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Analysis of inertial couplings

= Cartesian robot <_.| I
s Cartesian “skew” robot — 2/

= 3R articulated robot @ m11(q2,q3) 0
m;
(under simplifying

= PR robot

= 2R robot

assumptions on the CoMs)
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Analysis of gravity term

= absence of gravity A
= constant U, (motion on horizontal plane)
= applications in remote space

= static balancing > ‘ g(q) ~ 0

= distribution of masses (including motors)

= mechanical compensation
= articulated system of springs
= cClosed kinematic chains y
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Bounds on dynamic terms

= for an open-chain (serial) manipulator, there always exist
positive real constants k, to k, such that, for any value of

g and g
ko < IM(Q| < ky + kyllgll + kzllgl]? inertia matrix
: : factorization matrix of
15Cq, DIl = (ks + ksllql)) llg Coriolis/centrifugal terms
lg(@DIl < ke + k7 llqll gravity vector

= if the robot has only revolute joints, these simplify to

ko < IM(PIl < k1 1ISCq, DIl < kallgll lg(@Il < ke

(the same holds true with bounds g; min < ¢; < qi max ON prismatic joints)

NOTE: norms are either for vectors or for matrices (induced norms)
Robotics 2



Comau Smart NJ130 MIT Direct Drive Mark II and Mark III
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MIT Direct Drive Mark IV UMinnesota Direct Drive Arm
(planar five-bar linkage) (spatial five-bar linkage)
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Robot with parallelogram structure

(planar) kinematics and dynamics

& center of mass:
arbitrary [

parallelogram:

L =13

12:l4

direct kinematics
_ (llcl) N (15 cos(q, — n)) _ (llcl) B (l5cz)
pEE - l151 l5 Sin(QZ — T[) - l]_Sl l552
position of center of masses
_ (leac _ (262 _ (e le3Cy _ (l1c1) _ (lc4cz)
Pe1 = (lc151) Pez = (lczsz) Pes = (1252) T (lc351) Pes = l151 lca S
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Kinetic energy

linear/angular velocities

_ lclSl lC351 _IZSZ . _ .
vcl—(lclcl)(h UCB_(lc3C1 )ql (lzcz )QZ wl_w?;_ql

—1 555\ . lis l..s , .
Uczz( ¢z 2)Clz vc4:( 11)Ch ( C4Z)CI2 Wy = Wy = (5
leaCo l1¢q

Note: a (planar) 2D notation is used here!

i T,= _mllcléh + IclzzCh I; = %mzlzzqz + 3 IczzzCIZ
I3 = %"13(12512 + 12347 + 2l51le3¢2-1G1G2) + = Ic3zzCI1
Ty = %m4(l1 a7 + 12445 — 241caC-1G142) + %Ich,zzq%
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Robot inertia matrix

4
1 7
T = ETi =74 M(q)q
i=1
M(CI) — <Ic1,zz + mllgl + Ic3,zz + ms lgB + m4l% symm )
(m3lales — mylilea) o Ieo,zz + mylg, + lea zz + mylly + m3ls

structural condition
in mechanical design

malyl.s = mylile, (*)

¥

M (q) diagonal and constant = centrifugal and Coriolis terms = 0

mechanically DECOUPLED and LINEAR 0 (M11 0 )(q'l) _ (ul)
dynamic model (up to the gravity term g(q)) 0 M3/ \q Uz
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Potential energy and gravity terms

from the y-components of vectors p,;

U

i Uy = mygolcisy Uy = mygolcas:

Us = m3go(lysy +1351) Uy =mygo(lysy — 1essy)

4
U — 2 Ui
i=1 gravity

g(q) — (a_U)T _ (gO(mllcl + m3lc3 + m4l1)C1) _ (gl(Ch) Components

aq go(myley + maly —myley)cy 92(q2) “are aIways"
decoupled

u; are
(non-conservative) torques
performing work on g;

in addition, ‘ my1G; + 91(q1) = uy
when (*) holds Ma2Gz + 92(q2) = Uy

further structural conditions in the mechanical design lead to g(g) = 0!!
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Adding dynamic terms ...

1) dissipative phenomena due to friction at the joints/transmissions
= Viscous, Coulomb, stiction, Stribeck, LuGre (dynamic)...
= local effects at the joints
= difficult to model in general, except for:

uy; = —Fy;q;| |uc; = —Fc;sgn(q;)

Generic Friction Models
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Adding dynamic terms ...

