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Prof. Alessandro De Luca

Position Regulation
(with an introduction to stability)



Equilibrium states of a robot

joint torques must balance gravity
at the equilibrium!
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all equilibrium states of mechanical
systems have zero velocity!

𝑥 =
𝑥#
𝑥$ =

𝑞
�̇�𝑀 𝑞 �̈� + 𝑐 𝑞, �̇� + 𝑔 𝑞 = 𝑢

�̇� = �̇�#
�̇�$

=
𝑥$

−𝑀/#(𝑥#) 𝑐 𝑥#, 𝑥$ + 𝑔(𝑥#)
+ 0

𝑀/#(𝑥#)
𝑢

= 𝑓 𝑥 + 𝐺 𝑥# 𝑢

𝑥5 unforced equilibrium 
(𝑢 = 0)

𝑥5 forced equilibrium 
(𝑢 = 𝑢(𝑥))

𝑓 𝑥5 = 0

𝑓 𝑥5 + 𝐺 𝑥5# 𝑢(𝑥5) = 0

𝑥5$ = 0
𝑔 𝑥5# = 0

𝑥5$ = 0
𝑢 𝑥5 = 𝑔 𝑥5#



Stability of dynamical systems
definitions - 1

𝑥5 equilibrium: 𝑓(𝑥5) = 0
(sometimes we consider as equilibrium state
𝑥5 = 0, e.g., when using errors as variables)

asymptotic stability may become global (∀𝛿 > 0, finite)
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e.g., a closed-loop system
(under feedback control)

note: these are definitions of stability “in the sense of Lyapunov”

�̇� = 𝑓(𝑥)

stability of 𝑥5
∀𝜀 > 0, ∃𝛿; > 0: 𝑥 𝑡> − 𝑥5 < 𝛿; ⟹ 𝑥 𝑡 − 𝑥5 < 𝜀, ∀𝑡 ≥ 𝑡>

asymptotic stability of 𝑥5 stability +
∃𝛿 > 0: 𝑥 𝑡> − 𝑥5 < 𝛿 ⟹ 𝑥 𝑡 − 𝑥5 → 0, for 𝑡 → ∞



Stability vs. asymptotic stability
whiteboard…
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∃𝛿; > 0

𝑥5𝛿;

∀𝜀 > 0

𝑥5
𝜀

𝑥 𝑡> − 𝑥5 < 𝛿;

𝑥5

𝑥(𝑡>)

⟹ 𝑥 𝑡 − 𝑥5 < 𝜀, ∀𝑡 ≥ 𝑡>

𝑥5

𝑥(𝑡>)

equilibrium state 𝑥5 is stable

equilibrium state 𝑥5 is asymptotically stable
∃𝛿 > 0

𝑥5

𝛿
+ 𝑥5

𝑥 𝑡> − 𝑥5 < 𝛿

𝑥(𝑡>)

𝑥5

𝑥(𝑡>)

⟹ 𝑥 𝑡 − 𝑥5 → 0, for 𝑡 → ∞



Stability of dynamical systems
definitions - 2

also known as u.u.b. stability
⇒ trajectories 𝑥(𝑡) are “ultimately uniformly bounded” (use in robust control)

exponential stability of 𝑥5
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§ allows to estimate the time needed to ”approximately” converge: for 𝑐 = 1,
in 𝑡 − 𝑡> = 3 × the time constant 𝜏 = 1/𝜆, the initial error is reduced to 5%

§ typically, this is a local property only (within some maximum finite radius 𝛿) 
⇒ such “domain of attraction” is hard to be estimated accurately

∃𝛿, 𝑐, 𝜆 > 0: 𝑥 𝑡> − 𝑥5 < 𝛿 ⟹ 𝑥 𝑡 − 𝑥5 ≤ 𝑐𝑒/M N/NO 𝑥 𝑡> − 𝑥5

“practical” stability of a set 𝑆

∃𝑇 𝑥 𝑡> , 𝑆 ∈ ℝ: 𝑥 𝑡 ∈ 𝑆, ∀𝑡 ≥ 𝑡> + 𝑇 𝑥 𝑡> , 𝑆

a finite time

exponential rate 𝜆
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The need for analysis and criteria
whiteboard…
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T
�̇�# = 1 − 𝑥#U

