become global ($\forall \delta>0$, finite)

note: these are definitions of stability "in the sense of Lyapunov"

Stability vs. asymptotic stability

 whiteboard...

equilibrium state x_{e} is stable

equilibrium state x_{e} is asymptotically stable

Stability of dynamical systems

 definitions-2
exponential stability of x_{e}

exponential rate λ

$$
\exists \delta, c, \lambda>0:\left\|x\left(t_{0}\right)-x_{e}\right\|<\delta \Longrightarrow\left\|x(t)-x_{e}\right\| \leq c e^{-\lambda\left(t-t_{0}\right)}\left\|x\left(t_{0}\right)-x_{e}\right\|
$$

- allows to estimate the time needed to "approximately" converge: for $c=1$, in $t-t_{0}=3 \times$ the time constant $\tau=1 / \lambda$, the initial error is reduced to 5%
- typically, this is a local property only (within some maximum finite radius δ)
\Rightarrow such "domain of attraction" is hard to be estimated accurately

"practical" stability of a set S

$$
\exists T\left(x\left(t_{0}\right), S\right) \in \mathbb{R}: x(t) \in S, \forall t \geq t_{0}+T\left(x\left(t_{0}\right), S\right)
$$

a finite time also known as u.u.b. stability
\Rightarrow trajectories $x(t)$ are "ultimately uniformly bounded" (use in robust control)

The need for analysis and criteria

 whiteboard...a nonlinear system $\dot{x}=f(x)$ in \mathbb{R}^{2} two equilibria $f\left(x_{e}\right)=0$

$$
\left\{\begin{array}{l}
\dot{x}_{1}=1-x_{1}^{3} \\
\dot{x}_{2}=x_{1}-x_{2}^{2}
\end{array} \quad \square \quad x_{e}^{\prime}=(1,1), \quad x_{e}^{\prime \prime}=(1,-1)\right.
$$

to assess (asymptotic) stability [or not] of equilibria, do we need to compute all system trajectories, starting from all possible initial states $x\left(t_{0}\right)$?

rather, we may be able to just look at the time evolution of a scalar function V, evaluated analytically along the state trajectories of the system (even in \mathbb{R}^{n} !)

Stability of dynamical systems

Lyapunov candidate $V(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
V\left(x_{e}\right)=0, V(x)>0, \forall x \neq x_{e} \longleftarrow \begin{aligned}
& \text { positive } \\
& \text { definite } \\
& \text { function }
\end{aligned}
$$

typically quadratic (e.g., $\frac{1}{2}\left(x-x_{e}\right)^{T} P\left(x-x_{e}\right)$ with level surfaces $=$ ellipsoids $)$ may also be a local candidate only ($\forall x \neq x_{e}:\left\|x-x_{e}\right\|<\delta$)

$$
\begin{array}{|l}
\hline \text { sufficient condition of stability } \\
\hline \exists V \text { candidate: } \dot{V}(x) \leq 0 \text {, along the trajectories of } \dot{x}=f(x) \\
\hline \text { sufficient condition of asymptotic stability } \\
\exists V \text { candidate: } \dot{V}(x)<0 \text {, along the trajectories of } \dot{x}=f(x) \\
\hline \text { sufficient condition of instability } \\
\exists V \text { candidate: } \dot{V}(x)>0 \text {, along the trajectories of } \dot{x}=f(x) \\
\hline
\end{array}
$$

Stability of dynamical systems

results - 2

sufficient condition of u.u.b. stability of a set S
$\exists V$ candidate: i) S is a level set of V for a given c_{0}

$$
S=S\left(c_{0}\right)=\left\{x \in \mathbb{R}^{n}: V(x) \leq c_{0}\right\}
$$

ii) $\dot{V}(x)<0$ along trajectories of $\dot{x}=f(x), x \notin S$

LaSalle Theorem

if $\exists V$ candidate: $\dot{V}(x) \leq 0$ along the trajectories of $\dot{x}=f(x)$
then system trajectories asymptotically converge to the largest invariant set $\mathcal{M} \subseteq S=\left\{x \in \mathbb{R}^{n}: \dot{V}(x)=0\right\}$
\mathcal{M} is invariant if $x\left(t_{0}\right) \in \mathcal{M} \Rightarrow x(t) \in \mathcal{M}, \forall t \geq t_{0}$

