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Dynamic parameters of robot links

= consider a generic link

I ; Center of Mass
of a fully rigid robot /

(CoM) frame i

kinematic frame i

Yt (DH or modified DH)

-

ffffff X;
base | o - T ‘
frame 0 &=
. : : [ Tyi ICi,xx ICi,xy ICi,xz
= each link is characterized by | _ ] ]
10 d : 4 M re = \Tyvi] I = ciyy lciyz
ynamic parameters I symm |
_ Ci,zz

= however, the robot dynamics depends in a nonlinear way on some of these
parameters (e.g., through the combination 1I.; ,, + m;75)
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Dynamic parameters of robots

= Kinetic energy and gravity potential energy can both be rewritten so
that a new set of dynamic parameters appears only in a linear way

= need to re-express link inertia and CoM position in (any) known kinematic
frame attached to the link (same orientation as the barycentric frame)

s fundamental kinematic relation
Vei = Vi + wi X1g; = v + S(w;) rei = vi — S(rei) w;

= Kinetic energy of link i
1 T 1

B T
T; = > MiVciVci + > Wi I w;
1 T 1 T
= -m;(v; = S(e)w)” (v = S(e)w;) +5 w; lgiw;
1 1
= EmiviTvi + Ew’ir(l‘a' + m; ST (re)S(re) )w; — v S(myrey) w;
]
! Ii,xx Ii,xy Ii,xz
Steiner theorem |—> I; = Ii,yy Ii,yz
symm Il-,ZZ
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Standard dynamic parameters of robots

= gravitational potential energy of link i
Ui = —migoroci = —migo (i +1¢) = —migori — 9o (myrey)

= by expressing vectors and matrices in frame i, both T; and U; are
linear in the set of 10 (constant) standard parameters r; € R*°

1 1
T; = E@iviﬁvi S("vi) ‘w; + E"a)iTia)i
Ui = _@90 rp — gO R; ( )

mass X CoM

mass of link z position of link i inertia of link i
(0-th order (1-st order (2-nd order
moment ) "
moment ) moment )
A |
M l’ r . L \
mi=| Mi'"ci | =(m; MiTcix MiTciy Mi'Tciz Uinx ixy Uixz Hiyy Tiyz Hizz)T
vect{!l;}

= Since the E-L equations involve only linear operations on T and U, also
the robot dynamic model is linear in the standard parameters m € R**"
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Linearity in the dynamic parameters

= using a N X 10N regression matrix Y;; that depends only on kinematic

quantities, the robot dynamic equations can always be rewritten linearly
in the standard dynamic parameters as

M(q)gG+c(q.q)+9(q) =Y:(q,q§) T=u
nl =@l nl - #wl)
= the open kinematic chain structure of the manipulator implies that the i-th

dynamic equation can depend only on the standard dynamic parameters
of links i to N = Y;; has a block upper triangular structure

Yi. Yo -+ Yy
0 | Yoo -+ You with row vectors

: g : Y; j of size 1X10
o - 0 |YNN

Property: element m;; of M(q) is a function at most of (qx4+1,---,qn), for k = min{i, j},
and of the inertial parameters of at most links r to N, with r = max{i, j}
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Linearity in the dynamic coefficients

= many standard parameters do not appear (“play no role”) in the dynamic model of a
given robot = the associated columns of Y, are 0!

= some standard parameters may appear only in fixed combinations with others = the
associated columns of Y, are linearly dependent!

= oOne can isolate p < 10N independent groups of parameters m (associated to p
functionally independent columns Y;; 4., Of ;) and partition matrix Yz, in two
blocks, the second containing dependent (or zero) columns as Yyep, = YingepT, for a

suitable constant p X (10N — p) matrix T

. X d d
Y (q,4,) 7 = Yinder Ydep)( ;; e;p) = (Yindep YlndepT)( éze;p)

— Tindep (T[indep +T 7Tdep) — Y(Q; Qr CI) a

= these grouped parameters are called dynamic coefficients a € R”, “the only that
matter” in robot dynamics (= base parameters by W. Khalil)

= the minimal number p of dynamic coefficients that is needed can also be checked
numerically (see later — Identification)
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Linear parametrization of robot dynamlcs

it is always possible to rewrite the dynamic model in the form

regression a = vector of

matrix dynamic coefficients
I I
v v

M(q)g+c(q,q)+g9(q) =Y(q,q,.G)a=u

N Xp p X1
e.g., the heuristic grouping (found by inspection) on a 2R planar robot

al = Icl,zz + mld% + Ic2,zz + mzd% + m2 l%

a4 a, = mylid,

. . . . .o . a —
(Ch c2(2G1 + G2) — 52 (q% +24142) d; Cq C12> ai _ (u1) az =1l ,, + mzd%
0 C2G1 + 5241 Gi1+d42 0 ci2/| q, Uz as = go(mydy + myly)

as as = goMmad,
NOTE: 4 more coefficients are added when including the coefficients Fy, ; and F ; of viscous and

