

#### Robotics 2

# **Introduction to Control**


#### Prof. Alessandro De Luca

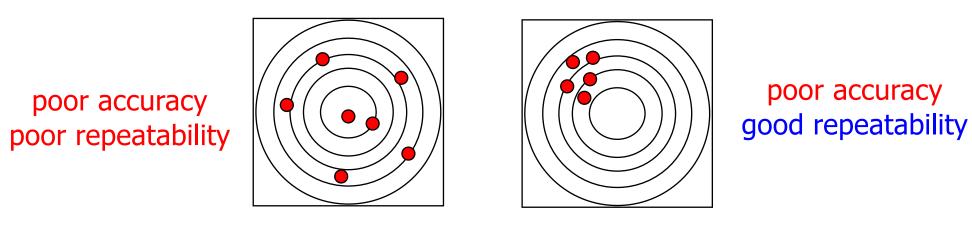
DIPARTIMENTO DI INGEGNERIA INFORMATICA Automatica e Gestionale Antonio Ruberti



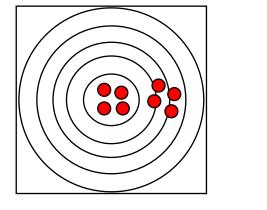


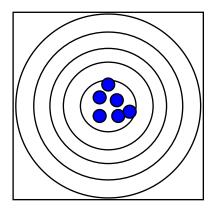
- different level of definitions may be given to robot control
  - successfully complete a task or work program
  - accurate execution of a motion trajectory
  - zeroing a positioning error
- ⇒ control system unit has a hierarchical internal structure




 different but cooperating models, objectives, methods are used at the various control layers




- quality of execution in nominal conditions
  - velocity/speed of task completion
  - accuracy/repeatability (in static and dynamic terms)
  - energy requirements
  - ⇒ improvements also thanks to models (software!)
- robustness in perturbed/uncertain conditions
  - adaptation to changing environments
  - high repeatability despite disturbances, changes of parameters, uncertainties, modeling errors
  - ⇒ can be improved by a generalized use of feedback, using more sensor information
  - ⇒ learn through repeated robot trials/human experience

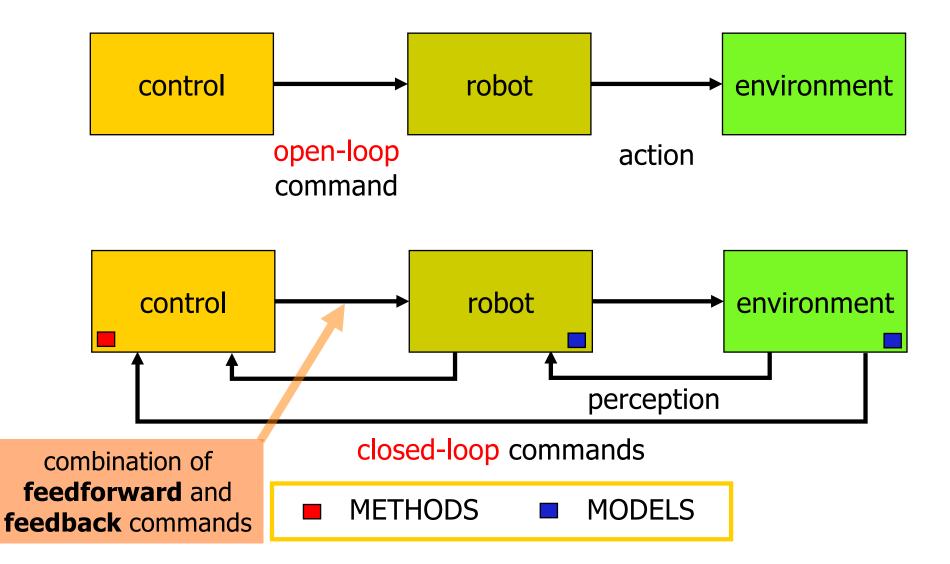

## Static positioning accuracy and repeatability





good accuracy poor repeatability






good accuracy good repeatability

what about "dynamic" accuracy on (test or selected) motion trajectories?