�̇�$ = 𝑥# − 𝑥$$

a nonlinear system �̇� = 𝑓 𝑥 in ℝ$

𝑥5V = 1, 1 ,

two equilibria 𝑓 𝑥5 = 0

𝑥5VV = 1,−1

rather, we may be able to just look at
the time evolution of a scalar function 𝑉,
evaluated analytically along the state 
trajectories of the system (even in ℝX!)

to assess (asymptotic) stability [or not] 
of equilibria, do we need to compute 
all system trajectories, starting from all 
possible initial states 𝑥(𝑡>)? 

𝑥(𝑡>)

𝑥(𝑡>)

asymptotically stable 𝑥5V

unstable 𝑥5VV



Stability of dynamical systems
results - 1

Lyapunov candidate

typically quadratic (e.g., #
$
(𝑥 − 𝑥5)Y𝑃(𝑥 − 𝑥5) with level surfaces = ellipsoids)

may also be a local candidate only (∀𝑥 ≠ 𝑥5: 𝑥 − 𝑥5 < 𝛿)
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positive
definite
function

sufficient condition of stability
∃𝑉 candidate: �̇�(𝑥) ≤ 0, along the trajectories of �̇� = 𝑓(𝑥)

negative 
semi-definite

function

𝑉 𝑥 : ℝX ⟶ ℝ such that
𝑉 𝑥5 = 0, 𝑉 𝑥 > 0, ∀𝑥 ≠ 𝑥5

sufficient condition of asymptotic stability negative 
definite
function

∃𝑉 candidate: �̇� 𝑥 < 0, along the trajectories of �̇� = 𝑓(𝑥)

sufficient condition of instability
∃𝑉 candidate: �̇� 𝑥 > 0, along the trajectories of �̇� = 𝑓(𝑥)



Stability of dynamical systems
results - 2

LaSalle Theorem
if ∃𝑉 candidate: �̇� 𝑥 ≤ 0 along the trajectories of �̇� = 𝑓(𝑥)

then system trajectories asymptotically converge to the  
largest invariant set ℳ ⊆ 𝑆 = 𝑥 ∈ ℝX: �̇�(𝑥) = 0

ℳ is invariant if 𝑥 𝑡> ∈ ℳ ⟹ 𝑥 𝑡 ∈ ℳ, ∀𝑡 ≥ 𝑡>

Corollary
ℳ ≡ 𝑥5 asymptotic stability
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sufficient condition of u.u.b. stability of a set 𝑆
∃𝑉 candidate: i) 𝑆 is a level set of 𝑉 for a given 𝑐>

ii) �̇� 𝑥 < 0 along trajectories of �̇� = 𝑓 𝑥 , 𝑥 ∉ 𝑆
𝑆 = 𝑆 𝑐> = 𝑥 ∈ ℝX: 𝑉(𝑥) ≤ 𝑐>



Bird-eye view on Lyapunov analysis
whiteboard…
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a mass 𝑚 at the end of an unforced (passive) pendulum of length 𝑙
𝑚𝑙$�̈� + 𝑏�̇� + 𝑚𝑙𝑔> sin 𝜃 = 0
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𝑥5 = 𝟎
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𝑥5 = 𝟎

𝑉 = 𝐸 =
1
2
𝑚𝑙$�̇�$ + 𝑚𝑙𝑔> (1 − cos 𝜃) ≥ 0 𝑉 = 0 ⇔ 𝑥5 = 𝜃5, �̇�5 = (0,0)

level 
sets of 𝑉

�̇�$ = −
𝑔>
𝑙

sin 𝑥# −
𝑏
𝑚𝑙$

𝑥$

�̇�# = 𝑥$

lower equilibrium at 𝜃5 = 0

�̇� = �̇� 𝑚𝑙$�̈� + 𝑚𝑙𝑔> sin 𝜃 = −𝑏�̇�$ ≤ 0 stability of equilibrium 𝑥5 = 0
(… at least!)

use LaSalle: �̇� = 0 ⇔ �̇� = 0 ⇒ �̈� = − nO
o
sin 𝜃 ≠ 0 unless 𝜃 = 𝜃5 = 0 (or 𝜋!)  

