Robotics 2

Dynamic model of robots:
 Analysis, properties, extensions, uses

Prof. Alessandro De Luca

SAPIENZA
UNIVERSITÀ DI ROMA

Analysis of inertial couplings

- Cartesian robot $\left.\longleftrightarrow \downarrow \downarrow \downarrow \begin{array}{c}\text { ■ } \\ m_{11} \\ 0\end{array} m_{22}\right)$
- Cartesian "skew" robot

$$
M=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{12} & m_{22}
\end{array}\right)
$$

- PR robot

$M=\left(\begin{array}{cc}m_{11} & m_{12}\left(q_{2}\right) \\ m_{12}\left(q_{2}\right) & m_{22}\end{array}\right)$
- 2 R robot

$$
M=\left(\begin{array}{cc}
m_{11}\left(q_{2}\right) & m_{12}\left(q_{2}\right) \\
m_{12}\left(q_{2}\right) & m_{22}
\end{array}\right)
$$

- 3R articulated robot (under simplifying assumptions on the CoMs)

$$
M=\left(\begin{array}{ccc}
m_{11}\left(q_{2}, q_{3}\right) & 0 & 0 \\
0 & m_{22}\left(q_{3}\right) & m_{23}\left(q_{3}\right) \\
0 & m_{23}\left(q_{3}\right) & m_{33}
\end{array}\right)
$$

Analysis of gravity term

- absence of gravity
- constant U_{g} (motion on horizontal plane)
- applications in remote space
- static balancing
- distribution of masses (including motors)
- mechanical compensation
- articulated system of springs
- closed kinematic chains

Bounds on dynamic terms

- for an open-chain (serial) manipulator, there always exist positive real constants k_{0} to k_{7} such that, for any value of q and \dot{q}

$$
\begin{aligned}
k_{0} \leq\|M(q)\| & \leq k_{1}+k_{2}\|q\|+k_{3}\|q\|^{2} \\
\|S(q, \dot{q})\| & \leq\left(k_{4}+k_{5}\|q\|\right)\|\dot{q}\| \\
\|g(q)\| & \leq k_{6}+k_{7}\|q\|
\end{aligned}
$$

factorization matrix of Coriolis/centrifugal terms
gravity vector

- if the robot has only revolute joints, these simplify to

$$
k_{0} \leq\|M(q)\| \leq k_{1} \quad\|S(q, \dot{q})\| \leq k_{4}\|\dot{q}\| \quad\|g(q)\| \leq k_{6}
$$

(the same holds true with bounds $q_{i, \min } \leq q_{i} \leq q_{i, \max }$ on prismatic joints)
NOTE: norms are either for vectors or for matrices (induced norms)

Robots with closed kinematic chains - 1

Comau Smart NJ130

MIT Direct Drive Mark II and Mark III

Robots with closed kinematic chains - 2

MIT Direct Drive Mark IV (planar five-bar linkage)

UMinnesota Direct Drive Arm (spatial five-bar linkage)

Robot with parallelogram structure

(planar) kinematics and dynamics

Kinetic energy

linear/angular velocities

$$
\begin{array}{ll}
v_{c 1}=\binom{-l_{c 1} s_{1}}{l_{c 1} c_{1}} \dot{q}_{1} & v_{c 3}=\binom{-l_{c 3} s_{1}}{l_{c 3} c_{1}} \dot{q}_{1}+\binom{-l_{2} s_{2}}{l_{2} c_{2}} \dot{q}_{2} \\
\omega_{1}=\omega_{3}=\dot{q}_{1} \\
v_{c 2}=\binom{-l_{c 2} s_{2}}{l_{c 2} c_{2}} \dot{q}_{2} & v_{c 4}=\binom{-l_{1} s_{1}}{l_{1} c_{1}} \dot{q}_{1}+\binom{l_{c 4} s_{2}}{-l_{c 4} c_{2}} \dot{q}_{2}
\end{array} \omega_{2}=\omega_{4}=\dot{q}_{2} . ~ \$
$$

Note: a (planar) 2D notation is used here!

