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Prof. Alessandro De Luca

Dynamic model of robots:
Analysis, properties, extensions, uses



Analysis of inertial couplings

n Cartesian robot

n Cartesian “skew” robot

n PR robot

n 2R robot

n 3R articulated robot
(under simplifying
assumptions on the CoMs)
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𝑀 = 𝑚$$ 0
0 𝑚&&

𝑀 =
𝑚$$ 𝑚$&
𝑚$& 𝑚&&

𝑀 = 𝑚$$(𝑞&) 𝑚$&(𝑞&)
𝑚$&(𝑞&) 𝑚&&

𝑀 =
𝑚$$(𝑞&, 𝑞+) 0 0

0 𝑚&&(𝑞+) 𝑚&+(𝑞+)
0 𝑚&+(𝑞+) 𝑚++

𝑀 = 𝑚$$ 𝑚$&(𝑞&)
𝑚$&(𝑞&) 𝑚&&



Analysis of gravity term
n absence of gravity

n constant 𝑈- (motion on horizontal plane)
n applications in remote space

n static balancing
n distribution of masses (including motors)

n mechanical compensation
n articulated system of springs
n closed kinematic chains
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𝑔 𝑞 ≈ 0



Bounds on dynamic terms
n for an open-chain (serial) manipulator, there always exist 

positive real constants 𝑘0 to 𝑘7 such that, for any value of 
𝑞 and 𝑞̇
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inertia matrix

factorization matrix of
Coriolis/centrifugal terms

gravity vector

NOTE: norms are either for vectors or for matrices (induced norms)

𝑘3 ≤ 𝑀 𝑞 ≤ 𝑘$ + 𝑘& 𝑞 + 𝑘+ 𝑞 &

𝑆 𝑞, 𝑞̇ ≤ 𝑘7 + 𝑘8 𝑞 𝑞̇

𝑔 𝑞 ≤ 𝑘9 + 𝑘: 𝑞

n if the robot has only revolute joints, these simplify to

(the same holds true with bounds 𝑞;,<;= ≤ 𝑞; ≤ 𝑞;,<>? on prismatic joints) 

𝑘3 ≤ 𝑀 𝑞 ≤ 𝑘$ 𝑆 𝑞, 𝑞̇ ≤ 𝑘7 𝑞̇ 𝑔 𝑞 ≤ 𝑘9



Robots with closed kinematic chains - 1

Comau Smart NJ130 MIT Direct Drive Mark II and Mark III
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Robots with closed kinematic chains - 2

MIT Direct Drive Mark IV
(planar five-bar linkage)

UMinnesota Direct Drive Arm
(spatial five-bar linkage)
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Robot with parallelogram structure
(planar) kinematics and dynamics

𝑞&

𝑞& − 𝜋

1

2

3
4 center of mass:

parallelogram:

arbitrary 𝑙C;
5 E-E

𝑥

𝑦
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𝑙C+

𝑙8

𝑙C$ 𝑙$ = 𝑙+
𝑙& = 𝑙7

direct kinematics𝑙C&

𝑝GG =
𝑙$𝑐$
𝑙$𝑠$

+
𝑙8 cos 𝑞& − 𝜋
𝑙8 sin 𝑞& − 𝜋

= 𝑙$𝑐$
𝑙$𝑠$

−
𝑙8𝑐&
𝑙8𝑠&

position of center of masses
𝑝C$ =

𝑙C$𝑐$
𝑙C$𝑠$

𝑝C& =
𝑙C&𝑐&
𝑙C&𝑠&

𝑝C+ =
𝑙&𝑐&
𝑙&𝑠&

+ 𝑙C+𝑐$
𝑙C+𝑠$

𝑝C7 =
𝑙$𝑐$
𝑙$𝑠$

− 𝑙C7𝑐&
𝑙C7𝑠&

𝑙C7

𝑞$



Kinetic energy
linear/angular velocities
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Note: a (planar) 2D notation is used here!