Corollary

$$
\mathcal{M} \equiv\left\{x_{e}\right\} \Rightarrow \text { asymptotic stability }
$$

Bird-eye view on Lyapunov analysis

a mass m at the end of an unforced (passive) pendulum of length l $m l^{2} \ddot{\theta}+b \dot{\theta}+m l g_{0} \sin \theta=0$
lower equilibrium at $\theta_{e}=0$$\Rightarrow \begin{array}{r}x=\left(x_{1}, x_{2}\right) \\ =(\theta, \dot{\theta}) \in \mathbb{R}^{2}\end{array} \Rightarrow\left\{\begin{array}{l}\dot{x}_{1}=x_{2} \\ \dot{x}_{2}=-\left(\frac{g_{0}}{l}\right) \sin x_{1}-\left(\frac{b}{m l^{2}}\right) x_{2}\end{array}\right.$ phase plane

$$
V=E=\frac{1}{2} m l^{2} \dot{\theta}^{2}+m l g_{0}(1-\cos \theta) \geq 0 \quad V=0 \Leftrightarrow x_{e}=\left(\theta_{e}, \dot{\theta}_{e}\right)=(0,0)
$$

$$
\dot{V}=\dot{\theta}\left(m l^{2} \ddot{\theta}+m l g_{0} \sin \theta\right)=-b \dot{\theta}^{2} \leq 0 \Rightarrow \begin{aligned}
& \text { stability of equilibrium } x_{e}=0 \\
& \text { (..at least!) }
\end{aligned}
$$

$$
\Rightarrow \text { use LaSalle: } \dot{V}=0 \Leftrightarrow \dot{\theta}=0 \Rightarrow \ddot{\theta}=-\left(\frac{g_{0}}{l}\right) \sin \theta \neq 0 \text { unless } \theta=\theta_{e}=0 \text { (or } \pi!\text {) }
$$

Stability of dynamical systems

- previous results are also valid for periodic time-varying systems

$$
\dot{x}=f(x, t)=f\left(x, t+T_{p}\right) \Rightarrow V(x, t)=V\left(x, t+T_{p}\right)
$$

- for general time-varying systems (e.g., in robot trajectory tracking control)

Barbalat Lemma

$$
\dot{x}=f(x, t)
$$

if i) a function $V(x, t)$ is lower bounded
ii) $\dot{V}(x, t) \leq 0$
then $\Rightarrow \exists \lim _{t \rightarrow \infty} V(x, t)$ (but this does not imply that $\lim _{t \rightarrow \infty} \dot{V}(x, t)=0$)
if in addition iii) $\ddot{V}(x, t)$ is bounded

$$
\text { then } \Rightarrow \lim _{t \rightarrow \infty} \dot{V}(x, t)=0
$$

Corollary

if a Lyapunov candidate $V(x, t)$ satisfies Barbalat Lemma along the trajectories of $\dot{x}=f(x, t)$, then the conclusions of LaSalle Theorem hold

Stability of linear systems

time-invariant case

$\dot{x}=A x$
 $x_{e}=0$ is always an equilibrium state

I. asymptotic stability
II. global asymptotic stability
III. exponential stability
IV. $\sigma(A) \subset \mathbb{C}^{-}$(all eigenvalues of A have negative real part)
V. $\quad \forall Q>0$ (positive definite), $\exists!P>0: A^{T} P+P A=-Q$

Lyapunov equation $\Rightarrow \frac{1}{2} x^{T} P x$ is a Lyapunov candidate
ALL EQUIVALENT !!
if $x_{e}=0$ is an asymptotically stable equilibrium, then it is necessarily the unique equilibrium

Stability of the linear approximation

Let $\Delta x=x-x_{e}$ and let $\dot{\Delta x}=\left.\frac{d f}{d x}\right|_{x=x_{e}}\left(x-x_{e}\right)=A \Delta x$ be the linear approximation of $\dot{x}=f(x)$ around the equilibrium x_{e}
A asymptotically stable $\left(\sigma(A) \subset \mathbb{C}^{-}\right)$

the original nonlinear system is exponentially stable at the origin
this is only a local result (used also to estimate the domain of attraction)