$$
\begin{gathered}
T_{i} \quad T_{1}=\frac{1}{2} m_{1} l_{c 1}^{2} \dot{q}_{1}^{2}+\frac{1}{2} I_{c 1, z z} \dot{q}_{1}^{2} \quad T_{2}=\frac{1}{2} m_{2} l_{c 2}^{2} \dot{q}_{2}^{2}+\frac{1}{2} I_{c 2, z z} \dot{q}_{2}^{2} \\
T_{3}=\frac{1}{2} m_{3}\left(l_{2}^{2} \dot{q}_{2}^{2}+l_{c 3}^{2} \dot{q}_{1}^{2}+2 l_{2} l_{c 3} c_{2-1} \dot{q}_{1} \dot{q}_{2}\right)+\frac{1}{2} I_{c 3, z z} \dot{q}_{1}^{2} \\
T_{4}=\frac{1}{2} m_{4}\left(l_{1}^{2} \dot{q}_{1}^{2}+l_{c 4}^{2} \dot{q}_{2}^{2}-2 l_{1} l_{c 4} c_{2-1} \dot{q}_{1} \dot{q}_{2}\right)+\frac{1}{2} I_{c 4, z z} \dot{q}_{2}^{2}
\end{gathered}
$$

Robot inertia matrix

$$
T=\sum_{i=1}^{4} T_{i}=\frac{1}{2} \dot{q}^{T} M(q) \dot{q}
$$

$$
M(q)=\left(\begin{array}{cc}
I_{c 1, z z}+m_{1} l_{c 1}^{2}+I_{c 3, z z}+m_{3} l_{c 3}^{2}+m_{4} l_{1}^{2} & \text { symm } \\
\left(m_{3} l_{2} l_{c 3}-m_{4} l_{1} l_{c 4}\right) c_{2-1} & I_{c 2, z z}+m_{2} l_{c 2}^{2}+I_{c 4, z z}+m_{4} l_{c 4}^{2}+m_{3} l_{2}^{2}
\end{array}\right)
$$

structural condition
in mechanical design

$$
\begin{equation*}
m_{3} l_{2} l_{c 3}=m_{4} l_{1} l_{c 4} \tag{*}
\end{equation*}
$$

$M(q)$ diagonal and constant \Rightarrow centrifugal and Coriolis terms $\equiv 0$
mechanically DECOUPLED and LINEAR dynamic model (up to the gravity term $g(q)$)

$$
\left(\begin{array}{cc}
M_{11} & 0 \\
0 & M_{22}
\end{array}\right)\binom{\ddot{q}_{1}}{\ddot{q}_{2}}=\binom{u_{1}}{u_{2}}
$$

big advantage for the design of a motion control law!

Potential energy and gravity terms

$$
\begin{array}{ll}
U_{i} \text { from the } y \text {-components of vectors } p_{c i} \\
\begin{array}{ll}
U_{1}=m_{1} g_{0} l_{c 1} s_{1} & U_{2}=m_{2} g_{0} l_{c 2} s_{2} \\
U_{3}=m_{3} g_{0}\left(l_{2} s_{2}+l_{c 3} s_{1}\right) & U_{4}=m_{4} g_{0}\left(l_{1} s_{1}-l_{c 4} s_{2}\right)
\end{array}
\end{array}
$$

$$
U=\sum_{i=1}^{4} U_{i}
$$

$$
g(q)=\left(\frac{\partial U}{\partial q}\right)^{T}=\binom{g_{0}\left(m_{1} l_{c 1}+m_{3} l_{c 3}+m_{4} l_{1}\right) c_{1}}{g_{0}\left(m_{2} l_{c 2}+m_{3} l_{2}-m_{4} l_{c 4} c_{2}\right.}=\binom{g_{1}\left(q_{1}\right)}{g_{2}\left(q_{2}\right)} \begin{gathered}
\text { components } \\
\text { "de always } \\
\text { "decoupled" }
\end{gathered}
$$

in addition,
when $(*)$ holds
:---:
$m_{22} \ddot{q}_{2}+g_{2}\left(q_{2}\right)=u_{2}$

non-conservative) torques
performing work on q_{i}
:---:
(no

further structural conditions in the mechanical design lead to $g(q) \equiv 0!!$

Adding dynamic terms

1) dissipative phenomena due to friction at the joints/transmissions - viscous, Coulomb, stiction, Stribeck, LuGre (dynamic)...