Coulomb friction at the joints (“decoupled” terms appearing only in the relative equations i = 1,2)
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Linear parametrization
of a 2R planar robot (N = 2)

= being the kinematics known (i.e., [; and g,), the number of dynamic
coefficients can be reduced since we can merge the two coefficients

a, = mylid, & az = gym,d, = a, =m,d, (factoringoutl; and g,)

= therefore, after regrouping, p = 4 dynamic coefficients are sufficient

ay
(éh l1c2(241 + G2) — 1152(43 + 241G2) + Goc1z q2 90C1> (Clz) —Ya=y= (ul)

0 l;(c2G1 + 5241) + GoC12 qd1 + 4> 0 a3 Uz
Ay
a; = Icl,zz + mld% + Icz,zz + mzd% + mzl% as = Icz,zz + mzd%
az - mzdz a4 = m1d1 + m2l1

= this (minimal) linear parametrization of robot dynamics is not unique,
both in terms of the chosen set of dynamic coefficients a and for the

associated regression matrix Y
= a systematic procedure for its derivation would be preferable
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Linear parametrization
of a 2R planar robot (N = 2)

= as alternative to the previous heuristic method, apply the general procedure

m 10N = 20 standard parameters are defined for the two links

= from the assumptions made on CoM locations, only 5 such parameters actually
appear, namely (with d; = 7,; )

I|nk 1: m1d1 Il,ZZ — IC1,ZZ ~+ mld% I|nk 2: mz mzdz IZ,ZZ — ICZ,ZZ + mzdg

= in the 2x5 matrix Y, the 3™ column (associated to|m,)) is Y3 = Yn@i— Ynjlf
m after regrouping/reordering, p = 4 dynamic coefficients are again sufficient

aq
(gocl G1 lic2(2Gy + G2) — Lis2(43 +2G1G2) + goc1z  G1 + éiz) Q) eyg=y= (ul)
0 0 L (c241 + S247) + goCiz 41 + 4> Zg he
4

az = myd;
— — 2
Ay = Iz,zz — Ic2,zz + mZdZ

a; = myd, +E@ a =11z, + @ji:= (Icl,zz + mld%) +mylf

= determining a minimal parameterization (i.e., minimizing p) is important for

= experimental identification of dynamic coefficients
= adaptive/robust control design in the presence of uncertain parameters
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Identification of dynamic coefficients

= in order to “use” the model, one needs to know the numeric values of
the robot dynamic coefficients

= robot manufacturers provide at most only a few principal dynamic
parameters (e.g., link masses)

= estimates can be found with CAD tools (e.g., assuming uniform mass)
= friction coefficients are (slowly) varying over time
= |ubrication of joints/transmissions
= for an added payload (attached to the E-E)
= a change in the 10 dynamic parameters of last link
= this implies a variation of (almost) all robot dynamic coefficients
= preliminary identification experiments are needed
= robot in motion (dynamic issues, not just static or geometric ones!)

= only the robot dynamic coefficients can be identified (and not all
the link standard parameters!)
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Identification experiments

1. choose a motion trajectory q4(t) that is sufficiently “exciting”, i.e.,

= explores the robot workspace and involves all components in the
robot dynamic model

= s periodic, with multiple frequency components
2. execute this motion (approximately) by means of a control law

= taking advantage of any available information on the robot model

= often u = Kp(qq — q) + Kp(qz — q) (PD, no model information used)
3. measure q (encoders) in n. time instants (and, if available, also q)

= joint velocity g and acceleration g can be later estimated off line by
numerical differentiation (use of non-causal filters is feasible)

4. with such measures/estimates, evaluate the regression matrix Y (on the
left) and use the applied commands u (on the right) in the expression

Y(q(te), 4(t), 4(tx)) a = u(ty) k=1,-,n,

Robotics 2 11



Least Squares (LS) identification

= Set up the system of linear equations

Y (q(t1), q(t1), G(t1)) ( u(ty) )
: a = :
)

¥ (a(tn),d(tn) o, u(tn,)

= sufficiently “exciting” trajectories, large enough number of
samples (n. X N > p), and their suitable selection/position,

guarantee rank(Y) = p (full column rank)
= solution by pseudoinversion of matrix Y

a=Y"u=UTY)"'vYTu (e RP)

= Onhe can also use a weighted pseudoinverse, to take into
account different levels of noise in the collected measures
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Additional remarks on LS identification

= it is convenient to preserve the block (upper) triangular structure of
the regression matrix, by “stacking” all time evaluations in row by row

sequence of the original Y matrix [ — 1 |
Nc

YR ACOLOXIO)
TLC|/ e : ' ' \ /u1(5t1)\ —
Y1 (q(tnc)' q(tnc)’ q(tnc)) ul(tnc) /\

Y,(q(t), 4(t), §(t1)) )_/ — L]

Uy (.t1)

