Robotics 2

Linear parametrization and identification of robot dynamics

Prof. Alessandro De Luca

Dipartimento di Ingegneria Informatica
Automatica e Gestionale Antonio Ruberti

UNIVERSITÀ DI ROMA

Dynamic parameters of robot links

- consider a generic link of a fully rigid robot

kinematic frame i
(DH or modified DH)

- however, the robot dynamics depends in a nonlinear way on some of these parameters (e.g., through the combination $I_{c i, z z}+m_{i} r_{x i}^{2}$)

Dynamic parameters of robots

- kinetic energy and gravity potential energy can both be rewritten so that a new set of dynamic parameters appears only in a linear way
- need to re-express link inertia and CoM position in (any) known kinematic frame attached to the link (same orientation as the barycentric frame)
- fundamental kinematic relation

$$
v_{c i}=v_{i}+\omega_{i} \times r_{C i}=v_{i}+S\left(\omega_{i}\right) r_{C i}=v_{i}-S\left(r_{C i}\right) \omega_{i}
$$

- kinetic energy of link i

$$
\begin{aligned}
T_{i} & =\frac{1}{2} m_{i} v_{C i}^{T} v_{C i}+\frac{1}{2} \omega_{i}^{T} I_{C i} \omega_{i} \\
& =\frac{1}{2} m_{i}\left(v_{i}-S\left(r_{C i}\right) \omega_{i}\right)^{T}\left(v_{i}-S\left(r_{C i}\right) \omega_{i}\right)+\frac{1}{2} \omega_{i}^{T} I_{C i} \omega_{i} \\
& =\frac{1}{2} m_{i} v_{i}^{T} v_{i}+\frac{1}{2} \omega_{i}^{T}(\underbrace{\left(I_{C i}+m_{i} S^{T}\left(r_{C i}\right) S\left(r_{C i}\right)\right) \omega_{i}-v_{i}^{T} S\left(m_{i} r_{C i}\right) \omega_{i}}_{\text {Iteiner theorem }} \underbrace{}_{i=\left(\begin{array}{lll}
I_{i, x x} & I_{i, x y} & I_{i, x z} \\
& I_{i, y y} & I_{i, y z} \\
\text { symm } & I_{i, z z}
\end{array}\right)} \begin{array}{rl}
\longrightarrow &
\end{array})
\end{aligned}
$$

Standard dynamic parameters of robots

- gravitational potential energy of link i

$$
U_{i}=-m_{i} g_{0}^{T} r_{0, C i}=-m_{i} g_{0}^{T}\left(r_{i}+r_{C i}\right)=-m_{i} g_{0}^{T} r_{i}-g_{0}^{T}\left(m_{i} r_{C i}\right)
$$

- by expressing vectors and matrices in frame i, both T_{i} and U_{i} are linear in the set of 10 (constant) standard parameters $\pi_{i} \in \mathbb{R}^{10}$

- since the E-L equations involve only linear operations on T and U, also the robot dynamic model is linear in the standard parameters $\pi \in \mathbb{R}^{10 N}$

Linearity in the dynamic parameters

- using a $N \times 10 N$ regression matrix Y_{π} that depends only on kinematic quantities, the robot dynamic equations can always be rewritten linearly in the standard dynamic parameters as

$$
\begin{gathered}
M(q) \ddot{q}+c(q, \dot{q})+g(q)=Y_{\pi}(q, \dot{q}, \ddot{q}) \pi=u \\
\pi^{T}=\left(\begin{array}{llll}
\pi_{1}^{T} & \pi_{2}^{T} & \cdots & \pi_{N}^{T}
\end{array}\right)
\end{gathered}
$$

- the open kinematic chain structure of the manipulator implies that the i-th dynamic equation can depend only on the standard dynamic parameters of links i to $N \Rightarrow Y_{\pi}$ has a block upper triangular structure

$$
Y_{\pi}(q, \dot{q}, \ddot{q})=\left(\begin{array}{cccc}
Y_{11} & Y_{12} & \cdots & Y_{1 N} \\
\hline 0 & Y_{22} & \cdots & Y_{2 N} \\
\vdots & & \ddots & \vdots \\
0 & \cdots & & Y_{N N}
\end{array}\right) \quad \begin{aligned}
& \text { with row vectors } \\
& Y_{i, j} \text { of size } 1 \times 10
\end{aligned}
$$