𝑣C$ =
−𝑙C$𝑠$
𝑙C$𝑐$

𝑞̇$

𝑣C& =
−𝑙C&𝑠&
𝑙C&𝑐&

𝑞̇&

𝑣C+ =
−𝑙C+𝑠$
𝑙C+𝑐$

𝑞̇$ +
−𝑙&𝑠&
𝑙&𝑐&

𝑞̇&

𝑣C7 =
−𝑙$𝑠$
𝑙$𝑐$

𝑞̇$ +
𝑙C7𝑠&
−𝑙C7𝑐&

𝑞̇&

𝜔$ = 𝜔+ = 𝑞̇$

𝜔& = 𝜔7 = 𝑞̇&

𝑇; 𝑇$ =
$
&𝑚$𝑙C$& 𝑞̇$& +

$
& 𝐼C$,SS𝑞̇$

& 𝑇& =
$
&
𝑚&𝑙C&& 𝑞̇&& +

$
&
𝐼C&,SS𝑞̇&&

𝑇+ =
$
&
𝑚+ 𝑙&&𝑞̇&& + 𝑙C+& 𝑞̇$& + 2𝑙&𝑙C+𝑐&U$𝑞̇$𝑞̇& + $

&
𝐼C+,SS𝑞̇$&

𝑇7 =
$
&
𝑚7 𝑙$&𝑞̇$& + 𝑙C7& 𝑞̇&& − 2𝑙$𝑙C7𝑐&U$𝑞̇$𝑞̇& + $

&
𝐼C7,SS𝑞̇&&



Robot inertia matrix
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𝑇 =V
;W$

7

𝑇; =
1
2
𝑞̇Y𝑀 𝑞 𝑞̇

𝑀 𝑞 =
𝐼C$,SS + 𝑚$𝑙C$& + 𝐼C+,SS + 𝑚+𝑙C+& + 𝑚7𝑙$& symm

𝑚+𝑙&𝑙C+ − 𝑚7𝑙$𝑙C7 𝑐&U$ 𝐼C&,SS + 𝑚&𝑙C&& + 𝐼C7,SS + 𝑚7𝑙C7& + 𝑚+𝑙&&

𝑀(𝑞) diagonal and constant ⇒ centrifugal and Coriolis terms ≡ 0

(*)structural condition
in mechanical design 𝑚+𝑙&𝑙C+ = 𝑚7𝑙$𝑙C7

mechanically DECOUPLED and LINEAR
dynamic model (up to the gravity term 𝑔(𝑞)) 

big advantage for the design of a motion control law!

𝑀$$ 0
0 𝑀&&

𝑞̈$
𝑞̈&

=
𝑢$
𝑢&



Potential energy and gravity terms
from the 𝑦-components of vectors 𝑝C;

𝑈;

gravity
components
are always
“decoupled”
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𝑈 =V
;W$

7

𝑈;

𝑈$ = 𝑚$𝑔3𝑙C$𝑠$ 𝑈& = 𝑚&𝑔3𝑙C&𝑠&
𝑈+ = 𝑚+𝑔3 𝑙&𝑠& + 𝑙C+𝑠$ 𝑈7 = 𝑚7𝑔3 𝑙$𝑠$ − 𝑙C7𝑠&

𝑔 𝑞 =
𝜕𝑈
𝜕𝑞

Y

= 𝑔3 𝑚$𝑙C$ + 𝑚+𝑙C+ + 𝑚7𝑙$ 𝑐$
𝑔3 𝑚&𝑙C& + 𝑚+𝑙& − 𝑚7𝑙C7 𝑐&

= 𝑔$ 𝑞$
𝑔& 𝑞&

in addition,
when (*) holds 

𝑢; are
(non-conservative) torques

performing work on 𝑞;

further structural conditions in the mechanical design lead to 𝑔(𝑞) ≡ 0!!