- local effects at the joints
- difficult to model in general, except for:

$$
u_{V, i}=-F_{V, i} \dot{q}_{i} \quad u_{C, i}=-F_{C, i} \operatorname{sgn}\left(\dot{q}_{i}\right)
$$

Adding dynamic terms ...

2) inclusion of electrical actuators (as additional rigid bodies)

- motor i mounted on link $i-1$ (or before), with very few exceptions
- often with its spinning axis aligned with joint axis i
- (balanced) mass of motor included in total mass of carrying link
- (rotor) inertia has to be added to robot kinetic energy
- transmissions with reduction gears (often, large reduction ratios)
- in some cases, multiple motors cooperate in moving multiple links: use a transmission coupling matrix Γ (with off-diagonal elements)

Robotics 2

Placement of motors along the chain

Resulting dynamic model

- simplifying assumption: in the rotational part of the kinetic energy, only the "spinning" rotor velocity is considered

$$
T_{m i}=\frac{1}{2} I_{m i} \dot{\theta}_{m i}^{2}=\frac{1}{2} I_{m i} n_{r i}^{2}, \dot{q}_{i}^{2}=\frac{1}{2} B_{m i} \dot{q}_{i}^{2} \quad T_{m}=\sum_{i=1}^{N} T_{m i}=\frac{1}{2} \dot{q}^{T} B_{m} \dot{q}
$$

- including all added terms, the robot dynamics becomes

- scaling by the reduction gears, looking from the motor side

Including joint elasticity

- in industrial robots, use of motion transmissions based on
- belts
- harmonic drives
- long shafts
introduces flexibility between actuating motors (input) and driven links (output)
- in research robots compliance in transmissions is introduced on purpose for safety (human collaboration) and/or energy efficiency
- actuator relocation by means of (compliant) cables and pulleys
- harmonic drives and lightweight (but rigid) link design
- redundant (macro-mini or parallel) actuation, with elastic couplings
- in both cases, flexibility is modeled as concentrated at the joints
- in most cases, assuming small joint deformation (elastic domain)

Robots with joint elasticity

Dexter with cable transmissions

Quanser Flexible Joint (1-dof linear, educational)

Dynamic model of robots with elastic joints

- introduce 2 N generalized coordinates
- $q=N$ link positions
- $\theta=N$ motor positions (after reduction, $\theta_{i}=\theta_{m i} / n_{r i}$)
- add motor kinetic energy T_{m} to that of the links $T_{q}=\frac{1}{2} \dot{q}^{T} M(q) \dot{q}$

$$
T_{m i}=\frac{1}{2} I_{m i} \dot{\theta}_{m i}^{2}=\frac{1}{2} I_{m i} n_{r i}^{2} \dot{\theta}_{i}^{2}=\frac{1}{2} B_{m i} \dot{\theta}_{i}^{2} \quad T_{m}=\sum_{i=1}^{N} T_{m i}=\frac{1}{2} \dot{\theta}^{T} B_{m} \dot{\theta}
$$

$$
\text { diagonal, > } 0
$$

- add elastic potential energy U_{e} to that due to gravity $U_{g}(q)$
- $K=$ matrix of joint stiffness (diagonal, >0)

$$
U_{e i}=\frac{1}{2} K_{i}\left(q_{i}-\left(\frac{\theta_{m i}}{n_{r i}}\right)\right)^{2}=\frac{1}{2} K_{i}\left(q_{i}-\theta_{i}\right)^{2} \quad U_{e}=\sum_{i=1}^{N} U_{e i}=\frac{1}{2}(q-\theta)^{T} K(q-\theta)
$$

- apply Euler-Lagrange equations w.r.t. (q, θ)

Use of the dynamic model inverse dynamics

- given a desired trajectory $q_{d}(t)$
- twice differentiable ($\exists \ddot{q}_{d}(t)$)
- possibly obtained from a task/Cartesian trajectory $r_{d}(t)$, by (differential) kinematic inversion
the input torque needed to execute this motion (in free space) is

$$
\tau_{d}=\left(M\left(q_{d}\right)+B_{m}\right) \ddot{q}_{d}+c\left(q_{d}, \dot{q}_{d}\right)+g\left(q_{d}\right)+F_{V} \dot{q}_{d}+F_{C} \operatorname{sgn}\left(\dot{q}_{d}\right)
$$