Property: element $m_{i j}$ of $M(q)$ is a function at most of $\left(q_{k+1}, \cdots, q_{N}\right)$, for $k=\min \{i, j\}$, and of the inertial parameters of at most links r to N, with $r=\max \{i, j\}$

Linearity in the dynamic coefficients

- many standard parameters do not appear ("play no role") in the dynamic model of a given robot \Rightarrow the associated columns of Y_{π} are 0 !
- some standard parameters may appear only in fixed combinations with others \Rightarrow the associated columns of Y_{π} are linearly dependent!
- one can isolate $p \ll 10 N$ independent groups of parameters π (associated to p functionally independent columns $Y_{\text {indep }}$ of Y_{π}) and partition matrix Y_{π} in two blocks, the second containing dependent (or zero) columns as $Y_{\text {dep }}=Y_{\text {indep }} T$, for a suitable constant $p \times(10 N-p)$ matrix T

$$
\begin{aligned}
& Y_{\pi}(q, \dot{q}, \ddot{q}) \pi=\left(\begin{array}{ll}
Y_{\text {indep }} & Y_{\text {dep }}
\end{array}\right)\binom{\pi_{\text {indep }}}{\pi_{\text {dep }}}=\left(\begin{array}{ll}
Y_{\text {indep }} & Y_{\text {indep }} T
\end{array}\right)\binom{\pi_{\text {indep }}}{\pi_{\text {dep }}} \\
& =Y_{\text {indep }}\left(\pi_{\text {indep }}+T \pi_{\text {dep }}\right)=Y(q, \dot{q}, \ddot{q}) a
\end{aligned}
$$

- these grouped parameters are called dynamic coefficients $a \in \mathbb{R}^{p}$, "the only that matter" in robot dynamics (= base parameters by W. Khalil)
- the minimal number p of dynamic coefficients that is needed can also be checked numerically (see later \rightarrow Identification)

Linear parametrization of robot dynamics

it is always possible to rewrite the dynamic model in the form

e.g., the heuristic grouping (found by inspection) on a 2 R planar robot

$$
\begin{array}{r}
a_{1}=I_{c 1, z z}+m_{1} d_{1}^{2}+I_{c 2, z z}+m_{2} d_{2}^{2}+m_{2} l_{1}^{2} \\
a_{2}=m_{2} l_{1} d_{2} \\
\left(\begin{array}{ccccc}
\ddot{q}_{1} & c_{2}\left(2 \ddot{q}_{1}+\ddot{q}_{2}\right)-s_{2}\left(\dot{q}_{2}^{2}+2 \dot{q}_{1} \dot{q}_{2}\right) & \ddot{q}_{2} & c_{1} & c_{12} \\
0 & c_{2} \ddot{q}_{1}+s_{2} \dot{q}_{1}^{2} & \ddot{q}_{1}+\ddot{q}_{2} & 0 & c_{12}
\end{array}\right)\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right)=\binom{u_{1}}{u_{2}} \quad \begin{array}{l}
a_{c 2, z z}+m_{2} d_{2}^{2} \\
a_{4}=g_{0}\left(m_{1} d_{1}+m_{2} l_{1}\right) \\
a_{5}=g_{0} m_{2} d_{2}
\end{array}
\end{array}
$$

NOTE: 4 more coefficients are added when including the coefficients $F_{V, i}$ and $F_{C, i}$ of viscous and Coulomb friction at the joints ("decoupled" terms appearing only in the relative equations $i=1,2$)

Linear parametrization of a 2R planar robot $(N=2)$

- being the kinematics known (i.e., l_{1} and g_{0}), the number of dynamic coefficients can be reduced since we can merge the two coefficients $a_{2}=m_{2} l_{1} d_{2} \& a_{5}=g_{0} m_{2} d_{2} \Rightarrow a_{2}=m_{2} d_{2} \quad$ (factoring out l_{1} and g_{0})
- therefore, after regrouping, $p=4$ dynamic coefficients are sufficient

$$
\left(\begin{array}{cccc}
\ddot{q}_{1} & l_{1} c_{2}\left(2 \ddot{q}_{1}+\ddot{q}_{2}\right)-l_{1} s_{2}\left(\dot{q}_{2}^{2}+2 \dot{q}_{1} \dot{q}_{2}\right)+g_{0} c_{12} & \ddot{q}_{2} & g_{0} c_{1} \\
0 & l_{1}\left(c_{2} \ddot{q}_{1}+s_{2} \dot{q}_{1}^{2}\right)+g_{0} c_{12} & \ddot{q}_{1}+\ddot{q}_{2} & 0
\end{array}\right)\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right)=Y a=u=\binom{u_{1}}{u_{2}}
$$