⇒ local asymptotic stability

⇒
⇒

phase
plane

𝑥 = 𝑥#, 𝑥$
= (𝜃, �̇�) ∈ ℝ$

⇒ ⇒



Stability of dynamical systems
results - 3
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§ previous results are also valid for periodic time-varying systems

§ for general time-varying systems (e.g., in robot trajectory tracking control)

i) a function 𝑉 𝑥, 𝑡 is lower bounded
ii) �̇� 𝑥, 𝑡 ≤ 0

Barbalat Lemma
if

then ⇒ ∃ lim
N→s

𝑉 𝑥, 𝑡 (but this does not imply that lim
N→s

�̇� 𝑥, 𝑡 = 0)
if in addition  iii) �̈� 𝑥, 𝑡 is bounded

then ⇒ lim
N→s

�̇� 𝑥, 𝑡 = 0

Corollary
if a Lyapunov candidate 𝑉(𝑥, 𝑡) satisfies Barbalat Lemma along the 
trajectories of �̇� = 𝑓(𝑥, 𝑡), then the conclusions of LaSalle Theorem hold 

�̇� = 𝑓(𝑥, 𝑡)

�̇� = 𝑓 𝑥, 𝑡 = 𝑓 𝑥, 𝑡 + 𝑇t ⇒ 𝑉 𝑥, 𝑡 = 𝑉 𝑥, 𝑡 + 𝑇t



Stability of linear systems
time-invariant case

I. asymptotic stability
II. global asymptotic stability
III. exponential stability

IV. 𝜎(𝐴) ⊂ ℂ/ (all eigenvalues of 𝐴 have negative real part)

V. ∀𝑄 > 0 (positive definite), ∃! 𝑃 > 0: 𝐴Y𝑃 + 𝑃𝐴 = −𝑄
Lyapunov equation #

$
𝑥Y𝑃𝑥 is a Lyapunov candidate

ALL EQUIVALENT !!

𝑥5 = 0 is always an equilibrium state

if 𝑥5 = 0 is an asymptotically stable equilibrium, 
then it is necessarily the unique equilibrium
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�̇� = 𝐴𝑥



Stability of the linear approximation

Let ∆𝑥 = 𝑥 − 𝑥5 and let ̇∆𝑥 = |}
|~ |~�~� 𝑥 − 𝑥5 = 𝐴 ∆𝑥 be the 

linear approximation of �̇� = 𝑓(𝑥) around the equilibrium 𝑥5

𝐴 asymptotically stable (𝜎(𝐴) ⊂ ℂ/) 

the original nonlinear system is
exponentially stable at the origin
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this is only a local result
(used also to estimate the domain of attraction)



PD control 
(proportional + derivative action on the error)

robot

goal: asymptotic stabilization (= regulation)
of the closed-loop equilibrium state
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𝑀 𝑞 �̈� + 𝑐 𝑞, �̇� + 𝑔 𝑞 = 𝑢

control law

𝐾� > 0, 𝐾� > 0 (positive definite), symmetric

𝑢 = 𝐾� 𝑞| − 𝑞 − 𝐾��̇�

𝑞 = 𝑞|, �̇� = 0

possibly obtained from kinematic inversion: 𝑞| = 𝑓/#(𝑟|)



�̇� = �̇�Y𝑀�̈� + #
$
�̇�Y�̇��̇� − 𝑒Y𝐾��̇� = �̇�Y 𝑢 − 𝑆�̇� + #

$
�̇��̇� − 𝑒Y𝐾��̇�

Asymptotic stability with PD control

In the absence of gravity (𝑔(𝑞) = 0), the robot state (𝑞|, 0) under
the given PD joint control law is globally asymptotically stable

= 0, due to energy conservation 

Proof let  𝑒 = 𝑞| − 𝑞 (𝑞| constant)