𝑚$$𝑞̈$ + 𝑔$ 𝑞$ = 𝑢$
𝑚&&𝑞̈& + 𝑔& 𝑞& = 𝑢&



Adding dynamic terms ...
1) dissipative phenomena due to friction at the joints/transmissions

n viscous, Coulomb, stiction, Stribeck, LuGre (dynamic)...
n local effects at the joints
n difficult to model in general, except for:
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𝑢a,; = −𝐹a,; 𝑞̇; 𝑢c,; = −𝐹c,; sgn 𝑞̇;

𝑭𝑪 𝒔𝒈𝒏(𝒒̇)

𝑭𝑽𝒒̇

𝑭𝒔𝒕𝒊𝒄𝒕𝒊𝒐𝒏



Adding dynamic terms ...
2) inclusion of electrical actuators (as additional rigid bodies)

n motor 𝑖 mounted on link 𝑖 − 1 (or before)
n often with its spinning axis aligned with joint axis 𝑖
n (balanced) mass of motor included in total mass of carrying link
n (rotor) inertia has to be added to robot kinetic energy
n transmissions with reduction gears (often, large reduction ratios)
n in some cases, multiple motors cooperate in moving multiple links: 

use a transmission coupling matrix 𝛤 (with off-diagonal elements)
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Unimation PUMA family

Mitsubishi RV-3S

𝑗𝑜𝑖𝑛𝑡 2
𝑚𝑜𝑡𝑜𝑟 2

𝑚𝑜𝑡𝑜𝑟 3
𝑗𝑜𝑖𝑛𝑡 3

, with very few exceptions



Placement of motors along the chain

RF0 RF1

RFN-1

link 0
(base)

link 1

joint1

link N - 1

link 2 link N
joint 2

RFW
(world frame)

joint N

RFN

motor 1

motor 2

motor N

rotor 1
frame

rotor N 
frame
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𝜃̇<$

𝜃̇<&

𝜃̇<y

𝜃̇<; = 𝑛z;𝜃̇;
𝜏; = 𝑛z;𝜏<;



Resulting dynamic model 
n simplifying assumption: in the rotational part of the kinetic 

energy, only the “spinning” rotor velocity is considered
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diagonal, > 0

𝑇<; =
1
2 𝐼<;𝜃̇<;

& =
1
2 𝐼<;𝑛z;

& 𝑞̇;& =
1
2𝐵<;𝑞̇;

& 𝑇< =V
;W$

y

𝑇<; =
1
2 𝑞̇

Y𝐵<𝑞̇

n including all added terms, the robot dynamics becomes

constant does NOT
contribute to 𝑐

𝐹𝑉 > 0, 𝐹c > 0
diagonal

motor torques
(after

reduction gears)

moved to
the left ...

𝑀 𝑞 + 𝐵< 𝑞̈ + 𝑐 𝑞, 𝑞̇ + 𝑔 𝑞 + 𝐹a𝑞̇ + 𝐹c sgn 𝑞̇ = 𝜏

𝐼< + diag
𝑚;;(𝑞)
𝑛z;&

𝜃̈< + diag
1
𝑛z;

V
�W$

y

�𝑀�(𝑞)𝑞̈� + 𝑓 𝑞, 𝑞̇ = 𝜏<

n scaling by the reduction gears, looking from the motor side
motor torques

(before 
reduction gears)

diagonal

except the terms 𝑚��



Including joint elasticity

n in industrial robots, use of motion transmissions based on
n belts
n harmonic drives
n long shafts 

introduces flexibility between actuating motors (input) and driven 
links (output)

n in research robots compliance in transmissions is introduced on 
purpose for safety (human collaboration) and/or energy efficiency
n actuator relocation by means of (compliant) cables and pulleys
n harmonic drives and lightweight (but rigid) link design
n redundant (macro-mini or parallel) actuation, with elastic couplings

n in both cases, flexibility is modeled as concentrated at the joints
n in most cases, assuming small joint deformation (elastic domain)
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Robots with joint elasticity

Dexter 
with cable transmissions

DLR LWR-III
with harmonic drives

Stanford DECMMA
with micro-macro actuation

Quanser Flexible Joint
(1-dof linear, educational)

motor load/linkelastic
spring

(stiffness K)
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video



Dynamic model
of robots with elastic joints

n introduce 2𝑁 generalized coordinates
n 𝑞 = 𝑁 link positions
n 𝜃 = 𝑁 motor positions (after reduction, 𝜃; = 𝜃<;/𝑛z;)

n add motor kinetic energy 𝑇𝑚 to that of the links

n add elastic potential energy 𝑈𝑒 to that due to gravity 𝑈-(𝑞)
n 𝐾 = matrix of joint stiffness (diagonal, > 0)

n apply Euler-Lagrange equations w.r.t. (𝑞, 𝜃)

diagonal, > 0

no external torques
performing work on 𝑞
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𝑇<; =
1
2
𝐼<;𝜃̇<;& =

