Robotics 2

Dynamic model of robots:
Newton-Euler approach

Prof. Alessandro De Luca

SAPIENZA

WS/ UNIVERSITA DI ROMA

Approaches to dynamic modeling

(reprise)
energy-based approach Newton-Euler method
(Euler-Lagrange) =—— (balance of forces/torques)

= multi-body robot seen as a whole = dynamic equations written

= constraint (internal) reaction forces separately for each link/body

between the links are automatically = inverse dynamics in real time

eliminated: in fact, they do not = equations are evaluated in a
perform work numeric and recursive way

= closed-form (symbolic) equations = best for synthesis
are directly obtained (=implementation) of model-

= best suited for study of dynamic based control schemes

properties and analysis of control = by elimination of reaction forces and
schemes back-substitution of expressions, we

still get closed-form dynamic
equations (identical to those of Euler-
Lagrange!)

Robotics 2 2

Derivative of a vector in a moving frame Qi

... from velocity to acceleration

Ov; = R, *v; °R; = S(°w;) °R;
I

%9, = %a; = °R;*a; = "R;'0; + "Ry vy

ORZ' 7”Uz + sz- XORZ' i’UZ' = ORi (z'l)',, + iw?; X i'v,,;)

derivative of “unit” vector

?"I.Jf,; —+ "w,; X z’Uz'

dei
E: w; X €;

Robotics 2 3

Dynamics of a rigid body

= Newton dynamic equation
= balance: sum of forces = variation of linear momentum
d
Y fi= = (mug) = mo,
= Euler dynamic equation
= balance: sum of torques = variation of angular momentum
d d . - _,
z i = — (Iw) = 1o + — (RIR") w = 1w + (RIRT + RIR") w
=Jw + S(W)RIRTw + RI‘RTSTW =lw+ w X lw
= principle of action and reaction

= forces/torques: applied by body i to body i + 1
= — applied by body i + 1 to body i

Robotics 2 4

Newton-Euler equations - 1

FORCES
\ center / f; force applied
\ of mass) from link i — 1 on link i
. Zj
Z“lk f;+1 force applied
O from link i on link i + 1
f, /C/\O“/l ! O; fi+a m;g gravity force
. .\
axis i Jaxis i+ 1
(q;) T (i) all vectors expressed in the

same RF (better RF))

Newton equation fi — fiy1 + Mig = m;a,; .
$

linear acceleration of C;

Robotics 2

link i
TORQUES
T; torque applied
from link (i — 1) on link i

T;41 torque applied
from link i on link (i + 1)

fi X 1;_1 ¢ torque due to f; axis i\\ Jaxis i+ 1
(@) I (qit1)

all vectors expressed in
the same RF (RF; I)

—fir1 X 13 torque due to —f;, 4

Euler equation

Ty — Tig1 + fi X Tic1ci —fitr X Tici= Iia;)i +wx(w)| [E

angular acceleration of body i
Robotics 2

Forward recursion
Computing velocities and accelerations

e "moving frames” algorithm (as for velocities in Lagrange)
e wherever there is no leading superscript, it is the same as the subscript
e for simplicity, only revolute joints (w; =‘w;)

(see textbook for the more general treatment)

initializations
__ i—1pT :
w; = TR (wi—1 + Gizi—1] Wo
. i— 17T - . . .
w; = " R; [wi—l + QiZi—1 — @iZi—1 X (wi—l + Qz'zz'—l)]
. _l T . .o . .
AR = TR [wi—1+ Gizic1 + qiwi—1 X 2i—1] W
0
- . ; Qo —°4
a; = "R a1 +wi XP o1+ wi X (Wi XEriogg) 0

Qei = @ + Wi X T i + Wi X (Wi X T5.04)

the gravity force term can be skipped in Newton equation, if added here
Robotics 2 7

Backward recursion
Computing forces and torques

eliminated, if inserted T -
from N; —— 10 Ni—1 in forward recursion (;=0) iNitializations

fi = fz‘+1 + mi(acz- — ig) — fn+1 TN+1

F/TR 1
Ti = Tit1 — fi X (Ti—14 + ri,ci) + fitr1 X Tie, T Liw; +w; X (Liw;)

from Ei — {0 Ei—l

at each step of this recursion, we have two vector equations (N: + E:) at the

joint providing f; and t;: these contain ALSO the reaction forces/torques
at the joint axis = they should be “projected” next along/around this axis

fiT 'é'z,,;_l + m;q; for prismatic joint N Scalar

- U; = . :
Ti.,. . equations
T: "Zi—1 + 1iq for revolute joint
! oo o) at the end

generalized forces add here dissipative terms
(in rhs of Euler-Lagrange eqs) (here viscous friction only)

Robotics 2 8

Comments on Newton-Euler method

= the previous forward/backward recursive formulas can
be evaluated in symbolic or numeric form
= symbolic
= Substituting expressions in a recursive way

