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Dynamic parameters of robot links
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n consider a generic link
of a fully rigid robot

joint 𝑖

link 𝑖

CoM 𝐶𝑖

𝑥𝑖

𝑦𝑖

𝑧𝑖

kinematic frame 𝑖
(DH or modified DH)

Center of Mass
(CoM) frame 𝑖

base 
frame 0

𝑚'𝑔)

𝑟+'

𝐼+'

𝑟'

𝑂𝑖

n each link is characterized by
10 dynamic parameters

𝑚' 𝑟+' =
𝑟/'
𝑟0'
𝑟1'

𝐼+' =
𝐼+',// 𝐼+',/0 𝐼+',/1

𝐼+',00 𝐼+',01
symm 𝐼+',11

n however, the robot dynamics depends in a nonlinear way on some of these 
parameters (e.g., through the combination 𝐼6',11 + 𝑚'𝑟/'8 )



Dynamic parameters of robots
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n kinetic energy and gravity potential energy can both be rewritten so 
that a new set of dynamic parameters appears only in a linear way
§ need to re-express link inertia and CoM position in (any) known kinematic 

frame attached to the link (same orientation as the barycentric frame)
n fundamental kinematic relation

𝑣6' = 𝑣' + 𝜔' × 𝑟+' = 𝑣' + 𝑆 𝜔' 𝑟+' = 𝑣' − 𝑆 𝑟+' 𝜔'
n kinetic energy of link 𝑖

𝑇' =
1
2𝑚'𝑣+'A 𝑣+' +

1
2𝜔'

A𝐼+'𝜔'

=
1
2𝑚'𝑣'A𝑣' +

1
2𝜔'

A 𝐼+' +𝑚'𝑆A 𝑟+' 𝑆 𝑟+' 𝜔' − 𝑣'A𝑆 𝑚'𝑟+' 𝜔'

= B
8
𝑚' 𝑣' − 𝑆 𝑟+' 𝜔' A 𝑣' − 𝑆 𝑟+' 𝜔' + B

8
𝜔'A𝐼+'𝜔'

Steiner theorem 𝐼' =
𝐼',// 𝐼',/0 𝐼',/1

𝐼',00 𝐼',01
symm 𝐼',11



Standard dynamic parameters of robots
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n gravitational potential energy of link 𝑖

n since the E-L equations involve only linear operations on 𝑇 and 𝑈, also 
the robot dynamic model is linear in the standard parameters 𝝅 ∈ ℝB)G

𝑈' = −𝑚'𝑔)A𝑟),+' = −𝑚'𝑔)A 𝑟' + 𝑟+' = −𝑚'𝑔)A𝑟' − 𝑔)A 𝑚'𝑟+'
n by expressing vectors and matrices in frame 𝑖, both 𝑇' and 𝑈' are 

linear in the set of 10 (constant) standard parameters 𝜋' ∈ ℝB)

𝑇' =
1
2
𝑚'

𝑖𝑣'A𝑖𝑣' + 𝑚'
𝑖𝑟+'A 𝑆 𝑖𝑣' 𝑖𝜔' +

1
2
𝑖𝜔'A 𝑖𝐼' 𝑖𝜔'

𝑈' = −𝑚' 𝑔)A𝑟' − 𝑔)A 0𝑅' (𝑚' 𝑖𝑟+')

mass of link 𝑖
(0-th order 
moment )

mass×CoM
position of link 𝑖

(1-st order 
moment )

inertia of link 𝑖
(2-nd order 
moment )

𝝅𝒊 =
𝑚'

𝑚'
𝑖𝑟+'

𝑣𝑒𝑐𝑡 𝑖𝐼'
= 𝑚' 𝑚'𝑖𝑟+',/ 𝑚'𝑖𝑟+',0 𝑚'𝑖𝑟+',1 𝑖𝐼',// 𝑖𝐼',/0 𝑖𝐼',/1 𝑖𝐼',00 𝑖𝐼',01 𝑖𝐼',11 A