1
2
𝐼<;𝑛z;& 𝜃̇;& =

1
2
𝐵<;𝜃̇;&

𝑇� =
1
2 𝑞̇

Y𝑀(𝑞)𝑞̇

𝑇< =V
;W$

y

𝑇<; =
1
2 𝜃̇

Y𝐵<𝜃̇

𝑈�; =
1
2𝐾; 𝑞; −

𝜃<;
𝑛z;

&

=
1
2𝐾; 𝑞; − 𝜃;

& 𝑈� =V
;W$

y

𝑈�; =
1
2
𝑞 − 𝜃 Y𝐾 𝑞 − 𝜃

2𝑁 2nd-order
differential
equations

𝑀 𝑞 𝑞̈ + 𝑐 𝑞, 𝑞̇ + 𝑔 𝑞 + 𝐾 𝑞 − 𝜃 = 0
𝐵<𝜃̈ + 𝐾 𝜃 − 𝑞 = 𝜏



Use of the dynamic model
inverse dynamics

n given a desired trajectory 𝑞�(𝑡)
n twice differentiable (∃ 𝑞̈�(𝑡))
n possibly obtained from a task/Cartesian trajectory 𝑟�(𝑡), by 

(differential) kinematic inversion 
the input torque needed to execute this motion (in free space) is

n useful also for control (e.g., nominal feedforward)
n however, this way of performing the algebraic computation (∀𝑡) is  

not efficient when using the above Lagrangian approach
n symbolic terms grow much longer, quite rapidly for larger 𝑁
n in real time, numerical computation is based on Newton-Euler method
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𝜏� = 𝑀 𝑞� + 𝐵< 𝑞̈� + 𝑐 𝑞�, 𝑞̇� + 𝑔 𝑞� + 𝐹a𝑞̇� + 𝐹c sgn 𝑞̇�



State equations
direct dynamics

𝑁 differential
2nd order
equations

another choice... �̇𝑥 = ... (do it as exercise)

Lagrangian
dynamic model

generalized
momentum
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𝑀 𝑞 𝑞̈ + 𝑐 𝑞, 𝑞̇ + 𝑔 𝑞 = 𝑢

defining the vector of state variables as 𝑥 =
𝑥$
𝑥& =

𝑞
𝑞̇ ∈ ℝ&y

�𝑥 =
𝑞

𝑀(𝑞)𝑞̇

state equations

2𝑁 × 1 2𝑁 × 𝑁

2𝑁 differential
1st order

equations

𝑥̇ =
𝑥̇$
𝑥̇&

=
𝑥&

−𝑀U$(𝑥$) 𝑐 𝑥$, 𝑥& + 𝑔(𝑥$)
+

0
𝑀U$(𝑥$)

𝑢

= 𝑓(𝑥) + 𝐺(𝑥)𝑢



Dynamic simulation

𝑢

𝑔(𝑞)

𝑀U$(𝑞)

here, a generic 2-dof robot

+
_

_

§ initialization (dynamic coefficients and initial state)
§ calls to (user-defined) Matlab functions for the evaluation of model terms
§ choice of a numerical integration method (and of its parameters)

input torque
command
(open-loop

or in 
feedback)

including “inv(M)”

Simulink
block

scheme
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𝑐(𝑞, 𝑞̇)

𝑞 𝑞

𝑞, 𝑞̇

𝑞̇$

𝑞̇&

𝑞$

𝑞&

𝑞&(0)

𝑞$(0)𝑞̇$(0)

𝑞̇&(0)

𝑞̈$

𝑞̈&



Approximate linearization
n we can derive a linear dynamic model of the robot, which is valid 

locally around a given operative condition
n useful for analysis, design, and gain tuning of linear (or, the linear 

part of) control laws
n approximation by Taylor series expansion, up to the first order
n linearization around a (constant) equilibrium state or along a 