# Basic control schemes







- feedback control
  - insensitivity to mild disturbances and small variations of parameters
- robust control
  - tolerates relatively large uncertainties of known range
- adaptive control
  - improves performance on line, adapting the control law to a priori unknown range of uncertainties and/or large (but not too fast) parameter variations
- intelligent control
  - performance improved based on experience: LEARNING
  - autonomous change of internal structure for optimizing system behavior: SELF-ORGANIZING

**IDENTIFICATION** 

. . .

uncertainty on parametric values

... on the system structure



#### from a functional viewpoint

- "closed" control architectures, relatively difficult to interface with external computing systems and sensing devices
- $\Rightarrow$  especially in applications where hard real-time operation is a must

#### at the higher level

- open-loop task command generation
- ⇒ exteroceptive sensory feedback absent or very loose

#### at the intermediate level

- limited consideration of advanced kinematic and dynamic issues
- ⇒ e.g., singularity robustness: solved on a case-by-case basis
- ⇒ task redundancy: no automatic handling of the extra degrees of freedom of the robot



- at the lower (direct) level
  - reduced execution speed ("control bandwidth")
    - ⇒ typically heavy mechanical structure
  - reduced dynamic accuracy on fast motion trajectories
    - ⇒ standard use of kinematic control + PID only
  - problems with dry friction and backlash at the joints
  - compliance in the robot structure

now desired for safe physical Human-Robot Interaction

- ⇒ flexible transmissions (belts, harmonic drives, long shafts)
- $\Rightarrow$  large structures or relatively lightweight links

need to include better dynamic models and model-based control laws
handled, e.g., using direct-drive actuators or online friction compensation



## Example of robot positioning

low damped vibrations due to joint elasticity



without modeling and explicit control of joint elasticity

6R KUKA KR-15/2 robot (235 kg), with 15 kg payload

# Advanced robot control laws



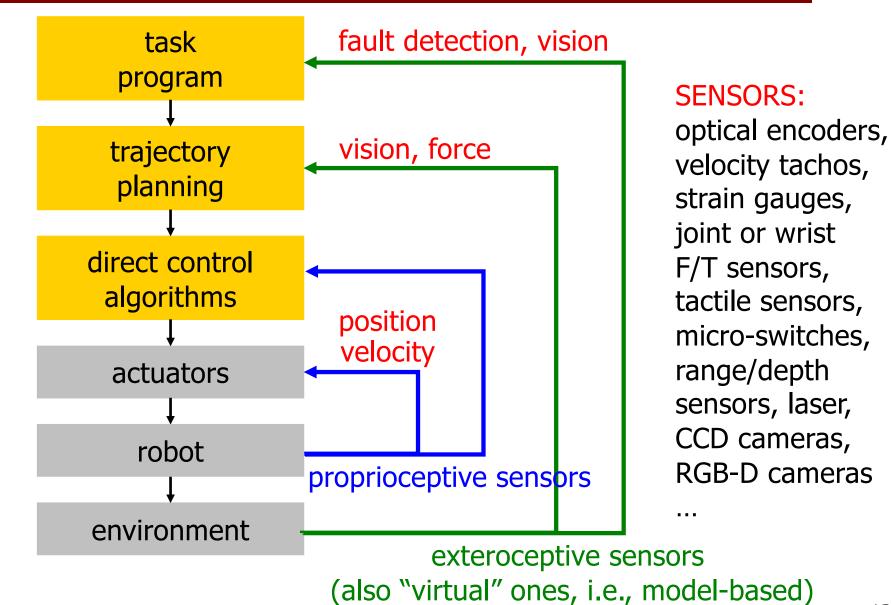
- deeper mathematical/physical analysis and modeling of robot components (model-based approach)
- schemes using various control loops at different/multiple hierarchical levels (feedback) and with additional sensors
  - visual servoing
  - force/torque sensors for interaction control
  - •••
- "new" methods
  - integration of (open-loop/feedforward) motion planning and feedback control aspects (e.g., sensor-based planning)
    - fast (sensor-based) re-planning
    - model predictive control (with preview)
  - learning (iterative, by imitation, skill transfer, ...)

• ...