Linearity in the dynamic parameters
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n using a 𝑁 × 10𝑁 regression matrix 𝑌S that depends only on kinematic 
quantities, the robot dynamic equations can always be rewritten linearly 
in the standard dynamic parameters as

n the open kinematic chain structure of the manipulator implies that the 𝑖-th
dynamic equation can depend only on the standard dynamic parameters 
of links 𝑖 to 𝑁 ⇒ 𝑌S has a block upper triangular structure

𝑌S 𝑞, �̇�, �̈� =

𝑌BB 𝑌B8
0 𝑌88

⋯ 𝑌BG
⋯ 𝑌8G

⋮
0 ⋯

⋱ ⋮
0 𝑌GG

with row vectors
𝑌',[ of size 1×10

Property: element 𝑚'[ of 𝑀(𝑞) is a function at most of (𝑞]^B,⋯ , 𝑞G), for 𝑘 = min{𝑖, 𝑗} , 
and of the inertial parameters of at most links 𝑟 to 𝑁, with 𝑟 = max{𝑖, 𝑗}

𝑀 𝑞 �̈� + 𝑐 𝑞, �̇� + 𝑔 𝑞 = 𝑌S 𝑞, �̇�, �̈� 𝜋 = 𝑢
𝜋A = 𝜋BA 𝜋8A ⋯ 𝜋GA



Linearity in the dynamic coefficients
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n many standard parameters do not appear (“play no role”) in the dynamic model of a 
given robot ⇒ the associated columns of 𝑌S are 0!

n some standard parameters may appear only in fixed combinations with others ⇒ the 
associated columns of 𝑌S are linearly dependent! 

n one can isolate 𝑝 ≪ 10𝑁 independent groups of parameters 𝜋 (associated to 𝑝
functionally independent columns 𝑌'jklm of 𝑌S) and partition matrix 𝑌S in two 
blocks, the second containing dependent (or zero) columns as 𝑌klm = 𝑌'jklm𝑇, for a 
suitable constant 𝑝 × (10𝑁 − 𝑝) matrix 𝑇

n these grouped parameters are called dynamic coefficients 𝑎 ∈ ℝm, “the only that 
matter” in robot dynamics (= base parameters by W. Khalil)

n the minimal number 𝑝 of dynamic coefficients that is needed can also be checked 
numerically (see later → Identification)

𝑌S 𝑞, �̇�, �̈� 𝜋 = 𝑌'jklm 𝑌klm
𝜋'jklm
𝜋klm = 𝑌'jklm 𝑌'jklm𝑇

𝜋'jklm
𝜋klm

= 𝑌'jklm 𝜋'jklm + 𝑇 𝜋klm = 𝑌 𝑞, �̇�, �̈� 𝑎



Linear parametrization of robot dynamics
it is always possible to rewrite the dynamic model in the form

𝑁 × 𝑝 𝑝 × 1

𝑎 = vector of
dynamic coefficients

regression
matrix

NOTE: 4 more coefficients are added when including the coefficients 𝐹p,' and 𝐹+,' of viscous and
Coulomb friction at the joints (“decoupled” terms appearing only in the relative equations 𝑖 = 1,2)
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𝑀 𝑞 �̈� + 𝑐 𝑞, �̇� + 𝑔 𝑞 = 𝑌 𝑞, �̇�, �̈� 𝑎 = 𝑢

e.g., the heuristic grouping (found by inspection) on a 2R planar robot
𝑎B = 𝐼6B,11 + 𝑚B𝑑B8 + 𝐼68,11 + 𝑚8𝑑88 + 𝑚8𝑙B8