PD control

(proportional + derivative action on the error)

$$
\text { robot } M(q) \ddot{q}+c(q, \dot{q})+g(q)=u
$$

goal: asymptotic stabilization (= regulation) of the closed-loop equilibrium state

$$
q=q_{d}, \dot{q}=0
$$

possibly obtained from kinematic inversion: $q_{d}=f^{-1}\left(r_{d}\right)$

$$
\text { control law } u=K_{P}\left(q_{d}-q\right)-K_{D} \dot{q}
$$

$K_{P}>0, K_{D}>0$ (positive definite), symmetric

Asymptotic stability with PD control

Theorem 1
In the absence of gravity $(g(q)=0)$ ，the robot state $\left(q_{d}, 0\right)$ under the given PD joint control law is globally asymptotically stable

Proof

$$
\text { let } e=q_{d}-q
$$

（ q_{d} constant）
Lyapunov candidate $V=\frac{1}{2} \dot{q}^{T} M(q) \dot{q}+\frac{1}{2} e^{T} K_{P} e \geq 0 \quad V=0 \Leftrightarrow e=\dot{e}=0$

$$
\begin{aligned}
& \dot{V}=\dot{q}^{T} M \ddot{q}+\frac{1}{2} \dot{q}^{T} \dot{M} \dot{q}-e^{T} K_{P} \dot{q}=\dot{q}^{T}(u-\underbrace{S \dot{q}+\frac{1}{2} \dot{M} \dot{q}})-e^{T} K_{P} \dot{q} \\
& =0 \text {, due to energy conservation } \\
& =\dot{q}^{T} K_{P} 厄 ⿱ 亠 䒑 ⿱ 日 一 ~-~ \dot{q}^{T} K_{D} \dot{q}-e^{T} K_{P} \dot{q}=-\dot{q}^{T} K_{D} \dot{q} \leq 0 \quad\left(K_{D}>0 \text {, symmetric }\right)
\end{aligned}
$$

up to here，we proved
stability only but $\dot{V}=0 \Leftrightarrow \dot{q}=0 \xrightarrow{\text { continues．．．．}}$

Asymptotic stability with PD control

$$
\begin{gathered}
\dot{V}=0 \Leftrightarrow \dot{q}=0 \xrightarrow{\text { LaSalle }} \begin{array}{l}
\begin{array}{l}
\text { system trajectories converge to the largest } \\
\text { invariant set of states } \mathcal{M} \text { where } \dot{q} \equiv 0 \\
\text { (that is } \dot{q}=\ddot{q}=0)
\end{array} \\
\dot{q}=0 \Rightarrow \underbrace{M(q) \ddot{q}=K_{P} e}_{\text {closed-loop dynamics }} \Rightarrow \ddot{q}=\underbrace{M^{-1}(q) K_{P} e}_{\text {invertible }} \\
\dot{q}=0, \ddot{q}=0 \Leftrightarrow e=0
\end{array} \\
\Rightarrow \text { the only invariant state in } \dot{V}=0 \text { is given by } q=q_{d}, \dot{q}=0
\end{gathered}
$$

note: typically, $K_{P}=\operatorname{diag}\left\{k_{P i}\right\}, K_{D}=\operatorname{diag}\left\{k_{D i}\right\}$,
\Rightarrow decentralized linear control (local to each joint)

Mechanical interpretation

- for diagonal positive definite gain matrices K_{P} and K_{D} (thus, with positive diagonal elements), such values correspond to stiffness of "virtual" springs and viscosity of "virtual" dampers placed at the joints

Wh stiffness $k_{P i}>0$
-

Plot of the Lyapunov function V

- time evolution of the Lyapunov candidate

Comments on PD control - 1

- choice of control gains affects robot evolution during transients and practical settling times
- hard to define values that are "optimal" in the whole workspace
- "full" K_{P} and K_{D} gain matrices allow to assign desired eigenvalues to the linear approximation of the robot dynamics around the final desired state $\left(q_{d}, 0\right)$
- when (joint) viscous friction is present, the derivative term in the control law is not strictly necessary
- $-F_{V} \dot{q}$ in the robot model acts similarly to $-K_{D} \dot{q}$ in the control law, but the latter can be modulated at will
- in the absence of tachometers, the actual realization of the derivative term in the feedback law requires some processing of joint position data measured by digital encoders (or analog resolvers/potentiometers)