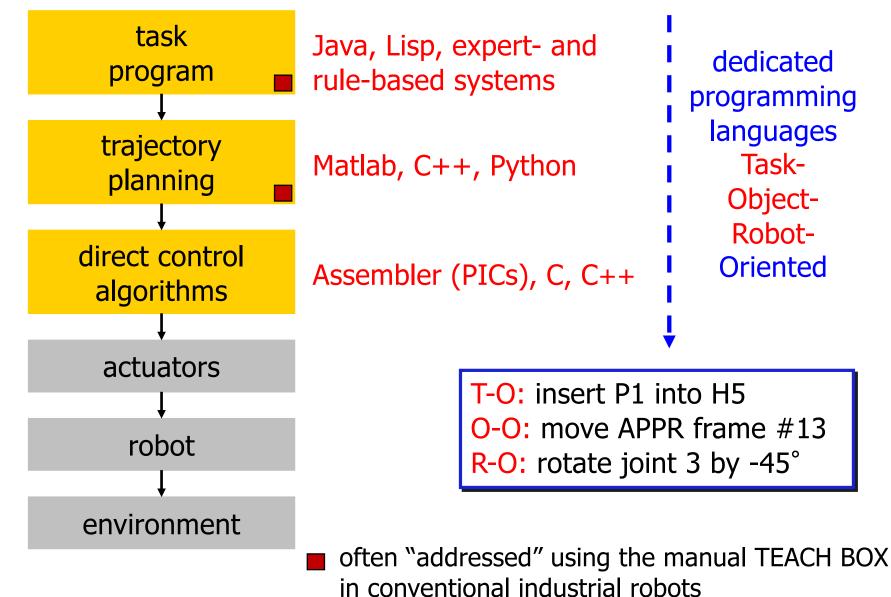
## Example of visual-based control

human-obstacle collision avoidance



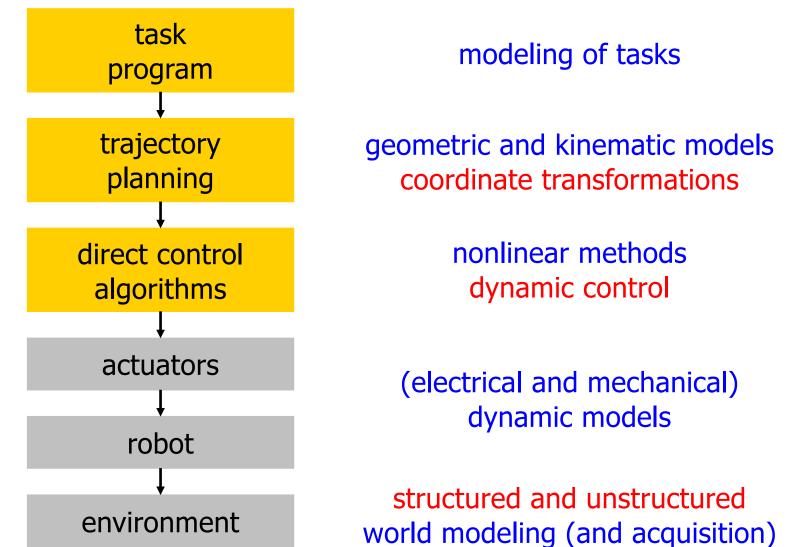

video

 3R SoftArm prototype with McKibben actuators (Univ. of Pisa) using repulsive force field built from stereo camera information


# Functional structure of a control unit sensor measurements






# Functional structure of a control unit programming languages





## Functional structure of a control unit modeling issues





# Robot control/research software

(last updated in April 2020)



- a (partial) list of open source robot software
  - for simulation and/or real-time control
  - for interfacing with devices and sensors
  - research oriented

Player/Stage playerstage.sourceforge.net ⇒ github.com/rtv/stage

- Stage: in origin, a networked Linux/MacOS X robotics server serving as abstraction layer to support a variety of hardware ⇒ now a 2(.5)D mobile robot standalone simulation environment
- Gazebo: 3D robot simulator (ODE physics engine and OpenGL rendering), now an independent project ⇒ <u>gazebosim.org</u>

•

GAZEBO

CoppeliaSIM (ex VREP; edu version available) www.coppeliarobotics.com

- each object/model controlled via an embedded script, a plugin, a ROS node, a remote API client, or a custom solution
- controllers written in C/C++, Python, Java, Matlab, ...

## Robot control/research software (cont'd)

#### Robotics Toolbox (free addition to Matlab) petercorke.com

 study and simulation of kinematics, dynamics, trajectory planning, control, and vision for serial manipulators and beyond ⇒ releases 9 & 10

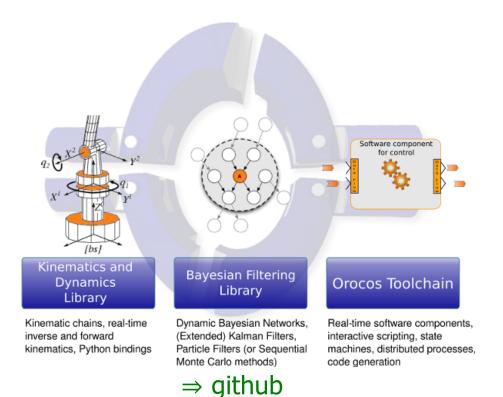
#### ROS (Robot Operating System) ros.org

