

Robotics 2

Dynamic model of robots: Lagrangian approach

Prof. Alessandro De Luca

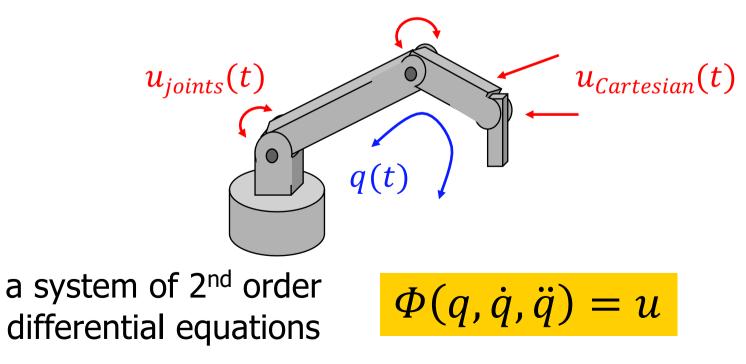
DIPARTIMENTO DI INGEGNERIA INFORMATICA Automatica e Gestionale Antonio Ruberti

Dynamic model

provides the relation between

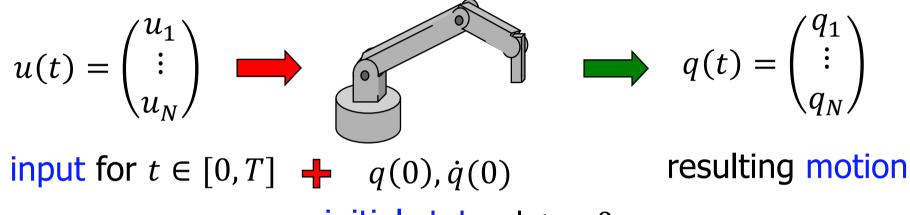
generalized forces u(t) acting on the robot

robot motion, i.e., assumed configurations q(t) over time



Direct dynamics

direct relation

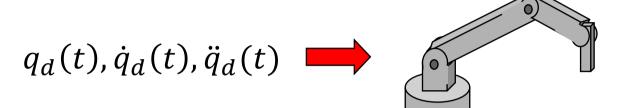


initial state at t = 0

- experimental solution
 - apply torques/forces with motors and measure joint variables with encoders (with sampling time T_c)
- solution by simulation
 - use dynamic model and integrate numerically the differential equations (with simulation step $T_s \leq T_c$)

 $\Phi(q,\dot{q},\ddot{q}) = u$

Inverse dynamics



desired motion for $t \in [0, T]$ required input for $t \in [0, T]$

 $u_d(t)$

 $\Phi(q,\dot{q},\ddot{q}) = u$

- experimental solution
 - repeated motion trials of direct dynamics using $u_k(t)$, with iterative learning of nominal torques updated on trial k + 1based on the error in [0, T] measured in trial k: $\lim_{k \to T} u_k(t) \Rightarrow u_d(t)$
- analytic solution
 - use dynamic model and compute algebraically the values $u_d(t)$ at every time instant t

Robotics 2

Approaches to dynamic modeling

Euler-Lagrange method (energy-based approach)

- dynamic equations in symbolic/closed form
- best for study of dynamic properties and analysis of control schemes

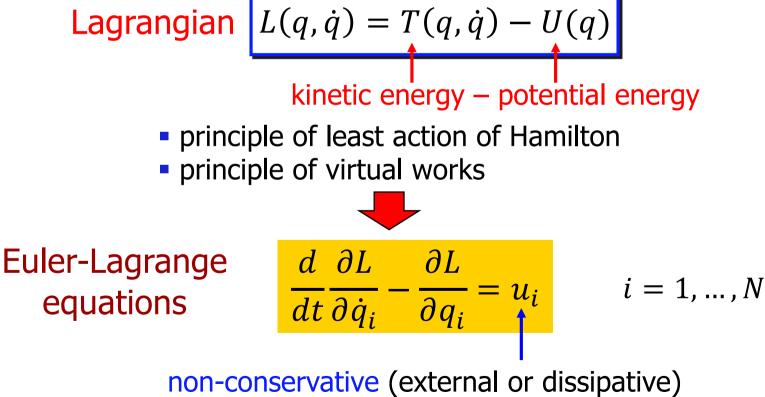
Newton-Euler method (balance of forces/torques)

- dynamic equations in numeric/recursive form
- best for implementation of control schemes (inverse dynamics in real time)
- many other formal methods based on basic principles in mechanics are available for the derivation of the robot dynamic model:
 - principle of d'Alembert, of Hamilton, of virtual works, ...