- useful also for control (e.g., nominal feedforward)
- however, this way of performing the algebraic computation $(\forall t)$ is not efficient when using the above Lagrangian approach
- symbolic terms grow much longer, quite rapidly for larger N
- in real time, numerical computation is based on Newton-Euler method

State equations direct dynamics

Lagrangian dynamic model

$$
M(q) \ddot{q}+c(q, \dot{q})+g(q)=u
$$

N differential $2^{\text {nd }}$ order equations
defining the vector of state variables as $x=\binom{x_{1}}{x_{2}}=\binom{q}{\dot{q}} \in \mathbb{R}^{2 N}$
state equations
$\dot{x}=\binom{\dot{x}_{1}}{\dot{x}_{2}}=\binom{x_{2}}{-M^{-1}\left(x_{1}\right)\left[c\left(x_{1}, x_{2}\right)+g\left(x_{1}\right)\right]}+\binom{0}{M^{-1}\left(x_{1}\right)} u$

$2 N$ differential $1^{\text {st }}$ order

$$
2 N \times 1 \quad 2 N \times N
$$

equations
another choice... $\tilde{x}=\binom{q}{M(q) \dot{q}} \begin{array}{r}\text { generalized } \\ \text { momentum }\end{array} \dot{\tilde{x}}=\ldots$ (do it as exercise)

Dynamic simulation

including "inv(M)"

- initialization (dynamic coefficients and initial state)
- calls to (user-defined) Matlab functions for the evaluation of model terms
- choice of a numerical integration method (and of its parameters)

Approximate linearization

- we can derive a linear dynamic model of the robot, which is valid locally around a given operative condition
- useful for analysis, design, and gain tuning of linear (or, the linear part of) control laws
- approximation by Taylor series expansion, up to the first order
- linearization around a (constant) equilibrium state or along a (nominal, time-varying) equilibrium trajectory
- usually, we work with (nonlinear) state equations; for mechanical systems, it is more convenient to directly use the $2^{\text {nd }}$ order model
- same result, but easier derivation
equilibrium state $(q, \dot{q})=\left(q_{e}, 0\right)[\ddot{q}=0] \quad g\left(q_{e}\right)=u_{e}$
equilibrium trajectory $(q, \dot{q})=\left(q_{d}(t), \dot{q}_{d}(t)\right)\left[\ddot{q}=\ddot{q}_{d}(t)\right]$

$$
M\left(q_{d}\right) \ddot{q}_{d}+c\left(q_{d}, \dot{q}_{d}\right)+g\left(q_{d}\right)=u_{d}
$$

Linearization at an equilibrium state

- variations around an equilibrium state

$$
q=q_{e}+\Delta q \quad \dot{q}=\dot{q}_{e}+\dot{\Delta q}=\dot{\Delta q} \quad \ddot{q}=\ddot{q}_{e}+\ddot{\Delta} q=\ddot{\Delta q} q \quad u=u_{e}+\Delta u
$$

- keeping into account the quadratic dependence of c terms on velocity (thus, neglected around the zero velocity)

$$
M\left(q_{e}\right) \ddot{\Delta} q+g\left(q_{e}\right)+\underbrace{\left.\frac{\partial g}{\partial q}\right|_{q=q_{e}}}_{G\left(q_{e}\right)} \Delta q+\begin{array}{c}
\text { o }(\|\Delta q+H,\| \Delta \dot{d}\| \|) \\
\text { infinitesimal terms } \\
\text { of second or higher order }
\end{array})=\chi_{e}+\Delta u
$$

- in state-space format, with $\Delta x=\binom{\Delta q}{\dot{\Delta q}}$

$$
\dot{\Delta x}=\left(\begin{array}{cc}
0 & I \\
-M^{-1}\left(q_{e}\right) G\left(q_{e}\right) & 0
\end{array}\right) \Delta x+\binom{0}{M^{-1}\left(q_{e}\right)} \Delta u=A \Delta x+B \Delta u
$$