Theorem 1
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Lyapunov candidate 𝑉 =
1
2
�̇�Y𝑀 𝑞 �̇� +

1
2
𝑒Y𝐾�𝑒 ≥ 0 𝑉 = 0 ⇔ 𝑒 = �̇� = 0

up to here, we proved
stability only

= �̇�Y𝐾�𝑒 − �̇�Y𝐾��̇� − 𝑒Y𝐾��̇� = −�̇�Y𝐾��̇� ≤ 0 (𝐾� > 0, symmetric)

continues ...�̇� = 0 ⇔ �̇� = 0but



LaSalle system trajectories converge to the largest
invariant set of states ℳ where �̇� ≡ 0
(that is �̇� = �̈� = 0)

note: typically, 𝐾� = diag 𝑘�� , 𝐾� = diag 𝑘�� , 
decentralized linear control (local to each joint)

Asymptotic stability with PD control
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�̇� = 0 ⇔ �̇� = 0

the only invariant state in �̇� = 0 is given by 𝑞 = 𝑞|, �̇� = 0

�̇� = 0, �̈� = 0 ⇔ 𝑒 = 0

closed-loop dynamics invertible

𝑀 𝑞 �̈� = 𝐾�𝑒 �̈� = 𝑀/#(𝑞)𝐾�𝑒�̇� = 0



Mechanical interpretation
n for diagonal positive definite gain matrices 𝐾� and 𝐾� (thus, with 

positive diagonal elements), such values correspond to stiffness of 
“virtual” springs and viscosity of “virtual” dampers placed at the joints

desired
configuration 𝑞|

stiffness 𝑘�� > 0
viscosity 𝑘�� > 0

current
configuration 𝑞

𝑞| (single components
are defined relative 
to the previous link!!)
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Plot of the Lyapunov function 𝑉
n time evolution of the Lyapunov candidate

𝑡

𝑉
𝑉(0) = ½ 𝑒Y(0)𝐾�𝑒(0)

if the robot starts from rest
𝑉(0)

(isolated) instants of global “motion inversion”
(�̇� = 0, but �̈� ≠ 0!)

0

�̇� = 0
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Comments on PD control - 1

n choice of control gains affects robot evolution during transients and 
practical settling times

n hard to define values that are “optimal” in the whole workspace
n “full” 𝐾� and 𝐾� gain matrices allow to assign desired eigenvalues 

to the linear approximation of the robot dynamics around the final 
desired state (𝑞|, 0)

n when (joint) viscous friction is present, the derivative term in the 
control law is not strictly necessary

n −𝐹��̇� in the robot model acts similarly to −𝐾��̇� in the control law, 
but the latter can be modulated at will

n in the absence of tachometers, the actual realization of the derivative 
term in the feedback law requires some processing of joint position 
data measured by digital encoders (or analog resolvers/potentiometers)
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Comments on PD control - 2

n analog or digital implementation of derivative action in the control law 
when only position is measured at the joints (e.g., through encoders)
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continuous-time
control law (design) 𝑢 𝑡 = 𝐾�𝑒 𝑡 + 𝐾��̇�(𝑡) 𝑒 = 𝑞| − 𝑞, �̇� = −�̇�

not realizable as such
(non-proper transfer function)

representation in
the Laplace domain 𝑢 𝑠 = 𝐾� + 𝐾�𝑠 𝑒(𝑠)

derivative action limited 
in bandwidth (up to ω ≤ 1/𝜏)

𝑢 𝑠 = 𝐾� +
𝐾�𝑠
1 + 𝜏𝑠

𝑒(𝑠)

transformation in
the Zeta-domain
(e.g., via backward 
differentiation rule on
samples, every 𝑇� sec)

𝑢 𝑧 = 𝐾� + 𝐾�
1 − 𝑧/#

𝑇�
𝑒(𝑧) 𝑢 𝑧 = 𝐾� + 𝐾�

1 − 𝑧/#
𝑇�

1 + 𝜏 1 − 𝑧/#
𝑇�

𝑒(𝑧)

discrete-time
implementations

both realizable

𝑢� = 𝐾�𝑒� + 𝐾�
𝑒� − 𝑒�/#

𝑇�
𝑢� = 𝐾�𝑒� +

𝐾�
𝜏 + 𝑇�

𝑒� − 𝑒�/#

+
𝜏

𝜏 + 𝑇�
(𝑢�/#− 𝐾�𝑒�/#)