𝑎s = 𝐼68,11 + 𝑚8𝑑88
𝑎8 = 𝑚8𝑙B𝑑8

𝑎t = 𝑔)𝑚8𝑑8
𝑎u = 𝑔) 𝑚B𝑑B + 𝑚8𝑙B

�̈�B 𝑐8 2�̈�B + �̈�8 − 𝑠8 �̇�88 + 2�̇�B�̇�8 �̈�8 𝑐B 𝑐B8
0 𝑐8�̈�B + 𝑠8�̇�B8 �̈�B + �̈�8 0 𝑐B8

𝑎B
𝑎8
𝑎s
𝑎u
𝑎t

=
𝑢B
𝑢8



Linear parametrization
of a 2R planar robot (𝑁 = 2)
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n being the kinematics known (i.e., 𝑙B and 𝑔)), the number of dynamic 
coefficients can be reduced since we can merge the two coefficients

n therefore, after regrouping, 𝒑 = 𝟒 dynamic coefficients are sufficient

n this (minimal) linear parametrization of robot dynamics is not unique, 
both in terms of the chosen set of dynamic coefficients 𝑎 and for the 
associated regression matrix 𝑌
n a systematic procedure for its derivation would be preferable

⇒ (factoring out 𝑙B and 𝑔))  𝑎8 = 𝑚8𝑙B𝑑8 𝑎t = 𝑔)𝑚8𝑑8& 𝑎8 = 𝑚8𝑑8

�̈�B 𝑙B𝑐8 2�̈�B + �̈�8 − 𝑙B𝑠8 �̇�88 + 2�̇�B�̇�8 + 𝑔)𝑐B8
0 𝑙B 𝑐8�̈�B + 𝑠8�̇�B8 + 𝑔)𝑐B8

�̈�8 𝑔)𝑐B
�̈�B + �̈�8 0

𝑎B
𝑎8
𝑎s
𝑎u

= 𝑌 𝑎 = 𝑢 =
𝑢B
𝑢8

𝑎B = 𝐼6B,11 + 𝑚B𝑑B8 + 𝐼68,11 + 𝑚8𝑑88 + 𝑚8𝑙B8 𝑎s = 𝐼68,11 + 𝑚8𝑑88

𝑎8 = 𝑚8𝑑8 𝑎u = 𝑚B𝑑B + 𝑚8𝑙B



𝑔)𝑐B �̈�B
0 0

𝑙B𝑐8 2�̈�B + �̈�8 − 𝑙B𝑠8 �̇�88 + 2�̇�B�̇�8 + 𝑔)𝑐B8 �̈�B + �̈�8
𝑙B 𝑐8�̈�B + 𝑠8�̇�B8 + 𝑔)𝑐B8 �̈�B + �̈�8

𝑎B
𝑎8
𝑎s
𝑎u

= 𝑌 𝑎 = 𝑢 =
𝑢B
𝑢8

𝑎8 = 𝐼B,11 + 𝑚8 𝑙B8 = 𝐼6B,11 + 𝑚B𝑑B8 + 𝑚B𝑙B8 𝑎u = 𝐼8,11 = 𝐼68,11 + 𝑚8𝑑88
𝑎s = 𝑚8𝑑8𝑎B = 𝑚B𝑑B + 𝑚8 𝑙B

Linear parametrization
of a 2R planar robot (𝑁 = 2)
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n as alternative to the previous heuristic method, apply the general procedure
n 10𝑁 = 20 standard parameters are defined for the two links
n from the assumptions made on CoM locations, only 5 such parameters actually 

appear, namely (with 𝑑' = 𝑟6',/)

n in the 2×5 matrix 𝑌S, the 3rd column (associated to 𝑚8) is 𝑌Ss = 𝑌SB𝑙B + 𝑌S8𝑙B8

n after regrouping/reordering, 𝒑 = 𝟒 dynamic coefficients are again sufficient

n determining a minimal parameterization (i.e., minimizing 𝑝) is important for
n experimental identification of dynamic coefficients
n adaptive/robust control design in the presence of uncertain parameters