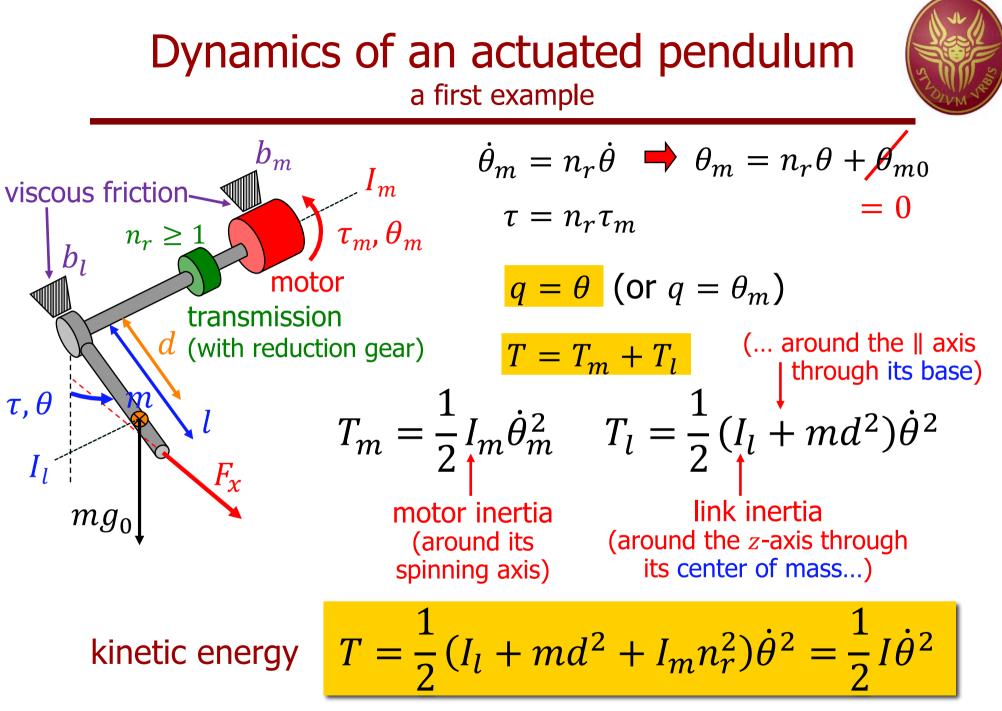
Euler-Lagrange method (energy-based approach)

basic assumption: the *N* links in motion are considered as **rigid bodies** (+ later on, include also **concentrated elasticity** at the joints)

 $q \in \mathbb{R}^N$ generalized coordinates (e.g., joint variables, but not only!)

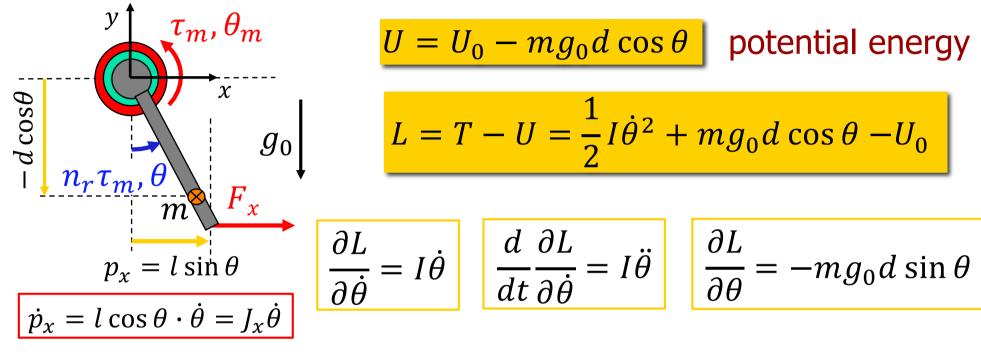


generalized forces performing work on q_i

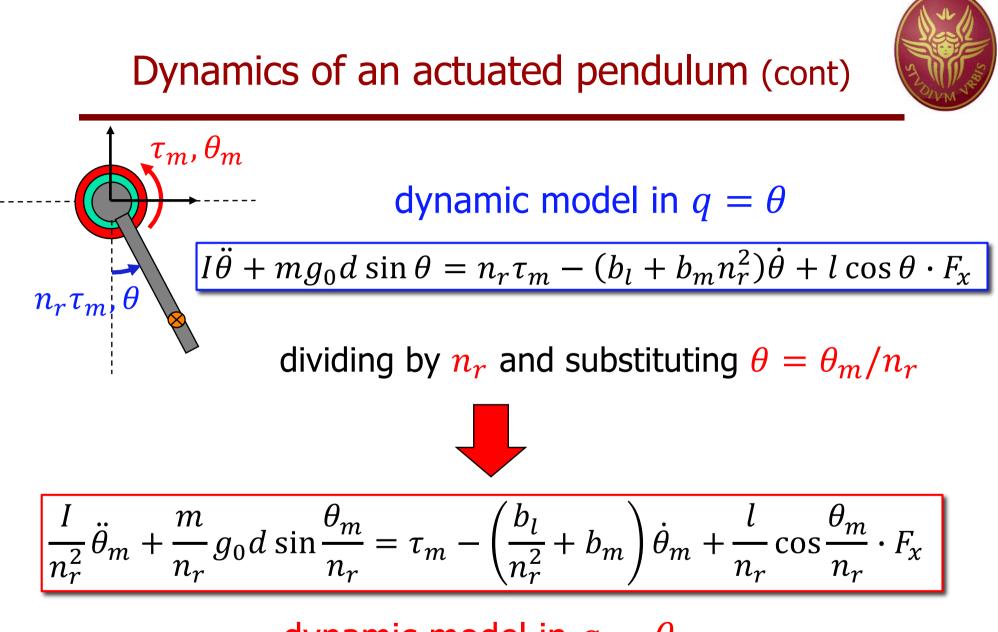


Robotics 2

Dynamics of an actuated pendulum (cont)