Inclusion of gravity
n in the presence of gravity, the same previous arguments 

(and proof) show that the control law

will make the equilibrium state (𝑞|, 0) globally 
asymptotically stable (nonlinear cancellation of gravity)

§ if gravity is not cancelled or only approximately cancelled

it is 𝑞 → 𝑞∗ ≠ 𝑞|, �̇� → 0, with steady-state position error
n 𝑞∗ is not unique in general, except when 𝐾� is chosen large enough

n explanation in terms of linear systems: there is no integral action before
the point of access of the constant “disturbance” acting on the system

𝐾� > 0,𝐾� > 0
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𝑢 = 𝐾� 𝑞| − 𝑞 − 𝐾��̇� + 𝑔(𝑞)

𝑢 = 𝐾� 𝑞| − 𝑞 − 𝐾��̇� + �𝑔(𝑞) �𝑔(𝑞) ≠ 𝑔(𝑞)



PD control + 
constant gravity compensation

since 𝑔(𝑞) contains only trigonometric and/or linear terms in 𝑞,
the following structural property holds

finite

consequence
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LINEAR CONTROL law 
𝐾�, 𝐾� > 0
symmetric

linear feedback + constant feedforward

𝑢 = 𝐾� 𝑞| − 𝑞 − 𝐾��̇� + 𝑔(𝑞|)

induced
norm of
a matrix

note: 𝐴 = 𝜆��� 𝐴Y𝐴 ≜ 𝐴� ≥ 𝐴� ≜ 𝜆���(𝐴Y𝐴)

𝑔 𝑞 − 𝑔(𝑞|) ≤ 𝛼 𝑞 − 𝑞|

∃𝛼 > 0:
𝜕$𝑈
𝜕𝑞$

=
𝜕𝑔
𝜕𝑞

≤ 𝛼, ∀𝑞



If 𝐾�,� > 𝛼 , the state (𝑞|, 0) of the robot under joint-space PD control 
+ constant gravity compensation at 𝑞| is globally asymptotically stable

PD control + constant gravity compensation
stability analysis

Theorem 2
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Proof

1. (𝑞|, 0) is the unique closed-loop equilibrium state

in fact, for �̇� = 0 and �̈� = 0, it is 𝐾�𝑒 = 𝑔(𝑞) − 𝑔(𝑞|)
which can hold only for 𝑞 = 𝑞|, because when 𝑞 ≠ 𝑞|
𝐾�𝑒 ≥ 𝐾�,� 𝑒 > 𝛼 𝑒 ≥ 𝑔 𝑞 − 𝑔(𝑞|)



with 𝑒 = 𝑞| − 𝑞, 𝑔 𝑞 =  ¡
 ¢

Y
, consider as Lyapunov candidate

PD control + constant gravity compensation
stability analysis
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(𝑞|, 0) is a 
global minimum

of 𝑉 ≥ 0

𝑉 =
1
2
�̇�Y𝑀 𝑞 �̇� +

1
2
𝑒Y𝐾�𝑒 + 𝑈 𝑞 − 𝑈 𝑞| + 𝑒Y𝑔(𝑞|)

 �
 ¢̇

Y
= 𝑀 𝑞 �̇� = 0 only for �̇� = 0

 £�
 ¢̇£

= 𝑀 𝑞 > 0

 £�|¤̇¥O
 5£ = 𝐾� +

 £¡
 ¢£ > 0, since 𝐾� = 𝐾�,� ≥ 𝐾�,� > 𝛼

 �|¤̇¥O
 5

Y
= 𝐾�𝑒 −

 ¡
 ¢

Y
+ 𝑔 𝑞| = 𝐾�𝑒 + 𝑔 𝑞| − 𝑔 𝑞 = 0
⁄𝜕𝑒 𝜕𝑞 = −𝐼 only for 𝑞 = 𝑞|

2. 𝑉 is convex in �̇� and 𝑒, and zero only for 𝑒 = �̇� = 0



PD control + constant gravity compensation
stability analysis

differentiating

= 0
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𝑉 =
1
2
�̇�Y𝑀 𝑞 �̇� +

1
2
𝑒Y𝐾�𝑒 + 𝑈 𝑞 − 𝑈 𝑞| + 𝑒Y𝑔(𝑞|)