Linearization along a trajectory

- variations around an equilibrium trajectory

$$
q=q_{d}+\Delta q \quad \dot{q}=\dot{q}_{d}+\dot{\Delta q} \quad \ddot{q}=\ddot{q}_{d}+\ddot{\Delta} q \quad u=u_{d}+\Delta u
$$

- developing to $1^{\text {st }}$ order the terms in the dynamic model ...

$$
\begin{aligned}
& M\left(q_{d}+\Delta q\right)\left(\ddot{q}_{d}+\ddot{\Delta q}\right)+c\left(q_{d}+\Delta q, \dot{q}_{d}+\dot{\Delta q}\right)+g\left(q_{d}+\Delta q\right)=u_{d}+\Delta u \\
& M\left(q_{d}+\Delta q\right) \cong M\left(q_{d}\right)+\left.\sum_{i=1}^{N} \frac{\partial M_{i}}{\partial q}\right|_{q=q_{d}} e_{i}^{T} \Delta q \quad \begin{array}{l}
i \text {-th row of the } \\
\text { identity matrix }
\end{array} \\
& g\left(q_{d}+\Delta q\right) \cong g\left(q_{d}\right)+G\left(q_{d}\right) \Delta q \quad C_{1}\left(q_{d}, \dot{q}_{d}\right) \\
& c\left(q_{d}+\Delta q, \dot{q}_{d}+\dot{\Delta q}\right) \cong c\left(q_{d}, \dot{q}_{d}\right)+\left.\overbrace{\frac{\partial c}{\partial q}}^{\partial q}\right|_{\substack{q=q_{d} \\
\dot{q}=\dot{q}_{d}}} \Delta q+\underbrace{\left.\frac{\partial c}{\partial \dot{q}}\right|_{q=q_{d}} ^{\dot{q}=\dot{q}_{d}}}_{C_{2}\left(q_{d}, \dot{q}_{d}\right)}{ }^{\Delta q}
\end{aligned}
$$

Linearization along a trajectory (cont)

- after simplifications ...

$$
M\left(q_{d}\right) \ddot{\Delta q}+C_{2}\left(q_{d}, \dot{q}_{d}\right) \dot{\Delta q}+D\left(q_{d}, \dot{q}_{d}, \ddot{q}_{d}\right) \Delta q=\Delta u
$$

with

$$
D\left(q_{d}, \dot{q}_{d}, \ddot{q}_{d}\right)=G\left(q_{d}\right)+C_{1}\left(q_{d}, \dot{q}_{d}\right)+\left.\sum_{i=1}^{N} \frac{\partial M_{i}}{\partial q}\right|_{q=q_{d}} \ddot{q}_{d} e_{i}^{T}
$$

- in state-space format

$$
\begin{aligned}
\dot{\Delta x}= & \left(\begin{array}{cc}
0 & I \\
-M^{-1}\left(q_{d}\right) D\left(q_{d}, \dot{q}_{d}, \ddot{q}_{d}\right) & -M^{-1}\left(q_{d}\right) C_{2}\left(q_{d}, \dot{q}_{d}\right)
\end{array}\right) \Delta x \\
& +\binom{0}{M^{-1}\left(q_{d}\right)} \Delta u=A(t) \Delta x+B(t) \Delta u
\end{aligned}
$$

a linear, but time-varying system!!

Coordinate transformation

$$
\begin{equation*}
q \in \mathbb{R}^{N} M(q) \ddot{q}+c(q, \dot{q})+g(q)=M(q) \ddot{q}+n(q, \dot{q})=u_{q} \tag{1}
\end{equation*}
$$

if we wish/need to use a new set of generalized coordinates p

\[

\]

$J^{-T}(q) \cdot$ pre-multiplying the whole equation...