2) inclusion of electrical actuators (as additional rigid bodies)
= motor i mounted on link i — 1 (or before), with very few exceptions
= often with its spinning axis aligned with joint axis i
= (balanced) mass of motor included in total mass of carrying link
= (rotor) inertia has to be added to robot kinetic energy
= transmissions with reduction gears (often, large reduction ratios)

= iNn some cases, multiple motors cooperate in moving multiple links:
use a transmission coupling matrix I' (with off-diagonal elements)

Unimation PUMA family
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Placement of motors along the chain

émN

6 ml /\\ rotor N

joint N Omi = Ny 0;

(base) jointl
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Resulting dynamic model

= simplifying assumption: in the rotational part of the kinetic
energy, only the “spinning” rotor velocity is considered

N

1 . 1 . 1 . 1 .

T = Elmiegu' = Elz = EBmiQiz Tm = z Tmi = Equ?mq
=1

diagonal, > 0
= including all added terms, the robot dynamics becomes

/\ moved to
~ the left ..

(M(q) + B4 +c(q,9) + 9(q) + qu + F¢ Sgn(q) =1 «1

"8
1 motor torques
constant —  does NOT Fy >0,Fc >0 (afterCI

contribute to ¢ diagonal reduction gears)

= Scaling by the reduction gears, Iooking from the motor side
diagonal

motor torques
\<I + dlag{ ll(q)})@ + dlag{ } ZM @i+ f(q@.9 | =1m (beforg

ng TN reduction gears)
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Including joint elasticity

= in industrial robots, use of motion transmissions based on
= belts
= harmonic drives
= |ong shafts
introduces flexibility between actuating motors (input) and driven
links (output)
= in research robots compliance in transmissions is introduced on
purpose for safety (human collaboration) and/or energy efficiency
= actuator relocation by means of (compliant) cables and pulleys
= harmonic drives and lightweight (but rigid) link design
= redundant (macro-mini or parallel) actuation, with elastic couplings
= in both cases, flexibility is modeled as concentrated at the joints

= in most cases, assuming small joint deformation (elastic domain)
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DLR LWR-III
with harmonic drives

Dexter
with cable transmissions

elastic

mot(ir spring load/link
(s

ation

tiffness K)

Wy [ — =
Quanser Flexible Joint video Stanford DECMMA
(1-dof linear, educational) with micro-macro actuation
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Dynamic model
of robots with elastic joints

= introduce 2N generalized coordinates
= g = N link positions
= 6 = N motor positions (after reduction, 8, = 6,,;/n..;)

= add motor kinetic energy T,, to that of the links T, = EqTM (9)q
N

1. 1 1 1.,
T = _Imiemi = _Iminriei — _Bmiei Tm = Z Tmi =560"By,0
2 2 2 _ 2 —
t=1 diagonal, > 0
= add elastic potential energy U, to that due to gravity U, (q)
= K = matrix of joint stiffness (diagonal, > 0)

2 N
1 Q.. . 1 1
Uei = EKL' (%‘ — ( ml)) = EKi(CIi - 60,)* U, = 2 Ugi = E(CI —0)'K(q —0)
im1

Ny
= apply Euler-Lagrange equations w.r.t. (g, 8)
2 2order [M(q)i + ¢(q,d) + g(q@) + K(q — 8) = 0 oo vork on g
differential .
B,0+K@®B—-q)=rt

equations
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Use of the dynamic model
inverse dynamics

= given a desired trajectory g4 (t)
« twice differentiable (3 G4 (t))

= possibly obtained from a task/Cartesian trajectory r,;(t), by
(differential) kinematic inversion

the input torque needed to execute this motion (in free space) is

Tq = (M(qq) + Bn)da + c(qq,qq) + 9(qq) + Fyqq + Fc sgn(qq)

= useful also for control (e.g., nominal feedforward)

= however, this way of performing the algebraic computation (Vt) is
not efficient when using the above Lagrangian approach

= symbolic terms grow much longer, quite rapidly for larger N
= in real time, numerical computation is based on Newton-Euler method
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State equations
direct dynamics

Lagrangian N , N differential
dynagmic el M(@i+c(qd)+9(@ =u 214 order
equations

. . X1 q 2N
defining the vector of state variables as x = (x ) = (q) €ER
2
state equations v‘v

= (2) B (—M‘l(x1)[c(:, x3) + g(x1)]) T (M_lo(xl))u

_ 2N differential
fT(x) L GT(x)u 1st order
2N X1 2N XN equations

¥ — ( q ) generalized
M(q)q/} «— momentum
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Dynamic simulation

Simulink : . here, a generic 2-dof robot

block , --(d, .