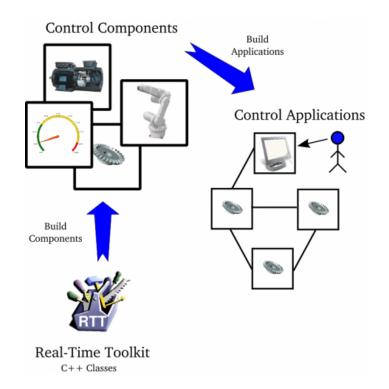
- middleware with: hardware abstraction, device drivers, libraries, visualizers, message-passing, package management
- "nodes": executable code (in Python, C++) running with a publish/subscribe communication style
- drivers, tools, state-of-the-art algorithms ... (all open source)

PyRobotics (Python API) pypi.org/project/pyRobotics (v1.8 in 2015)

**OpenRDK** <u>openrdk.sourceforge.net</u> ⇒ developed @DIAG, but dismissed

 "agents": modular processes dynamically activated, with blackboardtype communication (repository)



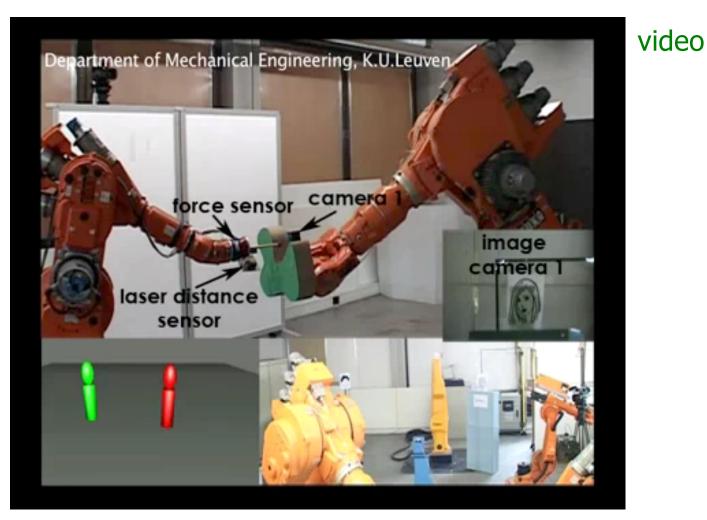






## **OROCOS** control software

- OROCOS (Open RObot COntrol Software) orocos.org
  - open-source, portable C++ libraries for robot control
  - Real-Time Toolkit (for Linux, MacOS X, Windows Visual Studio)
  - supports CORBA for distributed network computing and ROS interface
  - (user-defined) application libraries






17



# Example application using OROCOS

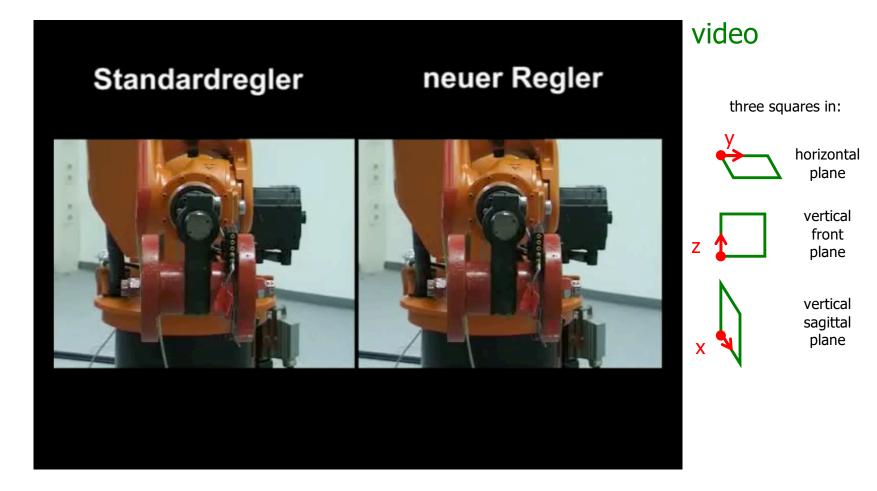




multi-sensor fusion for multi-robot manipulation in a human populated environment (KU Leuven)