�̇� = �̇�Y 𝑀(𝑞)�̈� +
1
2
�̇�(𝑞)�̇� − 𝑒Y𝐾��̇� +

𝜕𝑈(𝑞)
𝜕𝑞

�̇� − �̇�Y𝑔(𝑞|)

= �̇�Y 𝑢 − 𝑆(𝑞, �̇�)�̇� +
1
2 �̇�(𝑞)�̇� − 𝑔(𝑞) − 𝑒Y𝐾��̇� + �̇�Y 𝑔 𝑞 − 𝑔(𝑞|)

= �̇�Y𝐾�𝑒 − �̇�Y𝐾��̇� + �̇�Y 𝑔 𝑞| − 𝑔(𝑞) − 𝑒Y𝐾��̇� + �̇�Y 𝑔 𝑞 − 𝑔(𝑞|)

= −�̇�Y𝐾��̇� ≤ 0

by LaSalle Theorem, the thesis follows

for �̇� = 0 (⇔ �̇� = 0), we have in the closed-loop system
𝑀 𝑞 �̈� + 𝑔 𝑞 = 𝐾�𝑒 + 𝑔(𝑞|)

�̈� = 𝑀/# 𝑞 𝐾�𝑒 + 𝑔 𝑞| − 𝑔 𝑞 = 0 ⇔ 𝑒 = 0



Example of a single-link robot
stability analysis

task: regulate the link position to the upward equilibrium

PD control + constant gravity compensation (here, zero!)

by Theorem 2, it is sufficient (here, also necessary*) to choose

plots of 𝑉(𝜃) (for �̇� = 0)

two local minima

single 
minimum
in 𝜃| = 𝜋

rad
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* by a local analysis of the
linear approximation at 𝜋

𝜃| = 𝜋 → 𝑔 𝜃| = 0

𝑢 = 𝑘� 𝜋 − 𝜃 − 𝑘��̇�

𝑘� > 𝛼 = 𝑚𝑔>𝑑, 𝑘� > 0
𝐼�̈� +𝑚𝑔>𝑑 sin 𝜃 = 𝑢

©𝑘�
𝑚𝑔>𝑑 = 0.5 ©𝑘�

𝑚𝑔>𝑑 = 1 ©𝑘�
𝑚𝑔>𝑑 = 5



Example of a single-link robot
simulations with data: 𝐼 = 0.9333, 𝑚𝑔>𝑑 = 19.62 (= 𝛼)
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sufficient P gain: 𝑘� = 36, 𝑘� = 12

po
sit

io
n

ve
lo

cit
y

er
ro

r
co

nt
ro

l

zero final error

large initial torque

low P gain: 𝑘� = 16, 𝑘� = 8

no residual error!

even smaller initial torque

low P gain: 𝑘� = 16, 𝑘� = 8

60o residual error

small initial torque

𝜃| = 180° → 𝑔 𝜃| = 0 𝜃| = 90° → 𝑔 𝜃| = 𝑚𝑔>𝑑



Approximate gravity compensation 

the approximate control law

leads, under similar hypotheses, to a closed-loop equilibrium 𝑞∗

§ its uniqueness is not guaranteed (unless 𝐾� is large enough)
§ for 𝐾� → ∞, one has 𝑞∗ → 𝑞|

Conclusion: In the presence of gravity, the previous regulation control laws 
require an accurate knowledge of the gravity term in the dynamic model

in order to guarantee the zeroing of the position error
(since we can only use “finite” control gains ⇒ in practice, not too large)
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𝑢 = 𝐾� 𝑞| − 𝑞 − 𝐾��̇� + �𝑔(𝑞|)