Jock L@ @r-aq G0 q,(0)

iy Q.

input torque _ ] f ] f T
command + 1

(open-loop U _’CI)_' M (CI )

or in _ q'z C'Iz

feedback) . f . f . q,

; B [
9(q) --q9 ¢ q2(0) q2(0)

= initialization (dynamic coefficients and initial state)
= calls to (user-defined) Matlab functions for the evaluation of model terms
= choice of a humerical integration method (and of its parameters)
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Approximate linearization

= we can derive a linear dynamic model of the robot, which is valid
locally around a given operative condition

= useful for analysis, design, and gain tuning of linear (or, the linear
part of) control laws

= approximation by Taylor series expansion, up to the first order

= linearization around a (constant) equilibrium state or along a
(nominal, time-varying) equilibrium trajectory

= usually, we work with (nonlinear) state equations; for mechanical
systems, it is more convenient to directly use the 2" order model
= Same result, but easier derivation

equilibrium state (q,q) = (q,,0) [ =0] ™ g(q.) = u,
equilibrium trajectory (q,q) = (qq(t),qa(t)) [ § = Ga(t) |
=  M(q4)dq + c(qa da) + 9(qq) = ug
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Linearization at an equilibrium state

= Variations around an equilibrium state
q=qe+Aq G=q.+Aq=A0q §G=G.+Aqg=Aq u=u,+Au

= keeping into account the quadratic dependence of c terms
on velocity (thus, neglected around the zero velocity)

. d
M(q,)Aq + g},e;é) + a—g Aq + o(mYHHIA\qD }A/-I- Au
Qe

N 1= infinitesimal terms

of second or higher order

G(Qe)
Aq
= in state-space format, with Ax = (Aq)
A'x—( 0 I)Ax+( )Au—AAx+BAu
-M~1(q.)G(q.) O M~(q.) B
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Linearization along a trajectory

= variations around an equilibrium trajectory
q=qa+0q G=qa+0q G=Gdg+A0q u=uy+Au

= developing to 1%t order the terms in the dynamic model ...
M(qq + Aq)(Gq + Aq) + c(qa + Aq, Ga + Aq) + g(gq + Ag) = ug + Au

N
0M;

M(qq + Aq) = M(qq) +26—q‘

=1

9(qa +Aq) = g(qq) + G(qq)Aq C,(qq, dq)

§ i-th row of the

e lT Ag identity matrix

ad=4d

dc

A +(3‘c A
0qla=aa "1 " 3gla=aa 1

q=qd d=44
- —

c(qa +Aq,qq + Aq) = c(qq, 4a) + =—

Robotics 2 CZ(qd’qd) 23



Linearization along a trajectory (cont)

= after simplifications ...

M(qa)Aq + C2(qa, Ga)Aq + D(qa, Ga, Ga)Aq = Au
with N

D(qa4,q9a,4a) = G(qq) + C1(qq, qq) + z
i=1

oM;
dq

.o T
daq€;

. q=dq
= in state-space format

Ax = ( 0 ! )Ax
_M_1%Qd)D(Qd' qarGa) —M 1(q4)C2(qq,94)
+( _ )AuzAt Ax + B(t) Au
a linear, but time-varying system!!
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Coordinate transformation

g ERY MG +c(q,d) +9(@) = M@ +nq,d =uy | @

if we wish/need to use a new set of generalized coordinates p

p € RY

p=/(q)

0
b =24 = @)
q

p=1(q)d+J(q@)q

)
)
)

q=f""(p)

q=]"(Qp | uqg =7"(Quy

\

i =] @ —-J(@) ' (@p)

(D)

/

M ()] ()b — M@ (@) (@) @)p +n(q, ) =T (@, |

Robotics 2

]_T (q) - | pre-multiplying the whole equation...
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Robot dynamic model
after coordinate transformation

JTH @M (@) (@b + 17" (@) (n(q, §) — M(@Q] (D) (@] (D) =

T for actual computation, T ‘
these inner substitutions : :
q-Dp (q,9) » (p,p)
are not necessary non-conservative

generalized forces

‘ MP (p)p + Cp (p,p) + Ip (p) = Up | performing work on p

symmetric, T
= J7TM]J~1 positive definite 9, =J]""g
(out of singularities)

- 17 =12\ . g— . 1—1.. quadratic
cp =J T(C_M] wl 1}9)—] TC_MI?]] 'p dependence on p