## Summarizing ...




- to improve performance of robot controllers
  - 1. more complete modeling (kinematics and dynamics)
  - 2. introduction of feedback throughout all hierarchical levels
- dynamic control at low level allows in principle
  - 1. much higher accuracy on generic motion trajectories
  - 2. larger velocity in task execution with same accuracy
- interplay between control, mechanics, electronics
  - 1. able to control accurately also lightweight/compliant robots
  - 2. full utilization of task-related redundancy
  - 3. smart mechanical design can reduce control efforts (e.g., closed kinematic chains simplifying robot inertia matrix)
  - 4. actuators with higher dynamic performance (e.g., direct drives) and/or including controlled variable stiffness

advanced applications should justify additional costs (e.g., laser cutting with 10g accelerations, safe human-robot interaction) *Robotics 2* 

## Benefits of model-based control



 trajectory tracking task: comparison between standard industrial and new model-based controller



# Robot learning by imitation



- learning from human motion primitives (imitation)
- motion refinement by kinesthetic teaching (with impedance control)



video

@TUM, Munich (D. Lee, C. Ott), for the EU SAPHARI project

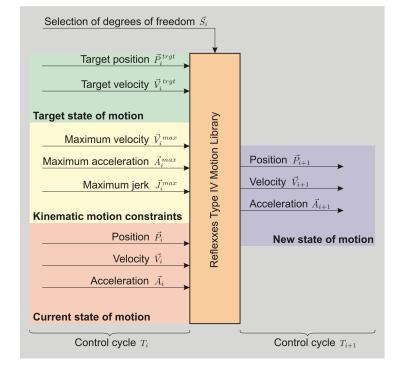
## Using visual or depth sensor feedback



#### Stanford University Artificial Intelligence Laboratory

Robust Visual Servo Control Using the Reflexxes Motion Libraries

http://cs.stanford.edu/groups/manips


Stanford University Artificial Intelligence Laboratory

Università di Roma "Sapienza" Robotics Laboratory

Collision Avoidance Using the Reflexxes Motion Libraries

#### video

 robust visual or depth (Kinect) feedback for motion tracking



 collision avoidance schemes (here, redundancy w.r.t. an E-E task)
video



## Panoramic view of control laws

 problems & methods for robot manipulators that will be considered (control command is always a joint torque, if not else specified)

| <mark>type</mark> of<br>task               | definition<br>of error | <mark>joint</mark><br>space                                                                              | Cartesian<br>space                                                                      | <mark>task</mark><br>space                                |
|--------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------|
| free<br>motion                             | regulation             | PD, PID,<br>gravity compensation,<br>iterative learning                                                  | PD with<br>gravity<br>compensation                                                      | visual<br>servoing<br>( <mark>kinematic</mark><br>scheme) |
|                                            | trajectory<br>tracking | feedback linearization,<br>inverse dynamics + PD,<br>passivity-based control,<br>robust/adaptive control | feedback<br>linearization                                                               |                                                           |
| contact<br>motion<br>(with force exchange) |                        | _                                                                                                        | impedance<br>control<br>(with variants),<br>admittance<br>control<br>(kinematic scheme) | hybrid<br>force-velocity<br>control                       |

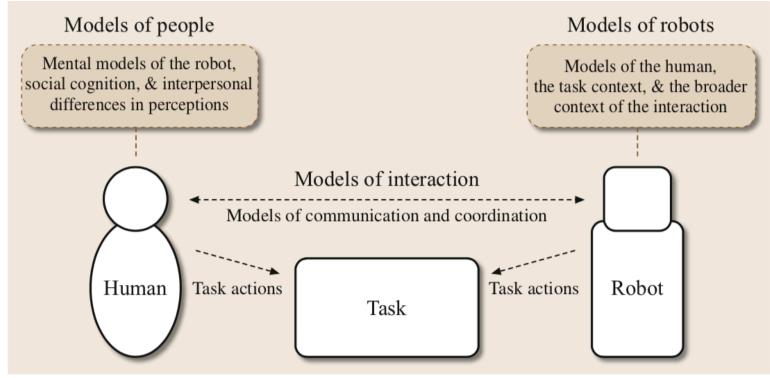


- torque-controlled robots
  - issue current commands  $i = i_c$  (with  $\tau_c = K_i i_c$ ) to drive the (electrical) motors, based on information on the dynamic models
  - often, a low-level (analog) current loop is present to enforce the execution of the desired command
  - may use a torque measure  $\tau_I$  (by joint torque sensors) to do the same, in case of joint/transmission elasticity (with  $\tau_I = K(\theta - q)$ )
  - best suited for high dynamic performance and 'transparent' control of interaction forces
- position/motion-controlled robots
  - issue kinematic commands: velocity  $\dot{q} = \dot{q}_c$ , acceleration  $\ddot{q} = \ddot{q}_c$ , or their integrated/micro-interpolated version  $q = q_c$
  - references for a low-level direct loop at high frequency ( $T_c \cong 400 \ \mu s!$ )
- both modes can be present also on the same robotic system Robotics 2