Comments on PD control - 2

- analog or digital implementation of derivative action in the control law when only position is measured at the joints (e.g., through encoders)
continuous-time control law (design)
representation in
the Laplace domain
representation in
the Laplace domain

$$
u(t)=K_{P} e(t)+K_{D} \dot{e}(t) \quad e=q_{d}-q, \dot{e}=-\dot{q}
$$

$$
\begin{aligned}
& u(s)=\left(K_{P}+K_{D} s\right) e(s) \\
& \text { not realizable as such }
\end{aligned}
$$ (non-proper transfer function)

transformation in the Zeta-domain (e.g., via backward differentiation rule on samples, every $T_{c} \mathrm{sec}$)

discrete-time implementations

$$
u_{k}=K_{P} e_{k}+K_{D} \frac{e_{k}-e_{k-1}}{T_{c}}
$$

both realizable

$$
\begin{aligned}
u_{k}= & K_{P} e_{k}+\frac{K_{D}}{\tau+T_{c}}\left(e_{k}-e_{k-1}\right) \\
& +\frac{\tau}{\tau+T_{c}}\left(u_{k-1}-K_{P} e_{k-1}\right)
\end{aligned}
$$

Inclusion of gravity

- in the presence of gravity, the same previous arguments (and proof) show that the control law

$$
u=K_{P}\left(q_{d}-q\right)-K_{D} \dot{q}+g(q) \quad K_{P}>0, K_{D}>0
$$

will make the equilibrium state ($q_{d}, 0$) globally asymptotically stable (nonlinear cancellation of gravity)

- if gravity is not cancelled or only approximately cancelled

$$
u=K_{P}\left(q_{d}-q\right)-K_{D} \dot{q}+\hat{g}(q) \quad \hat{g}(q) \neq g(q)
$$

it is $q \rightarrow q^{*} \neq q_{d}, \dot{q} \rightarrow 0$, with steady-state position error

- q^{*} is not unique in general, except when K_{P} is chosen large enough
- explanation in terms of linear systems: there is no integral action before the point of access of the constant "disturbance" acting on the system

PD control + constant gravity compensation

since $g(q)$ contains only trigonometric and/or linear terms in q, the following structural property holds
finite $\exists \alpha>0:\left\|\frac{\partial^{2} U}{\partial q^{2}}\right\|=\left\|\frac{\partial g}{\partial q}\right\| \leq \alpha, \forall q$

$$
\text { consequence } \square\left\|g(q)-g\left(q_{d}\right)\right\| \leq \alpha\left\|q-q_{d}\right\|
$$

$$
\begin{array}{ll}
& \text { induced } \\
\text { note: } & \text { norm of }
\end{array}\|A\|=\sqrt{\lambda_{\text {max }}\left(A^{T} A\right)} \triangleq A_{M} \geq A_{m} \triangleq \sqrt{\lambda_{\text {min }}\left(A^{T} A\right)}
$$

a matrix

LINEAR CONTROL law

$$
u=K_{P}\left(q_{d}-q\right)-K_{D} \dot{q}+g\left(q_{d}\right)
$$

$$
K_{P}, K_{D}>0
$$

symmetric
linear feedback + constant feedforward

PD control + constant gravity compensation

 stability analysis
Theorem 2

If $K_{P, m}>\alpha$, the state $\left(q_{d}, 0\right)$ of the robot under joint-space PD control

+ constant gravity compensation at q_{d} is globally asymptotically stable

Proof

1. $\left(q_{d}, 0\right)$ is the unique closed-loop equilibrium state
in fact, for $\dot{q}=0$ and $\ddot{q}=0$, it is $K_{P} e=g(q)-g\left(q_{d}\right)$
which can hold only for $q=q_{d}$, because when $q \neq q_{d}$

$$
\left\|K_{P} e\right\| \geq K_{P, m}\|e\|>\alpha\|e\| \geq\left\|g(q)-g\left(q_{d}\right)\right\|
$$