(nominal, time-varying) equilibrium trajectory
n usually, we work with (nonlinear) state equations; for mechanical 

systems, it is more convenient to directly use the 2nd order model
n same result, but easier derivation
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equilibrium trajectory (𝑞, 𝑞̇) = (𝑞�(𝑡), 𝑞̇�(𝑡)) [ 𝑞̈ = 𝑞̈�(𝑡) ]

𝑀 𝑞� 𝑞̈� + 𝑐 𝑞�, 𝑞̇� + 𝑔 𝑞� = 𝑢�

equilibrium state (𝑞, 𝑞̇) = (𝑞�, 0) [ 𝑞̈ = 0 ] 𝑔 𝑞� = 𝑢�



Linearization at an equilibrium state
n variations around an equilibrium state

n keeping into account the quadratic dependence of c terms 
on velocity (thus, neglected around the zero velocity)

n in state-space format, with ∆𝑥 =
∆𝑞
̇∆𝑞
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𝑞 = 𝑞� + Δ𝑞 𝑞̇ = 𝑞̇� + ̇Δ𝑞 = ̇Δ𝑞 𝑞̈ = 𝑞̈� + ̈∆𝑞 = ̈∆𝑞 𝑢 = 𝑢� + Δ𝑢

𝑀 𝑞� ̈∆𝑞 + 𝑔 𝑞� + �
𝜕𝑔
𝜕𝑞 �W��

∆𝑞 + o ∆𝑞 , ̇∆𝑞 = 𝑢� + ∆𝑢

infinitesimal terms
of second or higher order

𝐺(𝑞�)

̇∆𝑥 = 0 𝐼
−𝑀U$ 𝑞� 𝐺(𝑞�) 0 ∆𝑥 + 0

𝑀U$(𝑞�)
∆𝑢 = 𝐴 ∆𝑥 + 𝐵 ∆𝑢



Linearization along a trajectory
n variations around an equilibrium trajectory

n developing to 1st order the terms in the dynamic model ...

𝑖-th row of the
identity matrix
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𝑞 = 𝑞� + Δ𝑞 𝑞̇ = 𝑞̇� + ̇Δ𝑞 𝑞̈ = 𝑞̈� + ̈∆𝑞 𝑢 = 𝑢� + Δ𝑢

𝑀(𝑞� + ∆𝑞) 𝑞̈� + ̈∆𝑞 + 𝑐(𝑞� + ∆𝑞, 𝑞̇� + ̇∆𝑞) + 𝑔 𝑞� + ∆𝑞 = 𝑢� + ∆𝑢

𝑀 𝑞� + ∆𝑞 ≅ 𝑀 𝑞� +V
;W$

y

�
𝜕𝑀;
𝜕𝑞 �W��

𝑒;Y∆𝑞

𝑔 𝑞� + ∆𝑞 ≅ 𝑔 𝑞� + 𝐺(𝑞�)∆𝑞

𝑐 𝑞� + ∆𝑞, 𝑞̇� + ̇∆𝑞 ≅ 𝑐 𝑞�, 𝑞̇� + �
𝜕𝑐
𝜕𝑞 �W��

�̇W�̇�

∆𝑞 + �
𝜕𝑐
𝜕𝑞̇ �W��

�̇W�̇�

̇∆𝑞

𝐶&(𝑞�, 𝑞̇�)

𝐶$(𝑞�, 𝑞̇�)



Linearization along a trajectory (cont)

n after simplifications …

with

n in state-space format

a linear, but time-varying system!!
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𝑀(𝑞�) ̈∆𝑞 + 𝐶&(𝑞�, 𝑞̇�) ̇∆𝑞 + 𝐷 𝑞�, 𝑞̇�, 𝑞̈� ∆𝑞 = ∆𝑢

𝐷 𝑞�, 𝑞̇�, 𝑞̈� = 𝐺 𝑞� + 𝐶$ 𝑞�, 𝑞̇� +V
;W$

y

�
𝜕𝑀;