- this (minimal) linear parametrization of robot dynamics is not unique, both in terms of the chosen set of dynamic coefficients a and for the associated regression matrix Y
- a systematic procedure for its derivation would be preferable

Linear parametrization of a 2R planar robot $(N=2)$

- as alternative to the previous heuristic method, apply the general procedure
- $10 \mathrm{~N}=20$ standard parameters are defined for the two links
- from the assumptions made on CoM locations, only 5 such parameters actually appear, namely (with $d_{i}=r_{c i, x}$)
link 1: $m_{1} d_{1} \quad I_{1, z z}=I_{c 1, z z}+m_{1} d_{1}^{2} \quad$ link 2: $m_{2} \quad m_{2} d_{2} \quad I_{2, z z}=I_{c 2, z z}+m_{2} d_{2}^{2}$
- in the 2×5 matrix Y_{π}, the $3^{\text {rd }}$ column (associated to $\left.m_{2}\right)$ is $Y_{\pi 3}=Y_{\pi}\left(l_{1}\right)+Y_{\pi z}\left(\underline{l} l_{1}^{\prime}\right)$
- after regrouping/reordering, $p=4$ dynamic coefficients are again sufficient
$\left(\begin{array}{cccc}g_{0} c_{1} & \ddot{q}_{1} & l_{1} c_{2}\left(2 \ddot{q}_{1}+\ddot{q}_{2}\right)-l_{1} s_{2}\left(\dot{q}_{2}^{2}+2 \dot{q}_{1} \dot{q}_{2}\right)+g_{0} c_{12} & \ddot{q}_{1}+\ddot{q}_{2} \\ 0 & 0 & l_{1}\left(c_{2} \ddot{q}_{1}+s_{2} \dot{q}_{1}^{2}\right)+g_{0} c_{12} & \ddot{q}_{1}+\ddot{q}_{2}\end{array}\right)\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4}\end{array}\right)=Y a=u=\binom{u_{1}}{u_{2}}$
$a_{1}=m_{1} d_{1}+m_{2}\left(l_{1}\right) a_{2}=I_{1, z z}+m_{2}\left(l_{1}^{2},=\left(I_{c 1, z z}+m_{1} d_{1}^{2}\right)+m_{1} l_{1}^{2} \begin{array}{c}a_{3}=m_{2} d_{2} \\ a_{4}=I_{2, z z}=I_{c 2, z z}+m_{2} d_{2}^{2}\end{array}\right.$
- determining a minimal parameterization (i.e., minimizing p) is important for
- experimental identification of dynamic coefficients
- adaptive/robust control design in the presence of uncertain parameters

Identification of dynamic coefficients

- in order to "use" the model, one needs to know the numeric values of the robot dynamic coefficients
- robot manufacturers provide at most only a few principal dynamic parameters (e.g., link masses)
- estimates can be found with CAD tools (e.g., assuming uniform mass)
- friction coefficients are (slowly) varying over time
- lubrication of joints/transmissions
- for an added payload (attached to the E-E)
- a change in the 10 dynamic parameters of last link
- this implies a variation of (almost) all robot dynamic coefficients
- preliminary identification experiments are needed
- robot in motion (dynamic issues, not just static or geometric ones!)
- only the robot dynamic coefficients can be identified (and not all the link standard parameters!)