PD control + constant gravity compensation

 stability analysis$$
\begin{gathered}
\text { with } e=q_{d}-q, g(q)=\left(\frac{\partial U}{\partial q}\right)^{T}, \text { consider as Lyapunov candidate } \\
V=\frac{1}{2} \dot{q}^{T} M(q) \dot{q}+\frac{1}{2} e^{T} K_{P} e+U(q)-U\left(q_{d}\right)+e^{T} g\left(q_{d}\right)
\end{gathered}
$$

2. V is convex in \dot{q} and e, and zero only for $e=\dot{q}=0$

$$
\begin{array}{rlr}
\left(\frac{\partial V}{\partial \dot{q}}\right)^{T} & =M(q) \dot{q}=0 \text { only for } \dot{q}=0 & \Rightarrow \begin{array}{c}
\left(q_{d}, 0\right) \text { is a } \\
\text { global minimum } \\
\text { of } V \geq 0
\end{array} \\
\frac{\partial^{2} V}{\partial \dot{q}^{2}}=M(q)>0 & \\
\left(\frac{\partial V_{\mid \dot{q}=0}}{\partial e}\right)^{T}=K_{P} e-\left(\frac{\partial U}{\partial q}\right)^{T}+g\left(q_{d}\right)=K_{P} e+g\left(q_{d}\right)-g(q)=0 \\
\frac{\text { only for } q=q_{d}}{\partial e / \partial q=-I} \\
\frac{\partial^{2} V_{\mid \dot{q}=0}}{\partial e^{2}}=K_{P}+\frac{\partial^{2} U}{\partial q^{2}}>0, \text { since }\left\|K_{P}\right\|=K_{P, M} \geq K_{P, m}>\alpha
\end{array}
$$

PD control + constant gravity compensation

 stability analysis$$
\begin{aligned}
& \text { differentiating } \\
& V=\frac{1}{2} \dot{q}^{T} M(q) \dot{q}+\frac{1}{2} e^{T} K_{P} e+U(q)-U\left(q_{d}\right)+e^{T} g\left(q_{d}\right) \\
& \dot{V}=\dot{q}^{T}\left(M(q) \ddot{q}+\frac{1}{2} \dot{M}(q) \dot{q}\right)-e^{T} K_{P} \dot{q}+\frac{\partial U(q)}{\partial q} \dot{q}-\dot{q}^{T} g\left(q_{d}\right) \\
& =\dot{q}^{T}(u-\underbrace{S(q, \dot{q}) \dot{q}+\frac{1}{2} \dot{M}(q)}_{=0} \dot{=} \dot{=}-g(q))-e^{T} K_{P} \dot{q}+\dot{q}^{T}\left(g(q)-g\left(q_{d}\right)\right) \\
& =\dot{\dot{q}}^{T} K_{P} e-\dot{q}^{T} K_{D} \dot{q}+\dot{\dot{q}}^{T}\left(g\left(q_{d}\right)-g(\underline{q})\right)-\grave{e}^{T} K_{P} \dot{q}+\dot{q}^{T}\left(g(q)-g\left(q_{d}\right)\right) \\
& =-\dot{q}^{T} K_{D} \dot{q} \leq 0
\end{aligned}
$$

for $\dot{V}=0(\Leftrightarrow \dot{q}=0)$, we have in the closed-loop system

$$
\begin{aligned}
M(q) \ddot{q}+g(q) & =K_{P} e+g\left(q_{d}\right) \\
& \Rightarrow \ddot{q}=M^{-1}(q)\left(K_{P} e+g\left(q_{d}\right)-g(q)\right)=0 \Leftrightarrow e=0
\end{aligned}
$$

by LaSalle Theorem, the thesis follows

Example of a single-link robot

 stability analysis
task: regulate the link position to the upward equilibrium

$$
\theta_{d}=\pi \rightarrow g\left(\theta_{d}\right)=0
$$

PD control + constant gravity compensation (here, zero!)