𝑚B𝑑B 𝐼B,11 = 𝐼6B,11 + 𝑚B𝑑B8 𝑚8𝑑8 𝐼8,11 = 𝐼68,11 + 𝑚8𝑑88𝑚8link 1: link 2:



Identification of dynamic coefficients
n in order to “use” the model, one needs to know the numeric values of 

the robot dynamic coefficients
n robot manufacturers provide at most only a few principal dynamic 

parameters (e.g., link masses)
n estimates can be found with CAD tools (e.g., assuming uniform mass)
n friction coefficients are (slowly) varying over time

n lubrication of joints/transmissions
n for an added payload (attached to the E-E)

n a change in the 10 dynamic parameters of last link
n this implies a variation of (almost) all robot dynamic coefficients

n preliminary identification experiments are needed
n robot in motion (dynamic issues, not just static or geometric ones!)
n only the robot dynamic coefficients can be identified (and not all 

the link standard parameters!)
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Identification experiments
1. choose a motion trajectory 𝑞k(𝑡) that is sufficiently “exciting”, i.e.,

§ explores the robot workspace and involves all components in the  
robot dynamic model

§ is periodic, with multiple frequency components
2. execute this motion (approximately) by means of a control law

§ taking advantage of any available information on the robot model 
§ often 𝑢 = 𝐾{(𝑞k − 𝑞) + 𝐾|(�̇�k − �̇�) (PD, no model information used)

3. measure 𝑞 (encoders) in 𝑛6 time instants (and, if available, also �̇�)
§ joint velocity �̇� and acceleration �̈� can be later estimated off line by 

numerical differentiation (use of non-causal filters is feasible)
4. with such measures/estimates, evaluate the regression matrix 𝑌 (on the 

left) and use the applied commands 𝑢 (on the right) in the expression

𝑘 = 1,⋯ , 𝑛6
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𝑌 𝑞 𝑡] , �̇� 𝑡] , �̈� 𝑡] 𝑎 = 𝑢 𝑡]



Least Squares (LS) identification 
n set up the system of linear equations

n sufficiently “exciting” trajectories, large enough number of 
samples (𝑛6 × 𝑁 ≫ 𝑝), and their suitable selection/position,  
guarantee rank(�𝑌) = 𝑝 (full column rank) 

n solution by pseudoinversion of matrix �𝑌

n one can also use a weighted pseudoinverse, to take into 
account different levels of noise in the collected measures

𝑛6× 𝑁
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𝑎 = �𝑌#�𝑢 = �𝑌A �𝑌 �B �𝑌A �𝑢 (∈ ℝm)

�𝑌𝑎 = �𝑢
𝑌 𝑞 𝑡B , �̇� 𝑡B , �̈� 𝑡B

⋮
𝑌 𝑞 𝑡j� , �̇� 𝑡j� , �̈� 𝑡j�

𝑎 =
𝑢 𝑡B
⋮

𝑢 𝑡j�



Additional remarks on LS identification 
n it is convenient to preserve the block (upper) triangular structure of 

the regression matrix, by “stacking” all time evaluations in row by row 
sequence of the original 𝑌 matrix

𝑁×
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n further practical hints
n outlier data can be eliminated in advance (when building 𝑌)
n if sufficiently rich friction models are not included in 𝑌𝑎, discard the 

data collected at joint velocities close to zero

𝑛6

𝑛6 𝑛6

𝑛6

�𝑌 =

𝑌B 𝑞 𝑡B , �̇� 𝑡B , �̈� 𝑡B
⋮

𝑌B 𝑞 𝑡j� , �̇� 𝑡j� , �̈� 𝑡j�
𝑌8 𝑞 𝑡B , �̇� 𝑡B , �̈� 𝑡B

⋮
𝑌8 𝑞 𝑡j� , �̇� 𝑡j� , �̈� 𝑡j�

⋮
𝑌G 𝑞 𝑡B , �̇� 𝑡B , �̈� 𝑡B

⋮
𝑌G 𝑞 𝑡j� , �̇� 𝑡j� , �̈� 𝑡j�

𝑎 =

𝑢B 𝑡B
⋮

𝑢B 𝑡j�
𝑢8 𝑡B
⋮

𝑢8 𝑡j�
⋮

𝑢G 𝑡B
⋮

𝑢G 𝑡j�

�𝑌𝑎 = �𝑢

§ numerical check of full column rank is 
more robust ⇔ rank = 𝑝 (# of col’s)



