Robotics 2

Dynamic model of robots: Newton-Euler approach

Prof. Alessandro De Luca

SAPIENZA Università di Roma

Approaches to dynamic modeling (reprise)

energy-based approach (Euler-Lagrange)

- multi-body robot seen as a whole
- constraint (internal) reaction forces between the links are automatically eliminated: in fact, they do not perform work
- closed-form (symbolic) equations are directly obtained
- best suited for study of dynamic properties and analysis of control schemes

Newton-Euler method (balance of forces/torques)

- dynamic equations written separately for each link/body
- inverse dynamics in real time
- equations are evaluated in a numeric and recursive way
- best for synthesis (=implementation) of modelbased control schemes
- by elimination of reaction forces and back-substitution of expressions, we still get closed-form dynamic equations (identical to those of EulerLagrange!)

Derivative of a vector in a moving frame

... from velocity to acceleration

$$
\begin{aligned}
{ }^{0} v_{i} & ={ }^{0} R_{i}{ }^{i} v_{i} \quad{ }^{0} \dot{R}_{i}=S\left({ }^{0} \omega_{i}\right){ }^{0} R_{i} \\
{ }^{0} \dot{v}_{i} & ={ }^{0} a_{i}={ }^{0} R_{i}{ }^{i} a_{i}={ }^{0} R_{i}{ }^{i} \dot{v}_{i}+{ }^{0} \dot{R}_{i}{ }^{i} v_{i} \\
& ={ }^{0} R_{i}{ }^{i} \dot{v}_{i}+{ }^{0} \omega_{i} \times{ }^{0} R_{i}{ }^{i} v_{i}={ }^{0} R_{i}\left({ }^{i} \dot{v}_{i}+{ }^{i} \omega_{i} \times{ }^{i} v_{i}\right)
\end{aligned}
$$

$$
{ }^{i} a_{i}={ }^{i} \dot{v}_{i}+{ }^{i} \omega_{i} \times{ }^{i} v_{i}
$$

Dynamics of a rigid body

- Newton dynamic equation
- balance: sum of forces = variation of linear momentum

$$
\sum f_{i}=\frac{d}{d t}\left(m v_{c}\right)=m \dot{v}_{c}
$$

- Euler dynamic equation
- balance: sum of torques = variation of angular momentum

$$
\begin{aligned}
\sum \mu_{i} & =\frac{d}{d t}(I \omega)=I \dot{\omega}+\frac{d}{d t}\left(R \bar{I} R^{T}\right) \omega=I \dot{\omega}+\left(\dot{R} \bar{I} R^{T}+R \bar{I} \dot{R}^{T}\right) \omega \\
& =I \dot{\omega}+S(\omega) R \bar{I} R^{T} \omega+R \bar{I} R^{T} S^{T}(\omega) \omega=I \dot{\omega}+\omega \times I \omega
\end{aligned}
$$

- principle of action and reaction
- forces/torques: applied by body i to body $i+1$

$$
=- \text { applied by body } i+1 \text { to body } i
$$

Newton-Euler equations - 1

link i

FORCES

f_{i} force applied from link $i-1$ on link i
f_{i+1} force applied from link i on link $i+1$
$m_{i} g$ gravity force
all vectors expressed in the same RF (better RF_{i})

Newton equation

$$
\begin{array}{|c|}
\hline f_{i}-f_{i+1}+m_{i} g=m_{i} a_{c i} \\
\text { linear acceleration of } C_{i}
\end{array}
$$

Newton-Euler equations - 2

link i

TORQUES

τ_{i} torque applied from link ($i-1$) on link i
τ_{i+1} torque applied
from link i on link $(i+1)$
$f_{i} \times r_{i-1, c i}$ torque due to f_{i} w.r.t. C_{i}

all vectors expressed in the same $\mathrm{RF}\left(\mathrm{RF}_{i}\right.$!! $)$

> gravity force gives

Euler equation no torque at C_{i}

$$
\tau_{i}-\tau_{i+1}+f_{i} \times r_{i-1, c i}-f_{i+1} \times r_{i, c i}=I_{i} \dot{\omega}_{i}+\omega_{i} \times\left(I_{i} \omega_{i}\right)
$$