$$
u=k_{P}(\pi-\theta)-k_{D} \dot{\theta}
$$

by Theorem 2 , it is sufficient (here, also necessary*) to choose

$$
k_{P}>\alpha=m g_{0} d, \quad k_{D}>0
$$

$I \ddot{\theta}+m g_{0} d \sin \theta=u$

plots of $V(\theta)($ for $\dot{\theta}=0)$

* by a local analysis of the linear approximation at π

Example of a single-link robot

simulations with data: $I=0.9333, m g_{0} d=19.62(=\alpha)$

$$
\theta_{d}=180 \rightarrow g\left(\theta_{d}\right)=0 \quad \theta_{d}=90^{\circ} \rightarrow g\left(\theta_{d}\right)=m g_{0} d
$$

sufficient P gain: $k_{P}=36, k_{D}=12$
low P gain: $k_{P}=16, k_{D}=8$

Approximate gravity compensation

the approximate control law

$$
u=K_{P}\left(q_{d}-q\right)-K_{D} \dot{q}+\hat{g}\left(q_{d}\right)
$$

leads, under similar hypotheses, to a closed-loop equilibrium q^{*}

- its uniqueness is not guaranteed (unless K_{P} is large enough)
- for $K_{P} \rightarrow \infty$, one has $q^{*} \rightarrow q_{d}$

Conclusion: In the presence of gravity, the previous regulation control laws require an accurate knowledge of the gravity term in the dynamic model in order to guarantee the zeroing of the position error (since we can only use "finite" control gains \Rightarrow in practice, not too large)

PID control

- in linear systems, the addition of an integral control action is used to eliminate a constant error in the step response at steady state
- in robots, a PID may be used to recover such a position error due to an incomplete (or absent) gravity compensation/cancellation
\Rightarrow the control law $u(t)=K_{P}\left(q_{d}-q(t)\right)+K_{I} \int_{0}^{t}\left(q_{d}-q(\tau)\right) d \tau-K_{D} \dot{q}(t)$
- is independent from any robot dynamic model term
- if the desired closed-loop equilibrium is asymptotically stable under PID control, the integral term is "loaded" at steady state to the value

$$
K_{I} \int_{0}^{\infty}\left(q_{d}-q(\tau)\right) d \tau=g\left(q_{d}\right)
$$

- however, one can show only local asymptotic stability of this law, i.e., for $q(0) \in \Delta\left(q_{d}\right)$, under complex conditions on K_{P}, K_{I}, K_{D} and $e(0)$

Linear example with PID control

Laplace domain analysis: $e(s)=\mathcal{L}[e(t)], d(s)=\mathcal{L}\left[m g_{0}\right]+$ Routh criterion

$$
\frac{e(s)}{d(s)}=W_{d}(s)=\frac{s}{m s^{3}+k_{D} s^{2}+k_{P} s+k_{I}}
$$

3	m	k_{P}
2	k_{D}	k_{I}
1	$\left(k_{D} k_{P}-m k_{I}\right) / k_{D}$	
0	k_{I}	

Saturated PID control

- more in general, one can prove global asymptotic stability of ($q_{d}, 0$), under lower bound limitations for K_{P}, K_{I}, K_{D} (depending on suitable "bounds" on the terms in the dynamic model), for a nonlinear PID law

$$
u(t)=K_{P}\left(q_{d}-q(t)\right)+K_{I} \int_{0}^{t} \Phi\left(q_{d}-q(\tau)\right) d \tau-K_{D} \dot{q}
$$

where $\Phi\left(q_{d}-q\right)$ is a saturation-type function, such as

$$
\Phi(x)=\left\{\begin{array}{cc}
\sin x, & |x| \leq \pi / 2 \\
1, & x>\pi / 2 \\
-1, & x<-\pi / 2
\end{array} \text { or } \quad \Phi(x)=\tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right.
$$

(see paper by R. Kelly, IEEE TAC, 1998; available as extra material on the course web)

Limits of robot regulation controllers

- response times needed for reaching the desired steady state are not easily predictable in advance
- depend heavily on robot dynamics, on PD/PID gains, on the required total displacement, and on the interested area of robot workspace
- integral term (when present) needs some time to "unload" itself from the error history accumulated during transients
- large initial errors are stored in the integral term
- anti-windup schemes stop the integration when commands saturate
- ... an intuitive explanation for the success of "saturated" PID law
- control efforts in the few first instants of motion typically exceed by far those required at steady state
- especially for high positional gains
- may lead to saturation (hard nonlinearity) of robot actuators