Identification experiments

1. choose a motion trajectory $q_{d}(t)$ that is sufficiently "exciting", i.e.,

- explores the robot workspace and involves all components in the robot dynamic model
- is periodic, with multiple frequency components

2. execute this motion (approximately) by means of a control law

- taking advantage of any available information on the robot model
- often $u=K_{P}\left(q_{d}-q\right)+K_{D}\left(\dot{q}_{d}-\dot{q}\right)$ (PD, no model information used)

3. measure q (encoders) in n_{c} time instants (and, if available, also \dot{q})

- joint velocity \dot{q} and acceleration \ddot{q} can be later estimated off line by numerical differentiation (use of non-causal filters is feasible)

4. with such measures/estimates, evaluate the regression matrix Y (on the left) and use the applied commands u (on the right) in the expression

$$
Y\left(q\left(t_{k}\right), \dot{q}\left(t_{k}\right), \ddot{q}\left(t_{k}\right)\right) a=u\left(t_{k}\right) \quad k=1, \cdots, n_{c}
$$

Least Squares (LS) identification

- set up the system of linear equations
$n_{c} \times N \uparrow\left(\begin{array}{c}Y\left(q\left(t_{1}\right), \dot{q}\left(t_{1}\right), \ddot{q}\left(t_{1}\right)\right) \\ \vdots \\ Y\left(q\left(t_{n_{c}}\right), \dot{q}\left(t_{n_{c}}\right), \ddot{q}\left(t_{n_{c}}\right)\right)\end{array}\right) a=\left(\begin{array}{c}u\left(t_{1}\right) \\ \vdots \\ u\left(t_{n_{c}}\right)\end{array}\right) \Leftrightarrow \bar{Y} a=\bar{u}$
- sufficiently "exciting" trajectories, large enough number of samples ($n_{c} \times N \gg p$), and their suitable selection/position, guarantee $\operatorname{rank}(\bar{Y})=p$ (full column rank)
- solution by pseudoinversion of matrix \bar{Y}

$$
a=\bar{Y}^{\#} \bar{u}=\left(\bar{Y}^{T} \bar{Y}\right)^{-1} \bar{Y}^{T} \bar{u} \quad\left(\in \mathbb{R}^{p}\right)
$$

- one can also use a weighted pseudoinverse, to take into account different levels of noise in the collected measures

Additional remarks on LS identification

- it is convenient to preserve the block (upper) triangular structure of the regression matrix, by "stacking" all time evaluations in row by row sequence of the original Y matrix
$\left.N \times \xlongequal{n_{C}} \begin{array}{c}\downarrow \\ n_{C} \\ Y_{1}\left(q\left(t_{n_{c}}\right), \dot{q}\left(t_{n_{c}}\right), \ddot{q}\left(t_{n_{c}}\right)\right) \\ Y_{2}\left(q\left(t_{1}\right), \dot{q}\left(t_{1}\right), \ddot{q}\left(t_{1}\right)\right) \\ \vdots \\ Y_{2}\left(q\left(t_{n_{c}}\right), \dot{q}\left(t_{n_{c}}\right), \ddot{q}\left(t_{n_{c}}\right)\right) \\ \vdots \\ Y_{N}\left(q\left(t_{1}\right), \dot{q}\left(t_{1}\right), \ddot{q}\left(t_{1}\right)\right) \\ \vdots \\ Y_{N}\left(q\left(t_{n_{c}}\right), \dot{q}\left(t_{n_{c}}\right), \ddot{q}\left(t_{n_{c}}\right)\right)\end{array}\right) a=\left(\begin{array}{c}u_{1}\left(t_{1}\right) \\ \vdots \\ u_{1}\left(t_{n_{c}}\right) \\ u_{2}\left(t_{1}\right) \\ \vdots \\ u_{2}\left(t_{n_{c}}\right) \\ \vdots \\ u_{N}\left(t_{1}\right) \\ \vdots \\ u_{N}\left(t_{n_{c}}\right)\end{array}\right)$
- further practical hints

- numerical check of full column rank is more robust \Leftrightarrow rank $=p$ (\# of col's)
- outlier data can be eliminated in advance (when building Y)
- if sufficiently rich friction models are not included in $Y a$, discard the data collected at joint velocities close to zero

Summary on dynamic identification

J. Swevers, W. Verdonck, and J. De Schutter:
"Dynamic model identification for industrial robots" IEEE Control Systems Mag., Oct 2007

Robotics 2

KUKA IR 361 robot and optimal excitation trajectory

 results after identification (first three joints only)