Forward recursion

Computing velocities and accelerations

- "moving frames" algorithm (as for velocities in Lagrange)
- wherever there is no leading superscript, it is the same as the subscript
- for simplicity, only revolute joints (see textbook for the more general treatment)
$\left(\omega_{i}={ }^{i} \omega_{i}\right)$
initializations

$$
\begin{align*}
& \begin{array}{ll}
\omega_{i}={ }^{i-1} R_{i}^{T}\left[\omega_{i-1}+\dot{q}_{i} z_{i-1}\right] \\
\dot{\omega}_{i} & ={ }^{i-1} R_{i}^{T}\left[\dot{\omega}_{i-1}+\ddot{q}_{i} z_{i-1}-\dot{q}_{i} z_{i-1} \times\left(\omega_{i-1}+\dot{q}_{i} z_{i-1}\right)\right] \\
\text { AR } & ={ }^{i-1} R_{i}^{T}\left[\dot{\omega}_{i-1}+\ddot{q}_{i} z_{i-1}+\dot{q}_{i} \omega_{i-1} \times z_{i-1}\right] \\
\hline a_{i} & ={ }^{i-1} R_{i}^{T} a_{i-1}+\dot{\omega}_{i} \times{ }^{i} r_{i-1, i}+\omega_{i} \times\left(\omega_{i} \times{ }^{i} r_{i-1, i}\right) \longleftarrow \\
a_{0} \\
\hline a_{c i} & =a_{i}+\dot{\omega}_{i} \times r_{i, c i}+\omega_{i} \times\left(\omega_{i} \times r_{i, c i}\right)
\end{array}
\end{align*}
$$

the gravity force term can be skipped in Newton equation, if added here

Backward recursion

Computing forces and torques

at each step of this recursion, we have two vector equations $\left(N_{i}+E_{i}\right)$ at the joint providing f_{i} and τ_{i} : these contain ALSO the reaction forces/torques at the joint axis \Rightarrow they should be "projected" next along/around this axis

generalized forces
(in rhs of Euler-Lagrange eqs)
add here dissipative terms (here viscous friction only)

Comments on Newton-Euler method

- the previous forward/backward recursive formulas can be evaluated in symbolic or numeric form
- symbolic
- substituting expressions in a recursive way
- at the end, a closed-form dynamic model is obtained, which is identical to the one obtained using Euler-Lagrange (or any other) method
- there is no special convenience in using N-E in this way
- numeric
- substituting numeric values (numbers!) at each step
- computational complexity of each step remains constant \Rightarrow grows in a linear fashion with the number N of joints $(O(N))$
- strongly recommended for real-time use, especially when the number N of joints is large

Newton-Euler algorithm

efficient computational scheme for inverse dynamics

Matlab (or C) script

general routine $N E_{\alpha}\left(\arg _{1}, \arg _{2}, \arg _{3}\right)$

- data file (of a specific robot)
- number N and types $\sigma=\{0,1\}^{N}$ of joints (revolute/prismatic)
- table of DH kinematic parameters
- list of ALL dynamic parameters of the links (and of the motors)
- input
- vector parameter $\alpha=\left\{{ }^{0} g, 0\right\}$ (presence or absence of gravity)
- three ordered vector arguments
- typically, samples of joint position, velocity, acceleration taken from a desired trajectory
- output
- generalized force u for the complete inverse dynamics
- ... or single terms of the dynamic model

Examples of output

- complete inverse dynamics
$u=N E{ }_{0}\left(q_{d}, \dot{q}_{d}, \ddot{q}_{d}\right)=M\left(q_{d}\right) \ddot{q}_{d}+c\left(q_{d}, \dot{q}_{d}\right)+g\left(q_{d}\right)=u_{d}$
- gravity terms

$$
u=N E_{o_{g}}(q, 0,0)=g(q)
$$

- centrifugal and Coriolis terms

$$
u=N E_{0}(q, \dot{q}, 0)=c(q, \dot{q})
$$

- i-th column of the inertia matrix

$$
u=N E_{0}\left(q, 0, e_{i}\right)=M_{i}(q)
$$

- generalized momentum

$$
u=N E_{0}(q, 0, \dot{q})=M(q) \dot{q}=p
$$

Inverse dynamics of a 2 R planar robot

Inverse dynamics of a 2 R planar robot

motion in vertical plane (under gravity)
both links are thin rods of uniform mass $m_{1}=10 \mathrm{~kg}, m_{2}=5 \mathrm{~kg}$

Inverse dynamics of a 2 R planar robot

torque contributions at the two joints for the desired motion
-_ = total, ---- = inertial -.-.- = Coriolis/centrifugal, = gravitational

Use of NE routine for simulation direct dynamics

- numerical integration, at current state (q, \dot{q}), of

$$
\ddot{q}=M^{-1}(q)[u-(c(q, \dot{q})+g(q))]=M^{-1}(q)[u-n(q, \dot{q})]
$$

- Coriolis, centrifugal, and gravity terms

$$
n=N E{ }_{g}(q, \dot{q}, 0) \quad \text { complexity } O(N)
$$

- i-th column of the inertia matrix, for $i=1, . ., N$

$$
M_{i}=N E_{0}\left(q, 0, e_{i}\right) \quad O\left(N^{2}\right)
$$

- numerical inversion of inertia matrix

$$
\begin{equation*}
\operatorname{Inv} M=\operatorname{inv}(M) \tag{3}
\end{equation*}
$$

- given u, integrate acceleration computed as

$$
\ddot{q}=\operatorname{Inv} M *[u-n]
$$

new state (q, \dot{q}) and repeat over time ...