= at the end, a closed-form dynamic model is obtained, which
is identical to the one obtained using Euler-Lagrange (or any
other) method

= there is no special convenience in using N-E in this way
= humeric
= Ssubstituting numeric values (numbers!) at each step

= computational complexity of each step remains constant =
grows in a linear fashion with the number N of joints (O(N))

= strongly recommended for real-time use, especially when the
number N of joints is large

Robotics 2 9

Newton-Euler algorithm
efficient computational scheme for inverse dynamics

wo,Wo, ap — g (at robot base) numeric steps
0 l at every instant ¢
o — AR forn —l— w
¢1 i
Wi, wl, (1,1, 1> }
inputs - f2s "2 - outputs
WN-—-1, ‘-“Jz\f—la aN-1,d,y—-1 —> ' }
gN
q.}\,' — AR f‘.\?’ JNT _>. — ’u:\'r }

q“N 1
WN,WNs AN, Qe -

1 (force/torque exchange

IN+1TN+1 T environment/E-E)
Robotics 2 10

Matlab (or C) script

general routine NE, (arg,, arg,, args)

= data file (of a specific robot)
= number N and types o = {0,1}" of joints (revolute/prismatic)
= table of DH kinematic parameters
= list of ALL dynamic parameters of the links (and of the motors)
= input
= vector parameter a = {°g, 0} (presence or absence of gravity)
= three ordered vector arguments

= typically, samples of joint position, velocity, acceleration
taken from a desired trajectory

= output

= generalized force u for the complete inverse dynamics
= ... Or single terms of the dynamic model

Robotics 2 11

Examples of output

= complete inverse dynamics
u=NEoy;(q4 9a,4a) = M(qq)4a + ¢c(qa,9a) + 9(qa) = Uq
= gravity terms
u=NEo(q0,0) =g(q)
= centrifugal and Coriolis terms
u = NEy(q,9,0) =c(q,9)
= [-th column of the inertia matrix
u = NEy(q,0,e) = M;(q)
= generalized momentum
u=NEy(q,0,9) =M(q)g=p

Robotics 2 12

e; = i-th column
of identity matrix

Inverse dynamics of a 2R planar robot

quintic rest-to-rest polynomial for joint 1 quintic rest-to-rest polynomial for joint 2

— 100 —~ 200

(=2 o

(] (]

= =

§ % 1 &

2 2

g_ 0 i i i i i i i T i g_ = 1 I I I I I i i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (s) time (s)

velocity (deg/s)
1
=
o

1
velocity (deg/s)
(3,]

o
o

i i I I 1 i i I i i I I I I I i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (s) time (s)

acceleration (deg/s?)
acceleration (deg/sz)

| | I | | | | | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (s) 27 ‘ time (s)

i i i i I i i i i
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

desired (smooth) joint motion: |
quintic polynomials for g4, g, with
zero vel/acc boundary conditions

from (90°, -180") to (0°,90") inT =1s

0%
W

N
i

RS
\\\‘:\\\“‘ 5
)
\t‘A\v‘-‘i—‘ﬁ"

NS
\§$
‘\\
i

W

v

Robotics 2 -1 -o;.s 0 05 1 15 2 13

&Z/Z
S

Inverse dynamics of a 2R planar robot i

total torques for joints 1 and 2

200
100
i " final torques
initial torques = e =
free equi|ibrium ~200, 04 02 03 04 05 06 07 08 09 1 U # 0, Uy = 0
configuration time {2) balance
+ 100 l link weights
: : : : ; ; : : : . . S o
zero initial | S in final (07, 90°)
accelerations configuration
=
=

i i i i i i i i i
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (s)

motion in vertical plane (under gravity)
both links are thin rods of uniform mass m; = 10 kg, m, = 5 kg

Robotics 2 14

Nm

Inverse dynamics of a 2R planar robot

total torque and contributions for joint 1 total torque and contributions for joint 2

150

80

100 -

50 -

Nm

-100

i i i I i i i i i _40 I i i i I i i i I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (s) time (s)

-200
0

torqgue contributions at the two joints for the desired motion
—— = total, ---- = inertial
----- = Coriolis/centrifugal, - = gravitational

Robotics 2 15

Use of NE routine for simulation
direct dynamics

= numerical integration, at current state (q, g), of

=M (Plu-((qgq +g@)] =M (Qu-n(g]
= Coriolis, centrifugal, and gravity terms
n=NEod,(q,q,0) complexity O (N)
s [-th column of the inertia matrix, fori =1,..,N
M; = NEy(q,0, ¢;) O(N?)
= humerical inversion of inertia matrix
InvM = inV(M) but WithOSr(rllglfzoefficient

= given u, integrate acceleration computed as

new state (q, q)

g = InvM * [u-n] and repeat over time ...

Robotics 2 16