Robot dynamic model after coordinate transformation

$$
\begin{aligned}
& J^{-T}(q) M(q) J^{-1}(q) \ddot{p}+J^{-T}(q)\left(n(q, \dot{q})-M(q) J^{-1}(q) \dot{J}(q) J^{-1}(q) \dot{p}\right)=u_{p} \\
& \uparrow \begin{array}{cc}
\uparrow \text { for actual computation, }
\end{array} \uparrow \\
& \Longrightarrow M_{p}(p) \ddot{p}+c_{p}(p, \dot{p})+g_{p}(p)=u_{p} \\
& \text { non-conservative } \\
& M_{p}=J^{-T} M J^{-1} \xrightarrow[\substack{\text { positive definite } \\
\text { (out of singularities) }}]{\substack{\text { symmet, }}} \quad g_{p}=J^{-T} g \\
& c_{p}=J^{-T}\left(c-M J^{-1} \dot{J} J^{-1} \dot{p}\right)=J^{-T} c-M_{p} \dot{J} J^{-1} \dot{p} \quad \begin{array}{l}
\text { quadratic } \\
\text { dependence on } \dot{p}
\end{array} \\
& c_{p}(p, \dot{p})=S_{p}(p, \dot{p}) \dot{p} \quad \dot{M}_{p}-2 S_{p} \quad \text { skew-symmetric }
\end{aligned}
$$

when $p=\mathrm{E}-\mathrm{E}$ pose, this is the robot dynamic model in Cartesian coordinates
Q: What if the robot is redundant with respect to the Cartesian task?

Dynamic scaling of trajectories

uniform time scaling of motion

- given a smooth original trajectory $q_{d}(t)$ of motion for $t \in[0, T]$
- suppose to rescale time as $t \rightarrow r(t)$ (a strictly increasing function of t)
- in the new time scale, the scaled trajectory $q_{s}(r)$ satisfies

\[

\]

- uniform scaling of the trajectory occurs when $r(t)=k t$

$$
\dot{q}_{d}(t)=k q_{s}^{\prime}(k t) \quad \ddot{q}_{d}(t)=k^{2} q_{s}^{\prime \prime}(k t)
$$

Q : what is the new input torque needed to execute the scaled trajectory?
(suppose dissipative terms can be neglected)

Dynamic scaling of trajectories

 inverse dynamics under uniform time scaling- the new torque could be recomputed through the inverse dynamics, for every $r=k t \in\left[0, T^{\prime}\right]=[0, k T]$ along the scaled trajectory, as

$$
\tau_{s}(k t)=M\left(q_{s}\right) q_{s}^{\prime \prime}+c\left(q_{s}, q_{s}^{\prime}\right)+g\left(q_{s}\right)
$$

- however, being the dynamic model linear in the acceleration and quadratic in the velocity, it is

$$
\begin{aligned}
\tau_{d}(t) & \left.=M\left(q_{d}\right) \ddot{q}_{d}\right)+c\left(q_{d}{\grave{q_{q}^{d}}}\right)+g\left(q_{d}\right)=M\left(q_{s}\right) k^{2} q_{s}^{\prime \prime}+c\left(q_{s}, k q_{s}^{\prime}\right)+g\left(q_{s}\right) \\
& =k^{2}\left(M\left(q_{s}\right) q_{s}^{\prime \prime}+c\left(q_{s}, q_{s}^{\prime}\right)\right)+g\left(q_{s}\right)=k^{2}\left(\tau_{s}(k t)-g\left(q_{s}\right)\right)+g\left(q_{s}\right)
\end{aligned}
$$

- thus, saving separately the total torque $\tau_{d}(t)$ and gravity torque $g_{d}(t)$ in the inverse dynamics computation along the original trajectory, the new input torque is obtained directly as

$$
\tau_{s}(k t)=\frac{1}{k^{2}}\left(\tau_{d}(t)-g\left(q_{d}(t)\right)\right)+g\left(q_{d}(t)\right)
$$

$k>1$: slow down
\Rightarrow reduce torque
$k<1$: speed up
\Rightarrow increase torque

Dynamic scaling of trajectories

numerical example

- rest-to-rest motion with cubic polynomials for planar 2R robot under gravity (from downward equilibrium to horizontal link $1 \&$ upward vertical link 2)
- original trajectory lasts $T=0.5 \mathrm{~s}$ (but maybe violates the torque limit at joint 1)

for both joints

Dynamic scaling of trajectories

numerical example

Optimal point-to-point robot motion considering the dynamic model

- given the initial and final robot configurations (at rest) and actuator torque bounds, find
- the minimum-time $T_{\text {min }}$ motion
- the (global/integral) minimum-energy $E_{\text {min }}$ motion and the associated command torques needed to execute them
- a complex nonlinear optimization problem solved numerically

video

Energieminimate Losung