PID control

n is independent from any robot dynamic model term

n if the desired closed-loop equilibrium is asymptotically stable under 
PID control, the integral term is “loaded” at steady state to the value

n however, one can show only local asymptotic stability of this law, i.e., 
for 𝑞(0) ∈ Δ(𝑞|), under complex conditions on 𝐾�,𝐾±, 𝐾� and 𝑒(0)

n in linear systems, the addition of an integral control action is used 
to eliminate a constant error in the step response at steady state

n in robots, a PID may be used to recover such a position error due 
to an incomplete (or absent) gravity compensation/cancellation
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the control law 𝑢 𝑡 = 𝐾� 𝑞| − 𝑞(𝑡) + 𝐾± ²
>

N
𝑞| − 𝑞(𝜏) 𝑑𝜏 − 𝐾��̇�(𝑡)

𝐾± ²
>

s
𝑞| − 𝑞(𝜏) 𝑑𝜏 = 𝑔(𝑞|)
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Linear example with PID control
whiteboard…

𝑚 𝑞

𝑔> > 0

𝐹

𝑚�̈� +𝑚𝑔> = 𝐹 (no friction)

𝐹 = 𝑘� 𝑞| − 𝑞 − 𝑘��̇� +𝑚𝑔>
(PD + gravity cancellation ⇒ regulation ∀𝑘� > 0, 𝑘� > 0)

𝐹 = 𝑘� 𝑞| − 𝑞 − 𝑘��̇�
(PD ⇒ steady-state error 𝑒 = 𝑞| − ³𝑞, with ³𝑞 = 𝑞| −

�nO
�´

)

𝐹 = 𝑘� 𝑞| − 𝑞 − 𝑘��̇� + 𝑘± ²
>

N
𝑞| − 𝑞(𝜏) 𝑑𝜏

(PID ⇒ regulation ∀𝑘± > 0, 𝑘� > 0, 𝑘� >
��µ
�¶

> 0)

Laplace domain analysis: 𝑒 𝑠 = ℒ[𝑒 𝑡 ], 𝑑 𝑠 = ℒ[𝑚𝑔>] + Routh criterion

𝑒 𝑡 = 𝑞| − 𝑞 𝑡
�̇� 𝑡 = −�̇� 𝑡

𝑒(𝑠)
𝑑(𝑠) = 𝑊| 𝑠 =

𝑠
𝑚𝑠U + 𝑘�𝑠$ + 𝑘�𝑠 + 𝑘±

𝑚 𝑘�
𝑘� 𝑘±

𝑘±
(𝑘�𝑘� − 𝑚𝑘±)/𝑘�

3
2
1
0

with global 
exponential 

stability!



Saturated PID control
§ more in general, one can prove global asymptotic stability of (𝑞|, 0), 

under lower bound limitations for 𝐾�,𝐾±, 𝐾� (depending on suitable 
“bounds” on the terms in the dynamic model), for a nonlinear PID law

where Φ(𝑞| − 𝑞) is a saturation-type function, such as

or

(see paper by R. Kelly, IEEE TAC, 1998; available as extra material on the course web) 
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𝑢 𝑡 = 𝐾� 𝑞| − 𝑞(𝑡) + 𝐾± ²
>

N
Φ 𝑞| − 𝑞(𝜏) 𝑑𝜏 − 𝐾��̇�

Φ 𝑥 = tanh𝑥 =
𝑒~ − 𝑒/~

𝑒~ + 𝑒/~
Φ 𝑥 = ¾

sin 𝑥 ,
1,

−1,

𝑥 ≤ 𝜋/2
𝑥 > 𝜋/2
𝑥 < −𝜋/2



Limits of robot regulation controllers

n response times needed for reaching the desired steady state are not  
easily predictable in advance
n depend heavily on robot dynamics, on PD/PID gains, on the required 

total displacement, and on the interested area of robot workspace
n integral term (when present) needs some time to “unload” itself from 

the error history accumulated during transients
n large initial errors are stored in the integral term
n anti-windup schemes stop the integration when commands saturate
n … an intuitive explanation for the success of “saturated” PID law

n control efforts in the few first instants of motion typically exceed by far 
those required at steady state
n especially for high positional gains
n may lead to saturation (hard nonlinearity) of robot actuators
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Regulation in industrial robots
n in industrial robots, the planner generates a reference trajectory 𝑞¿(𝑡)

even when the task requires only positioning/regulation of the robot
n “smooth” enough, with a user-defined transfer time 𝑇
n reference trajectory interpolates initial and final desired position