Dynamic identification of KUKA LWR4

video

data acquisition for identification
dynamic coefficients: 30 inertial, 12 for gravity
C. Gaz, F. Flacco, A. De Luca:
"Identifying the dynamic model used by the KUKA LWR:
A reverse engineering approach"
IEEE ICRA 2014

validation after identification (for all 7 joints):
on new desired trajectories, compare torques computed with the identified model and torques measured by joint torque sensors

Identification of LWR4 gravity terms

using the linear parametrization, gravity terms can also be identified separately

$$
\boldsymbol{g}(\boldsymbol{q})=\boldsymbol{Y}_{g}(\boldsymbol{q}) \boldsymbol{\pi}_{\boldsymbol{g}}
$$

symbolic expressions of gravityrelated dynamic coefficients

 identified through experiments
gravity joint torques

 prediction/evaluation on new validation trajectory

——retrieved $\mathrm{g}(\mathrm{q})$ - retrieved $g(q)$

Robotics 2
$c_{2 z} m_{2}-c_{3 y} m_{3}+d_{1}\left(m_{3}+m_{4}+m_{5}+m_{6}+m_{7}\right)$
numerical values

$$
\hat{\boldsymbol{\pi}}_{g}=\left(\begin{array}{c}
9.5457 \times 10^{-4} \\
-2.9826 \times 10^{-4} \\
8.3524 \times 10^{-4} \\
0.0286 \\
-0.0407 \\
-6.5637 \times 10^{-4} \\
1.334 \\
-0.0035 \\
-4.7258 \times 10^{-4} \\
0.0014 \\
9.4532 \times 10^{-4} \\
3.4568
\end{array}\right)
$$

——computed $\mathrm{g}(\mathrm{q})$

Role of friction in identification

KUKA LWR4 dynamic model estimation vs. joint torque sensor measurement

$$
\begin{array}{|l|}
\hline \boldsymbol{q}) \ddot{\boldsymbol{q}}+\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})+\boldsymbol{g}(\boldsymbol{q})=\boldsymbol{\tau}-\boldsymbol{\tau}_{\text {friction }} \\
\hline
\end{array}
$$

$\boldsymbol{\tau}_{\text {meas }}$

—— actual (filtered) torques estimated torques (with friction estimate)
without the use of a joint friction model

Robotics 2

$$
\tau_{f, j}\left(\dot{q}_{j}\right)=\frac{\varphi_{1, j}}{1+e^{-\varphi_{2, j}\left(\dot{(}_{j}+\varphi_{3, j}\right)}}-\frac{\varphi_{1, j}}{1+e^{-\varphi_{2, j} \varphi_{3, j}}}
$$

Dynamic identification of KUKA LWR4

using more dynamic robot motions for model identification
J. Hollerbach, W. Khalil, M. Gautier: "Ch. 6: Model Identification", Springer Handbook of Robotics (2nd Ed), 2016 free access to multimedia extension: http://handbookofrobotics.org

Adding a payload to the robot

- in several industrial applications, changes in the robot payload are often needed
- using different tools for various technological operations such as polishing, welding, grinding, ...
- pick-and-place tasks of objects having unknown mass
- what is the rule of change for dynamic parameters when there is an additional payload?
- do we obtain again a linearly parameterized problem?
- does this property rely on some specific choice of reference frames (e.g., conventional or modified D-H)?

Rule of change in dynamic parameters

- only the dynamic parameters of the link where a load is added will change (typically, added to the last one -link n - as payload)
- last link dynamic parameters: m_{n} (mass), $\boldsymbol{c}_{n}=\left(c_{n x} c_{n y} c_{n z}\right)^{T}$ (center of mass), \boldsymbol{I}_{n} (inertia tensor expressed w.r.t. frame n)
- payload dynamic parameters: m_{L} (mass), $\boldsymbol{c}_{L}=\left(c_{L x} c_{L y} c_{L z}\right)^{T}$ (center of mass), \boldsymbol{I}_{L} (inertia tensor expressed w.r.t. frame n)
- mass

$$
m_{n} \rightarrow m_{n}+m_{L}
$$

- center of mass

$$
c_{n i} m_{n} \rightarrow \frac{c_{n i} m_{n}+c_{L i} m_{L}}{m_{n}+m_{L}}\left(m_{n}+m_{L}\right)=c_{n i} m_{n}+c_{L i} m_{L}
$$

$$
\text { (weighted average) } \quad \text { where } i=x, y, z
$$

- inertia tensor

$$
\boldsymbol{I}_{n} \rightarrow \boldsymbol{I}_{n}+\boldsymbol{I}_{L}
$$

valid only if tensors are expressed w.r.t. the same reference frame (i.e., frame n)!