Regulation in industrial robots

- in industrial robots, the planner generates a reference trajectory $q_{r}(t)$ even when the task requires only positioning/regulation of the robot
- "smooth" enough, with a user-defined transfer time T
- reference trajectory interpolates initial and final desired position

$$
q_{r}(0)=q(0) \quad q_{r}(t \geq T)=q_{d}
$$

- $q_{r}(t)$ is used within a control law of the form

- in this way, the position error is initially zero
- robot motion stays only "in the vicinity" of the reference trajectory until $t=T$, typically with small position errors (gains can be larger!)
- final regulation is only a "local" problem $\left(e(T)=q_{d}-q(T)\right.$ is small)

Qualitative comparison

- no saturation of commands: in principle, much larger gains can be used
- better prediction of settling times: local exponential convergence (designed on the linear approximation of the robot dynamics around $\left(q_{d}, 0\right)$)
- "fine tuning" of control gains is easier, but still a tedious and delicate task

Quantitative comparison

planar 2R arm

m_{1}	$10[\mathrm{~kg}]$
m_{2}	$5[\mathrm{~kg}]$
l_{1}	$0.5[\mathrm{~m}]$
l_{2}	$0.5[\mathrm{~m}]$
d_{1}	$0.25[\mathrm{~m}]$
d_{2}	$0.25[\mathrm{~m}]$
I_{1}	$5 / 24\left[\mathrm{~kg} \mathrm{~m}^{2}\right]$
I_{2}	$5 / 48\left[\mathrm{~kg} \mathrm{~m}^{2}\right]$

robot data: links are uniform thin rods
no gravity (horizontal plane)
rest-to-rest motion task:
$q(0)=(0,0)$ (straight) $\rightarrow q_{d}=(\pi / 3, \pi / 2)$
interpolating trajectory: cubic polynomials
three case studies
a) low gains (overdamped) $K_{P}=\operatorname{diag}\{80,40\}, K_{D}=\operatorname{diag}\{60,30\}$ vs interpolating trajectory in $T=2 \mathrm{~s}$
b) medium gains (very overdamped) $K_{P}=\operatorname{diag}\{200,100\}, K_{D}=\operatorname{diag}\{200,100\}$ vs interpolating trajectory in $T=2 \mathrm{~s}$
c) high gains $K_{P}=\operatorname{diag}\{1250,180\}, K_{D}=\operatorname{diag}\{200,70\}$
vs interpolating trajectory in $T=1 \mathrm{~s}$, with torque saturation $u_{1, \max }=30 \mathrm{Nm}$,
$u_{2, \max }=10 \mathrm{Nm}$

Comparison on a planar 2R arm - case a

PD with low gains
$K_{P}=\operatorname{diag}\{80,40\}$
$K_{D}=\operatorname{diag}\{60,30\}$ (overdamped)

a reduction of the peak control effort by a factor of 100 on joint 1 \& by a factor of 30 on joint 2
max torques of 7 and 2.3 Nm on interpolating trajectory of $T=2 \mathrm{~s}$

PD with same gains

Comparison on a planar 2R arm - case b

PD with medium gains $K_{P}=\operatorname{diag}\{200,100\}$ $K_{D}=\operatorname{diag}\{200,100\}$ (very overdamped) on interpolating trajectory of $T=2 \mathrm{~s}$

Robotics 2

t [s]

t [s]

Risposta secondo giunto

reference trajectory on both joints
max torques of 7.5 and 2.4 Nm
even stronger peak reduction, with similar total control effort, plus improved tracking of on

Comparison on a planar 2R arm - case c

PD with high gains $K_{P}=\operatorname{diag}\{1250,180\}$ $K_{D}=\operatorname{diag}\{200,70\}$
torque saturation

$$
\begin{aligned}
& u_{1, \max }=30 \mathrm{Nm} \\
& u_{2, \max }=10 \mathrm{Nm}
\end{aligned}
$$

PD with same gains on interpolating trajectory of $T=1 \mathrm{~s}$

Robotics 2

t [s]

$\mathrm{t}[\mathrm{s}]$

Risposta secondo giunto

position overshoot and long saturations are avoided, with very good tracking of the faster reference trajectory
max torques of 30 and 9.5 Nm