## HRI in industrial settings



Main robot safety standards ISO 10218-1/2:2011 Type A **ISO 12100** ISO/TS 15066:2016 standard **IEC 61508** Basic safety standards Type B


**ISO 13850** ISO 13849-1 standard Generic safety standards ISO 13851 **IEC 62061 B1 B2** for specific safety for safeguard aspects ISO 10218-1 Type C ANSI/RIA R15.06 ISO 10218-2 standard Machine safety standards CAN/CSA-Z434 (product standard) **ISO TS 15066**  non-collaborative robots: safety fences are required to prevent harming human operators

> collaborative robots: allow human workers to stand in their proximity and work together on the same task





- cognitive (cHRI) vs. physical (pHRI) Human-Robot Interaction
- cHRI models of humans, of robots, and of the interaction itself
  - dialog-based, intention- and activity-based, simulation-theoretic models

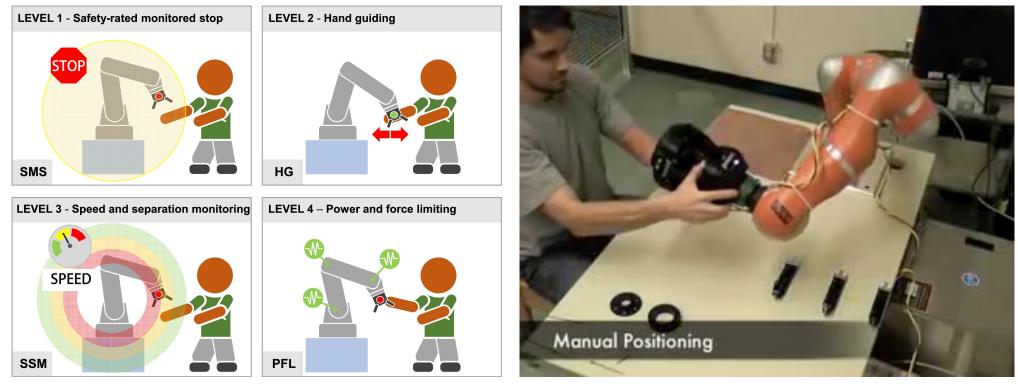


B. Mutlu, N. Roy, S. Sabanovic: Ch. 71, Springer Handbook of Robotics, 2016

## Human-Robot Interaction taxonomy



pHRI planned and controlled robot behaviors: 3-layer architecture


| Safety                                                   |                                                             |  |  |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------------|--|--|--|--|--|
| lightweight mechanical design compliance at robot joints | collision detection<br>and safe reaction                    |  |  |  |  |  |
| Coexistence                                              |                                                             |  |  |  |  |  |
| robot and human sharing<br>the same workspace            | collision avoidance<br>no need of physical contact          |  |  |  |  |  |
| Collaboration                                            |                                                             |  |  |  |  |  |
| contactless, e.g., gestures<br>or voice commands         | with intentional contact and coordinated exchange of forces |  |  |  |  |  |

A. De Luca, F. Flacco: IEEE BioRob Conference, 2012

## **Human-Robot Collaboration**



 the different possible levels of pHRI are represented also within ISO safety standards (from safe coexistence to safe collaboration)



V. Villani et al.: Mechatronics, 2018

video

### Panoramic view of control laws reprise for HRI



| <mark>type</mark> of<br>task               | definition<br>of error | joint<br>space                                                                                           | Cartesian<br>space                                                                      | task<br>space                                             |
|--------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------|
| free<br>motion                             | regulation             | PD, PID,<br>gravity compensation,<br>iterative learning                                                  | PD with<br>gravity<br>compensation                                                      | visual<br>servoing<br>( <mark>kinematic</mark><br>scheme) |
|                                            | trajectory<br>tracking | feedback linearization,<br>inverse dynamics + PD,<br>passivity-based control,<br>robust/adaptive control | feedback<br>linearization                                                               | HRI<br>control                                            |
| contact<br>motion<br>(with force exchange) |                        | _                                                                                                        | impedance<br>control<br>(with variants),<br>admittance<br>control<br>(kinematic scheme) | hybrid<br>force-velocity<br>control                       |