Summary on dynamic identification
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J. Swevers, W. Verdonck, and J. De Schutter:
“Dynamic model identification for industrial robots”

IEEE Control Systems Mag., Oct 2007 

KUKA IR 361 
robot and
optimal

excitation 
trajectory

results after identification (first three joints only)



Dynamic identification of KUKA LWR4

Robotics 2 15

C. Gaz, F. Flacco, A. De Luca:
“Identifying the dynamic model used by the KUKA LWR:

A reverse engineering approach”
IEEE ICRA 2014

validation after identification (for all 7 joints):
on new desired trajectories, compare 

torques computed with the identified model
and torques measured by joint torque sensors

data acquisition for identification
dynamic coefficients: 30 inertial, 12 for gravity

video



numerical values
identified through
experiments

gravity joint torques 
prediction/evaluation on 
new validation trajectory

Identification of LWR4 gravity terms
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using the linear parametrization, gravity terms can also be identified separately

symbolic expressions of gravity-
related dynamic coefficients



friction-

Role of friction in identification
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KUKA LWR4 dynamic model estimation vs. joint torque sensor measurement

without the use of a joint friction model including an identified joint friction model

meas



Dynamic identification of KUKA LWR4
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J. Hollerbach, W. Khalil, M. Gautier: “Ch. 6: Model Identification”, Springer Handbook of Robotics (2nd Ed), 2016
free access to multimedia extension: http://handbookofrobotics.org

using more dynamic robot motions for model identification

video



Adding a payload to the robot
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n in several industrial applications, changes in the 
robot payload are often needed
n using different tools for various technological operations 

such as polishing, welding, grinding, ...
n pick-and-place tasks of objects having unknown mass

n what is the rule of change for dynamic parameters 
when there is an additional payload? 
n do we obtain again a linearly parameterized problem?
n does this property rely on some specific choice of 

reference frames (e.g., conventional or modified D-H)?



Rule of change in dynamic parameters

Robotics 2 20

n only the dynamic parameters of the link where a load is added will change 
(typically, added to the last one –link n– as payload)

n last link dynamic parameters: mn (mass), cn = (cnxcnycnz)T (center of mass), 
In (inertia tensor expressed w.r.t. frame n)

n payload dynamic parameters: mL (mass), cL = (cLxcLycLz)T (center of 
mass), IL (inertia tensor expressed w.r.t. frame n)

n mass

n center of mass

n inertia tensor

(weighted average) where i = x, y, z

valid only if tensors are expressed w.r.t. 
the same reference frame (i.e., frame n)! 

§ linear parametrization is preserved with any kinematic convention 
(the parameters of the last link will always appear in the form shown above)



Example: 2R planar robot with payload
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g0 = gravity acceleration

robot dynamics robot dynamics

Note 1: position of the center of mass of the two links and of the payload may also be asymmetric
Note 2: link inertia & center of mass are expressed in the DH kinematic frame attached to the link      

(e.g., I2zz is the inertia of the second link around the axis z2)

y0

q1

a1

a2

q2

y1

y2

x0

x1

x2



Validation on the KUKA LWR4 robot
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video

C. Gaz, A. De Luca: “Payload estimation based on identified coefficients of robot dynamics
– with an application to collision detection” IEEE IROS 2017, Vancouver, September 2017 

see the block 
of slides!
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