
Robotics 2

Prof. Alessandro De Luca

Dynamic model of robots:
Newton-Euler approach

Approaches to dynamic modeling
(reprise)

energy-based approach
(Euler-Lagrange)

n multi-body robot seen as a whole
n constraint (internal) reaction forces

between the links are automatically
eliminated: in fact, they do not
perform work

n closed-form (symbolic) equations
are directly obtained

n best suited for study of dynamic
properties and analysis of control
schemes

Newton-Euler method
(balance of forces/torques)

n dynamic equations written
separately for each link/body

n inverse dynamics in real time
n equations are evaluated in a

numeric and recursive way
n best for synthesis

(=implementation) of model-
based control schemes

n by elimination of reaction forces and
back-substitution of expressions, we
still get closed-form dynamic
equations (identical to those of Euler-
Lagrange!)

Robotics 2 2

Derivative of a vector in a moving frame
… from velocity to acceleration

Robotics 2 3

!�̇�$ = 𝑆 0𝜔$ 0𝑅$

𝜔𝑖

derivative of “unit” vector

𝑒$

𝑑𝑒$
𝑑𝑡 = 𝜔$ × 𝑒$

Dynamics of a rigid body
n Newton dynamic equation

n balance: sum of forces = variation of linear momentum

n Euler dynamic equation
n balance: sum of torques = variation of angular momentum

n principle of action and reaction
n forces/torques: applied by body 𝑖 to body 𝑖 + 1

= − applied by body 𝑖 + 1 to body 𝑖
Robotics 2 4

1𝑓$ =
𝑑
𝑑𝑡 𝑚𝑣5 = 𝑚�̇�5

1𝜇$ =
𝑑
𝑑𝑡

𝐼𝜔 = 𝐼�̇� +
𝑑
𝑑𝑡

𝑅 ̅𝐼𝑅9 𝜔 = 𝐼�̇� + �̇� ̅𝐼𝑅9 + 𝑅 ̅𝐼�̇�9 𝜔

= 𝐼�̇� + 𝑆 𝜔 𝑅 ̅𝐼𝑅9𝜔 + 𝑅 ̅𝐼𝑅9𝑆9 𝜔 𝜔 = 𝐼�̇� + 𝜔 × 𝐼𝜔

Newton-Euler equations - 1

link 𝑖

axis 𝑖
(𝑞$)

𝒗𝒄𝒊

axis 𝑖 + 1
(𝑞$>?)

. .
𝑓$>?

𝑧$

𝑚$𝑔

𝑓$ force applied
from link 𝑖 − 1 on link 𝑖

𝑓$>? force applied
from link 𝑖 on link 𝑖 + 1

Newton equation

𝑚$𝑔 gravity force

all vectors expressed in the
same RF (better RF𝑖)

FORCES

N

𝑧$B?

linear acceleration of 𝐶$

center
of mass

Robotics 2 5

𝑪𝒊

𝑓$
𝑂$𝑂$B?

𝑓$ − 𝑓$>? + 𝑚$𝑔 = 𝑚$𝑎5$

Newton-Euler equations - 2

link 𝑖

. .
𝑟$B?,5$

𝜏$ torque applied
from link (𝑖 − 1) on link 𝑖
𝜏$>? torque applied
from link 𝑖 on link (𝑖 + 1)

Euler equation

TORQUES

𝑓$ × 𝑟$B?,5$ torque due to 𝑓$ w.r.t. 𝐶$

−𝑓$>?× 𝑟$,5$ torque due to −𝑓$>? w.r.t. 𝐶$

E

all vectors expressed in
the same RF (RF𝑖 !!)

Robotics 2 6

gravity force gives
no torque at 𝐶$

axis 𝑖
(𝑞$)

axis 𝑖 + 1
(𝑞$>?)

𝑓$>?

𝑧$𝑧$B?

𝑓$ 𝑂$𝑂$B?

𝜏$>?𝜏$

𝜔$

𝑟$,5$

𝑪𝒊

𝜏$ − 𝜏$>? + 𝑓$ × 𝑟$B?,5$ −𝑓$>? × 𝑟$,5$= 𝐼$�̇�$ + 𝜔$× 𝐼$𝜔$

angular acceleration of body 𝑖

Forward recursion
Computing velocities and accelerations

• “moving frames” algorithm (as for velocities in Lagrange)
• wherever there is no leading superscript, it is the same as the subscript
• for simplicity, only revolute joints

(see textbook for the more general treatment) initializations

AR

the gravity force term can be skipped in Newton equation, if added here
Robotics 2 7

𝜔$ = 𝑖𝜔$

𝜔!

�̇�!
𝑎! − 0𝑔

Backward recursion
Computing forces and torques

at each step of this recursion, we have two vector equations (𝑁𝑖 + 𝐸𝑖) at the
joint providing 𝑓$ and 𝜏$: these contain ALSO the reaction forces/torques
at the joint axis ⇒ they should be “projected” next along/around this axis

from 𝑁$ to 𝑁$B?

from 𝐸$ to 𝐸$B?