Y, (Q(tnc)ré&tnc);q’(tnc)) ‘T uz(;tnc) H Ya = ﬂ

i | (@), 46, 4(00) \“thl) | / 'n
C : ) c
. . uN(tn )
I\ (0 () () : ! —
N( ) = numerical check of full column rank is
= further practical hints more robust < rank = p (# of col’s)

= outlier data can be eliminated in advance (when building Y)

n if sufficiently rich friction models are not included in Ya, discard the

data collected at joint velocities close to zero
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A priori
Knowledge

Robot Identification Procedure

Result

J. Swevers, W. Verdonck, and J. De Schutter:
“Dynamic model identification for industrial robots”
IEEE Control Systems Mag., Oct 2007
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.......

time [s]
2

% ol ety ~ — — measured lorques
‘ 3 N computed torques
. . e e T2
data acquisition for identification O e "
dynamic coefficients: 30 inertial, 12 for gravity

C. Gaz, F. Flacco, A. De Luca:

validation after identification (for all 7 joints):
“Identifying the dynamic model used by the KUKA LWR:

on new desired trajectories, compare
A reverse engineering approach” torques computed with the identified model
and torques measured by joint torque sensors
IEEE ICRA 2014 " vred by Joint torqu ;
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Identification of LWR4 gravity terms

using the linear parametrization, gravity terms can also be identified separately

(

crymy
Crzy
Cecg

C6zme + C7zm7

\ g(q)

Y ,(g)m,

C52M5 — C6yMe

symbolic expressions of gravity-

— CszTng . . .
Ty = 5y + cazma 4. da(ms -+ me - m1) related dynamic coefficients
CazN4 (310 05
CqyMmy + C3,M3 E o5 5
CoxpTNY é 0 3 o0
C3zTng ’ ‘0_'? 7 -05
\ szm2 . C3ym3 + dl(m3 + m4 + m5 + m6 + m7) / 0 5 10 15 20 0 5 10 15 20
4 ] % 0 g 0.1
( 9;385;6" Y .\ numerical values /\/\ 5 M
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Role of friction in identification

KUKA LWR4 dynamic model estimation vs. joint torque sensor measurement
M(q)q T C(q, q) + g(q) = T |= T friction 1T meas

4 1 4 1
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Z OW\/\/VW\/W actual (filtered) torques £ 0 estimated torques (with friction estimate)
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N P15 P1,5
71,5(q5) =

) l —+ ()4‘;‘2._;(‘}_1'{"»934) a 1 + e ¥P2.¥3.
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using more dynamic robot motions for model identification

J. Hollerbach, W. Khalil, M. Gautier: “Ch. 6: Model Identification”, Springer Handbook of Robotics (2"d Ed), 2016
free access to multimedia extension: http://handbookofrobotics.org
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Adding a payload to the robot

= in several industrial applications, changes in the
robot payload are often needed

= using different tools for various technological operations
such as polishing, welding, grinding, ...

« pick-and-place tasks of objects having unknown mass

= What is the rule of change for dynamic parameters
when there is an additional payload?
= do we obtain again a linearly parameterized problem?

= does this property rely on some specific choice of
reference frames (e.g., conventional or modified D-H)?
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Rule of change in dynamic parameters

= only the dynamic parameters of the link where a load is added will change
(typically, added to the last one —link n— as payload)

= last link dynamic parameters: m,, (mass), €, = (¢,;C,,Cn.)! (center of mass),
I, (inertia tensor expressed w.r.t. frame n)

= payload dynamic parameters: m (mass), ¢, = (cr,cr,cr.)! (center of
mass), I; (inertia tensor expressed w.r.t. frame n)

= Mass My — My, + M,
CniMnp + Cr:;mrp,
= center of mass ¢,im, — (Mp +mp) = CpiMy + cpimy
moy, -+ mry,
(weighted average) where 1 = x, y, z

I, > 1I,+1I; valid only if tensors are expressed w.r.t.

= Inertia tensor the same reference frame (i.e., frame n)!

= |inear parametrization is preserved with any kinematic convention
(the parameters of the last link will always appear in the form shown above)
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Example: 2R planar robot with payload

payload
%)
q>
/’ go = gravity acceleration
q,
unloaded robot dynamics Y& =7 loaded robot dynamics Y@t = 7t
( % (m2a% + I2zz) + a2C2, M2 \ ( % (a'% (m2 + mL) + Isz + ILzz) + az (CQmm2 + CLa;mL) \
CopMa + a2Ms CoxMa + Cremy, + ag (Mg +my)
CoyMM2 I CoyM2 + CLyMmp,

1 2 2 1
5 (I1z2 + aimy + aima) + arcramy 5 (122 + afmy + af (ma +mp)) + arciem

ClaM1 + a1my + ayme c1zm1 + aymy + ai (mg +myp)
\ Ciymi ) \ C1yM1 )
Note 1: position of the center of mass of the two links and of the payload may also be asymmetric

Note 2: link inertia & center of mass are expressed in the DH kinematic frame attached to the link
(e.g., I,..is the inertia of the second link around the axis z,)
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