- linear parametrization is preserved with any kinematic convention (the parameters of the last link will always appear in the form shown above)

Example: 2R planar robot with payload

unloaded robot dynamics $\boldsymbol{Y} \boldsymbol{\pi}=\boldsymbol{\tau}$
$\boldsymbol{\pi}=\left(\begin{array}{c}\frac{1}{2}\left(m_{2} a_{2}^{2}+I_{2 z z}\right)+a_{2} c_{2 x} m_{2} \\ c_{2 x} m_{2}+a_{2} m_{2} \\ c_{2 y} m_{2} \\ \frac{1}{2}\left(I_{1 z z}+a_{1}^{2} m_{1}+a_{1}^{2} m_{2}\right)+a_{1} c_{1 x} m_{1} \\ c_{1 x} m_{1}+a_{1} m_{1}+a_{1} m_{2} \\ c_{1 y} m_{1}\end{array}\right) \quad \boldsymbol{\pi}^{L}=\left(\begin{array}{c}\frac{1}{2}\left(a_{2}^{2}\left(m_{2}+m_{L}\right)+I_{2 z z}+I_{L z z}\right)+a_{2}\left(c_{2 x} m_{2}+c_{L x} m_{L}\right) \\ c_{2 x} m_{2}+c_{L x} m_{L}+a_{2}\left(m_{2}+m_{L}\right) \\ c_{2 y} m_{2}+c_{L y} m_{L} \\ \frac{1}{2}\left(I_{1 z z}+a_{1}^{2} m_{1}+a_{1}^{2}\left(m_{2}+m_{L}\right)\right)+a_{1} c_{1 x} m_{1} \\ c_{1 x} m_{1}+a_{1} m_{1}+a_{1}\left(m_{2}+m_{L}\right) \\ c_{1 y} m_{1}\end{array}\right)$
Note 1: position of the center of mass of the two links and of the payload may also be asymmetric Note 2: link inertia \& center of mass are expressed in the DH kinematic frame attached to the link (e.g., $I_{2 z z}$ is the inertia of the second link around the axis z_{2})

Validation on the KUKA LWR4 robot

C. Gaz, A. De Luca: "Payload estimation based on identified coefficients of robot dynamics - with an application to collision detection" IEEE IROS 2017, Vancouver, September 2017 of slides!

Bibliography

- J. Swevers, W. Verdonck, J. De Schutter, "Dynamic model identification for industrial robots," IEEE Control Systems Mag., vol. 27, no. 5, pp. 58-71, 2007
- J. Hollerbach, W. Khalil, M. Gautier, "Model Identification," Springer Handbook of Robotics (2nd Ed), pp. 113138, 2016
- C. Gaz, F. Flacco, A. De Luca, "Identifying the dynamic model used by the KUKA LWR: A reverse engineering approach," IEEE Int. Conf. on Robotics and Automation, pp. 1386-1392, 2014
- C. Gaz, F. Flacco, A. De Luca, "Extracting feasible robot parameters from dynamic coefficients using nonlinear optimization methods," IEEE Int. Conf. on Robotics and Automation, pp. 2075-2081, 2016
- C. Gaz, A. De Luca, "Payload estimation based on identified coefficients of robot dynamics - with an application to collision detection," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3033-3040, 2017
- C. Gaz, E. Magrini, A. De Luca, "A model-based residual approach for human-robot collaboration during manual polishing operations," Mechatronics, vol. 55, pp. 234-247, 2018
- C. Gaz, M. Cognetti, A. Oliva, P. Robuffo Giordano, A. De Luca, "Dynamic identification of the Franka Emika Panda robot with retrieval of feasible parameters using penalty-based optimization," IEEE Robotics and Automation Lett., vol. 4, no. 4, pp. 4147-4154, 2019