𝜕𝑞 �W��

𝑞̈�𝑒;Y

̇∆𝑥 = 0 𝐼
−𝑀U$ 𝑞� 𝐷 𝑞�, 𝑞̇�, 𝑞̈� −𝑀U$ 𝑞� 𝐶& 𝑞�, 𝑞̇�

∆𝑥

+ 0
𝑀U$(𝑞�)

∆𝑢 = 𝐴(𝑡) ∆𝑥 + 𝐵(𝑡) ∆𝑢



Coordinate transformation

if we wish/need to use a new set of generalized coordinates 𝑝

1

1
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𝑞 ∈ ℝy 𝑀 𝑞 𝑞̈ + 𝑐 𝑞, 𝑞̇ + 𝑔 𝑞 = 𝑀 𝑞 𝑞̈ + 𝑛 𝑞, 𝑞̇ = 𝑢�

𝑝 ∈ ℝy 𝑝 = 𝑓(𝑞) 𝑞 = 𝑓U$(𝑝)

𝑝̇ =
𝜕𝑓
𝜕𝑞

𝑞̇ = 𝐽(𝑞)𝑞̇ 𝑞̇ = 𝐽U$(𝑞)𝑝̇ 𝑢� = 𝐽Y(𝑞)𝑢�

𝑝̈ = 𝐽 𝑞 𝑞̈ + ̇𝐽(𝑞)𝑞̇ 𝑞̈ = 𝐽U$(𝑞) 𝑝̈ − ̇𝐽(𝑞)𝐽U$(𝑞)𝑝̇

𝑀 𝑞 𝐽U$ 𝑞 𝑝̈ − 𝑀(𝑞)𝐽U$(𝑞) ̇𝐽(𝑞)𝐽U$(𝑞)𝑝̇ + 𝑛 𝑞, 𝑞̇ = 𝐽Y(𝑞)𝑢�

pre-multiplying the whole equation...𝐽UY(𝑞) �



Robot dynamic model
after coordinate transformation

when 𝑝 = E-E pose, this is the robot dynamic model in Cartesian coordinates

non-conservative
generalized forces

performing work on 𝑝

Robotics 2 26
Q: What if the robot is redundant with respect to the Cartesian task?

𝐽UY 𝑞 𝑀 𝑞 𝐽U$ 𝑞 𝑝̈ + 𝐽UY 𝑞 𝑛 𝑞, 𝑞̇ − 𝑀(𝑞)𝐽U$(𝑞) ̇𝐽(𝑞)𝐽U$(𝑞)𝑝̇ = 𝑢�

for actual computation,
these inner substitutions

are not necessary𝑞 → 𝑝 (𝑞, 𝑞̇) → (𝑝, 𝑝̇)

𝑀� 𝑝 𝑝̈ + 𝑐� 𝑝, 𝑝̇ + 𝑔� 𝑝 = 𝑢�
symmetric,
positive definite 
(out of singularities)

quadratic
dependence on 𝑝̇

𝑀� = 𝐽UY𝑀𝐽U$ 𝑔� = 𝐽UY𝑔

𝑐� = 𝐽UY 𝑐 − 𝑀𝐽U$ ̇𝐽 𝐽U$𝑝̇ = 𝐽UY𝑐 − 𝑀� ̇𝐽 𝐽U$𝑝̇

𝑐�(𝑝, 𝑝̇) = 𝑆�(𝑝, 𝑝̇) 𝑝̇ 𝑀̇� − 2𝑆� skew-symmetric



Dynamic scaling of trajectories
uniform time scaling of motion

Robotics 2 27

n given a smooth original trajectory 𝑞�(𝑡) of motion for 𝑡 ∈ [0, 𝑇]
n suppose to rescale time as 𝑡 → 𝑟(𝑡) (a strictly increasing function of 𝑡)
n in the new time scale, the scaled trajectory 𝑞¡(𝑟) satisfies

n uniform scaling of the trajectory occurs when 𝑟 𝑡 = 𝑘𝑡

Q: what is the new input torque needed to execute the scaled trajectory?
(suppose dissipative terms can be neglected)

same path executed
(at different instants of time)