F/TR

add here dissipative terms
(here viscous friction only)

eliminated, if inserted
in forward recursion (𝑖=0)

Robotics 2 8

generalized forces
(in rhs of Euler-Lagrange eqs)

for prismatic joint

for revolute joint
𝑁 scalar

equationsFP
at the end

ri,ciri,ci)

initializations
𝑓M>? 𝜏M>?

Comments on Newton-Euler method
n the previous forward/backward recursive formulas can

be evaluated in symbolic or numeric form
n symbolic

n substituting expressions in a recursive way
n at the end, a closed-form dynamic model is obtained, which

is identical to the one obtained using Euler-Lagrange (or any
other) method

n there is no special convenience in using N-E in this way
n numeric

n substituting numeric values (numbers!) at each step
n computational complexity of each step remains constant ⇒

grows in a linear fashion with the number 𝑁 of joints (𝑂(𝑁))
n strongly recommended for real-time use, especially when the

number 𝑁 of joints is large

Robotics 2 9

Newton-Euler algorithm
efficient computational scheme for inverse dynamics

AR

AR

F/TR

F/TR

FP

FP

inputs outputs

(force/torque exchange
environment/E-E)

(at robot base) numeric steps
at every instant 𝑡

Robotics 2 10

, 𝑎5?

,𝑎5MB?

, 𝑎5M

n data file (of a specific robot)
n number 𝑁 and types σ = 0,1 M of joints (revolute/prismatic)
n table of DH kinematic parameters
n list of ALL dynamic parameters of the links (and of the motors)

n input
n vector parameter 𝛼 = 0𝑔, 0 (presence or absence of gravity)
n three ordered vector arguments

n typically, samples of joint position, velocity, acceleration
taken from a desired trajectory

n output
n generalized force 𝑢 for the complete inverse dynamics
n … or single terms of the dynamic model

general routine 𝑁𝐸S(arg1, arg2, arg3)

Matlab (or C) script

Robotics 2 11

Examples of output

n complete inverse dynamics

n gravity terms

n centrifugal and Coriolis terms

n 𝑖-th column of the inertia matrix

n generalized momentum

𝑒$ = 𝑖-th column
of identity matrix

𝑢 = 𝑁𝐸!Y(𝑞, 0, 0) = 𝑔(𝑞)

𝑢 = 𝑁𝐸!(𝑞, 0, 𝑒$) = 𝑀$(𝑞)

𝑢 = 𝑁𝐸! 𝑞, 0, �̇� = 𝑀 𝑞 �̇� = 𝑝

𝑢 = 𝑁𝐸!(𝑞, �̇�, 0) = 𝑐(𝑞, �̇�)

𝑢 = 𝑁𝐸!Y(𝑞𝑑, �̇�], �̈�]) = 𝑀(𝑞])�̈�] + 𝑐(𝑞], �̇�]) + 𝑔(𝑞]) = 𝑢]

Robotics 2 12

Inverse dynamics of a 2R planar robot

Robotics 2 13

desired (smooth) joint motion:
quintic polynomials for 𝑞?, 𝑞_with
zero vel/acc boundary conditions

from (90o, -180o) to (0o, 90o) in 𝑇 = 1 s

⇔

Inverse dynamics of a 2R planar robot

Robotics 2 14

motion in vertical plane (under gravity)
both links are thin rods of uniform mass 𝑚? = 10 kg, 𝑚_ = 5 kg

zero
initial torques =
free equilibrium
configuration

+
zero initial

accelerations

final torques
𝑢? ≠ 0, 𝑢_ = 0

balance
link weights

in final (0o, 90o)
configuration

Inverse dynamics of a 2R planar robot

Robotics 2 15

torque contributions at the two joints for the desired motion
= total, = inertial

= Coriolis/centrifugal, = gravitational

Use of NE routine for simulation
direct dynamics

n numerical integration, at current state (𝑞, �̇�), of

n Coriolis, centrifugal, and gravity terms

n 𝑖-th column of the inertia matrix, for 𝑖 = 1, . . , 𝑁

n numerical inversion of inertia matrix

n given 𝑢, integrate acceleration computed as

𝑀$ = 𝑁𝐸!(𝑞, 0, 𝑒$)

𝐼𝑛𝑣𝑀 = inv(𝑀)

�̈� = 𝑀B?(𝑞)[𝑢 – (𝑐(𝑞, �̇�) + 𝑔(𝑞))] = 𝑀B?(𝑞)[𝑢 – 𝑛(𝑞, �̇�)]

Robotics 2 16

complexity 𝑂(𝑁)

𝑂(𝑁_)

𝑂(𝑁l)
but with small coefficient

𝑛 = 𝑁𝐸!Y(𝑞, �̇�, 0)

�̈� = 𝐼𝑛𝑣𝑀 ∗ [𝑢 – 𝑛] new state (𝑞, �̇�)
and repeat over time ...