𝑞¿(0) = 𝑞(0) 𝑞¿(𝑡 ≥ 𝑇) = 𝑞|
n 𝑞¿(𝑡) is used within a control law of the form

n in this way, the position error is initially zero
n robot motion stays only “in the vicinity” of the reference trajectory 

until 𝑡 = 𝑇, typically with small position errors (gains can be larger!)
n final regulation is only a “local” problem (𝑒 𝑇 = 𝑞| − 𝑞(𝑇) is small)
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𝑢 = 𝐾� 𝑞¿(𝑡) − 𝑞 + 𝐾� �̇�¿(𝑡) − �̇� + 𝑔(𝑞)
e.g., PD with

gravity 
cancellation

often neglected



Qualitative comparison
n no saturation of commands: in principle, much larger gains can be used
n better prediction of settling times: local exponential convergence (designed 

on the linear approximation of the robot dynamics around (𝑞|, 0))
n “fine tuning” of control gains is easier, but still a tedious and delicate task
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𝑞(0)

𝑞𝑑

𝑢(0)
𝑢| = 𝑔(𝑞|)

time-
varying
position

reference
𝑞¿(𝑡)

𝑇 = planned
final time

𝑞(0)

𝑞𝑑 𝑢(0)

𝑢| = 𝑔(𝑞|)

control commandsjoint variables

step
variation
of desired
position



Quantitative comparison 
planar 2R arm
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robot data: links are uniform thin rods

no gravity (horizontal plane)

rest-to-rest motion task: 
𝑞(0) = (0, 0) (straight) → 𝑞| = (𝜋/3, 𝜋/2)

interpolating trajectory: cubic polynomials
three case studies
a) low gains (overdamped) 𝐾� = diag 80, 40 , 𝐾� = diag 60, 30

vs interpolating trajectory in 𝑇 = 2 s 
b) medium gains (very overdamped) 𝐾� = diag 200, 100 , 𝐾� = diag 200, 100

vs interpolating trajectory in 𝑇 = 2 s 
c) high gains 𝐾� = diag 1250, 180 , 𝐾� = diag 200, 70

vs interpolating trajectory in 𝑇 = 1 s, with torque saturation 𝑢#,��� = 30 Nm,
𝑢$,��� = 10 Nm



Comparison on a planar 2R arm – case a
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PD with low gains
𝐾� = diag 80, 40
𝐾� = diag 60, 30

(overdamped)

PD with same gains
on interpolating 

trajectory of 𝑇 = 2 s 

a reduction of the
peak control effort 
by a factor of 100

on joint 1 &
by a factor of 30

on joint 2

max torques
of 7 and 2.3 Nm



Comparison on a planar 2R arm – case b
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PD with medium gains
𝐾� = diag 200, 100
𝐾� = diag 200, 100
(very overdamped)

PD with same gains
on interpolating 

trajectory of 𝑇 = 2 s 

even stronger
peak reduction,
with similar total 

control effort,
plus improved

tracking of 
reference trajectory

on both joints

max torques
of 7.5 and 2.4 Nm



Comparison on a planar 2R arm – case c
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PD with high gains
𝐾� = diag 1250, 180
𝐾� = diag 200, 70

PD with same gains
on interpolating 

trajectory of 𝑇 = 1 s 

torque saturation
𝑢#,��� = 30 Nm 
𝑢$,��� = 10 Nm

position overshoot 
and long saturations

are avoided,
with very good
tracking of the 
faster reference 

trajectory

max torques
of 30 and 9.5 Nm