𝑞� 𝑡 = 𝑞¡ 𝑟(𝑡) 𝑞̇� 𝑡 =
𝑑𝑞�
𝑑𝑡

=
𝑑𝑞¡
𝑑𝑟

𝑑𝑟
𝑑𝑡

= 𝑞¡£ 𝑟̇

𝑞̈� 𝑡 =
𝑑𝑞̇�
𝑑𝑡

=
𝑑𝑞¡£

𝑑𝑟
𝑑𝑟
𝑑𝑡

𝑟̇ + 𝑞¡£ 𝑟̈ = 𝑞¡££𝑟̇& + 𝑞¡£ 𝑟̈

𝑞̇� 𝑡 = 𝑘𝑞¡£(𝑘𝑡) 𝑞̈� 𝑡 = 𝑘&𝑞¡££(𝑘𝑡)



n the new torque could be recomputed through the inverse dynamics, for 
every 𝑟 = 𝑘𝑡 ∈ 0, 𝑇£ = [0, 𝑘𝑇] along the scaled trajectory, as

n however, being the dynamic model linear in the acceleration and 
quadratic in the velocity, it is

n thus, saving separately the total torque 𝜏�(𝑡) and gravity torque 𝑔�(𝑡)
in the inverse dynamics computation along the original trajectory, the 
new input torque is obtained directly as

Dynamic scaling of trajectories
inverse dynamics under uniform time scaling

Robotics 2 28

𝑘 > 1:  slow down
⇒ reduce torque

𝑘 < 1:    speed up
⇒ increase torque

gravity term (only position-dependent): does NOT scale! 

𝜏¡ 𝑘𝑡 = 𝑀 𝑞¡ 𝑞¡££ + 𝑐 𝑞¡, 𝑞¡£ + 𝑔(𝑞¡)

𝜏� 𝑡 = 𝑀 𝑞� 𝑞̈� + 𝑐 𝑞�, 𝑞̇� + 𝑔 𝑞� = 𝑀 𝑞¡ 𝑘&𝑞¡££ + 𝑐 𝑞¡, 𝑘𝑞¡£ + 𝑔(𝑞¡)

= 𝑘& 𝑀 𝑞¡ 𝑞¡££ + 𝑐 𝑞¡, 𝑞¡£ + 𝑔 𝑞¡ = 𝑘& 𝜏¡ 𝑘𝑡 − 𝑔 𝑞¡ + 𝑔 𝑞¡

𝜏¡ 𝑘𝑡 =
1
𝑘&

𝜏� 𝑡 − 𝑔 𝑞�(𝑡) + 𝑔 𝑞�(𝑡)



Dynamic scaling of trajectories
numerical example

Robotics 2 29

n rest-to-rest motion with cubic polynomials for planar 2R robot under gravity
(from downward equilibrium to horizontal link 1 & upward vertical link 2)

n original trajectory lasts 𝑇 = 0.5 s (but maybe violates the torque limit at joint 1)
only joint 1 torque is shown

total torque

at equilibrium
= zero gravity

torque

gravity torque
component

torque only due 
to non-zero initial

acceleration

for both joints



Dynamic scaling of trajectories
numerical example
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n scaling with 𝑘 = 2 (slower) → 𝑇£ = 1 soriginal
total

torque

scaled
total

torque

gravity torque
component

does not scale

gravity torque
to sustain the link

at steady state

𝑇 = 0.5 s

𝑇£ = 1 s

𝑇 = 1 s𝑇 = 0.5 s

* *
0 Nm

𝑘 = 2

1
4

*

𝜏� 0.1 − 𝑔 𝑞� 0.1 = 20 Nm

*

𝜏¡ 2 � 0.1 − 𝑔 𝑞¡ 2 � 0.1 = &3
&¨
= 5 Nm



Optimal point-to-point robot motion
considering the dynamic model

Robotics 2 31

§ given the initial and final robot configurations (at rest) and 
actuator torque bounds, find
n the minimum-time Tmin motion
n the (global/integral) minimum-energy Emin motion

and the associated command torques needed to execute them
§ a complex nonlinear optimization problem solved numerically

Tmin= 1.32 s, E = 306 T = 1.60 s, Emin = 6.14 

video video