(P, D) =S,(p,P) P M,, — 25,, skew-symmetric

My

when p = E-E pose, this is the robot dynamic model in Cartesian coordinates

Q. What if the robot is redundant with respect to the Cartesian task?
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Dynamic scaling of trajectories

uniform time scaling of motion

= given a smooth original trajectory q,(t) of motion for t € [0, T]
= Suppose to rescale time as t — r(t) (a strictly /ncreasing function of t)
= in the new time scale, the scaled trajectory q.(r) satisfies
dqd qu dr
dt  dr dt

qqa(t) = qs(r(t)) => q4(t) = =gl 7

same path executed
(at different instants of time)

dqq dqg dr .
Gg(t) = — o —(dsdt>r+qsr—qsr2+qsr

= uniform scaling of the trajectory occurs when r(t) = kt

ga(t) = kqg(kt) Gq(t) = k*q4 (kt)
Q: what is the new input torque needed to execute the scaled trajectory?
(suppose dissipative terms can be neglected)
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Dynamic scaling of trajectories

inverse dynamics under uniform time scaling

= the new torque could be recomputed through the inverse dynamics, for
every r = kt € [0,T'] = [0, kT] along the scaled trajectory, as

Ts(kt) = M(qs)qs + c(qs,q5) + 9(qs)

= however, being the dynamic model linear in the acceleration and
quadratic in the velocity, it is

t4(0) = M(qaYia)+ c(aafd0) + 9(aa) = M(gk2ql + c(gs kal) + g(as)
= k2(M(qs)qs + c(qs q5)) + 9(qs) = k?(ts(kt) — g(qs)) + 9(gs)

= thus, saving separately the total torque t4(t) and gravity torque g, (t)
in the inverse dynamics computation along the original trajectory, the
new input torque is obtained directly as

k > 1: slow down

1 = red tor
r5(kt) = -5 (ra(®) = 9(qa () + 9(@a(D) | 2 1. speca o

= increase torque

gravity term (only position-dependent): does NOT scale!
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Dynamic scaling of trajectories

numerical example

= rest-to-rest motion with cubic polynomials for planar 2R robot under gravity
(from downward equilibrium to horizontal link 1 & upward vertical link 2)

= original trajectory lasts T = 0.5 s (but maybe violates the torque limit at joint 1)

bostion only joint 1 torque is shown
0 T T T T T T T T 40 T T T T T T T T
torque only due
il i & to non-zero initial
g 1T .l acceleration
—1.50 e
2 008 o X 02 o5 03 0% 0a 045 05 total torque gravity torque
] Velocity 20 ; component|
afb /
@ 3 E 10k N e T T T T T =
g} S0P N T T T -
1+ ‘\a"\’\‘
00 0.‘05 0.‘1 0.|15 0.‘2 0.‘25 0!3 0.13:5 0.‘4 0.]45 0.5 REPRRE e
Acceleration \
. at equilibrium
% “r = zero gravity
B torque
_400 O.‘OS 0.‘1 0.|15 0.‘2 O.‘25 0f3 0.;35 0.‘4 0.115 0.5 _200 0.‘05 O.I1 0.‘15 0.I2 0.‘25 OA‘S 0.235 0.‘4 0.115 0.5

time [s] time [s]

for both joints
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Dynamic scaling of trajectories

numerical example

original gravity torque = scaling with k = 2 (slower) - T' =15
total to sustain the link
torque at Steady Stat\e 20 Scaling(of inertial + Coriolis + centifugal torque Jor k=2
. U | 30 - _
I 74(0.1) — g(qa(0.1)) = 20 Nm
20 - _
\ :
e ose "k 7,(2:0.1) — g(q,(2:0.1)) = = =5Nm |
‘ ‘gra\'/ity foqule 3
component | 0
does not scale
scaled
total 1 1ok
torque \ l
E 10\ ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ _
P s -20-
-30 ! | L L L L | 1 1
0 0.1 0.2 0.3 0.4 . O.Sm 0.6 0.7 0.8 0.9 1
T=05s k=2—> T=15
I T'"=1s 30
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Optimal point-to-point robot motion

considering the dynamic model

= given the initial and final robot configurations (at rest) and
actuator torque bounds, find

= the minimum-time T,,,, motion
= the (global/integral) minimum-energy E,;, motion
and the associated command torques needed to execute them

= a complex nonlinear optimization problem solved numerically
video video

. Energieminim#les
Zeitminimale Losung Losung

.= 1.325, E = 306 ~ T=160s, E =6.14
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