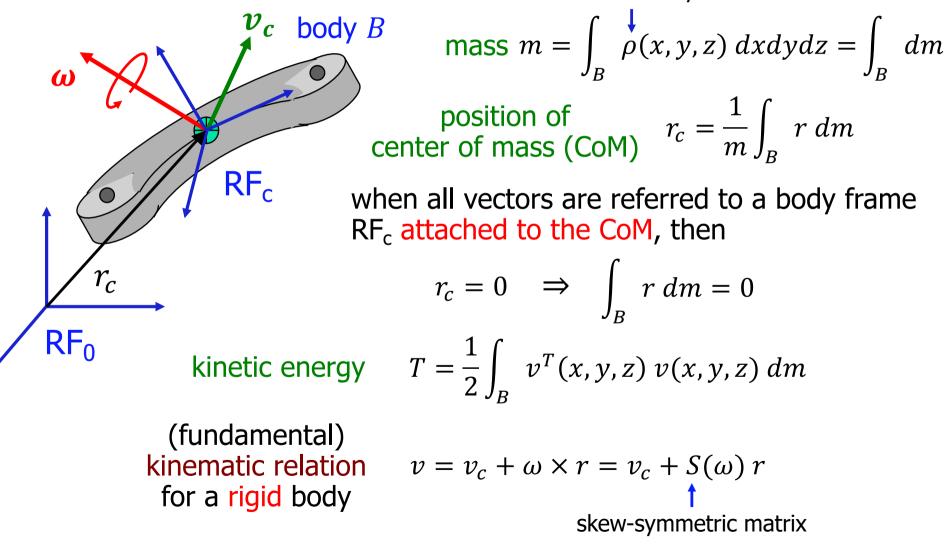
 $u = n_r \tau_m - b_l \dot{\theta} - n_r b_m \dot{\theta}_m + J_x^T F_x = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ applied or dissipated torques
on motor side are multiplied by n_r when moved to the link side $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$ $n_r = n_r \tau_m - (b_l + b_m n_r^2) \dot{\theta} + l \cos \theta F_x$



dynamic model in $q = \theta_m$

Kinetic energy of a rigid body

mass density



$$T = \frac{1}{2} \int_{B} (v_{c} + S(\omega)r)^{T} (v_{c} + S(\omega)r) dm$$

$$= \frac{1}{2} \int_{B} v_{c}^{T} v_{c} dm + \int_{B} v_{c}^{T} S(\omega) r dm + \frac{1}{2} \int_{B} r^{T} S^{T}(\omega) S(\omega) r dm$$

$$= \frac{1}{2} \int_{B} v_{c}^{T} v_{c} dm + \int_{B} v_{c}^{T} S(\omega) r dm + \frac{1}{2} \int_{B} r^{T} S^{T}(\omega) S(\omega) r dm$$

$$= \frac{1}{2} m v_{c}^{T} v_{c}$$

$$= v_{c}^{T} S(\omega) \int_{B} r dm = 0$$

$$= \frac{1}{2} \int_{B} trace \{S(\omega)r r^{T} S^{T}(\omega)\} dm$$

$$= \frac{1}{2} trace \{S(\omega) \left(\int_{B} r r^{T} dm\right) S^{T}(\omega)\}$$

$$= \frac{1}{2} trace \{S(\omega) \int_{C} S^{T}(\omega)\}$$

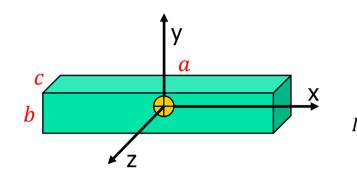
$$= \frac{1}{2} \omega^{T} I_{c} \omega$$

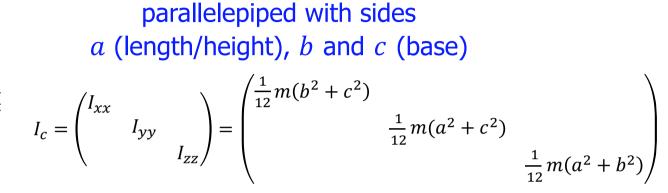
body inertia matrix
(around the CoM)

$$= trace \{S(\omega) \int_{C} S^{T}(\omega)\}$$

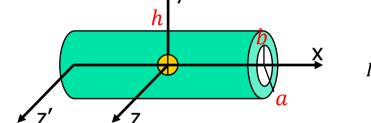
$$= tra$$

Examples of body inertia matrices homogeneous bodies of mass m_r , with axes of symmetry





empty cylinder with length h, and external/internal radius a and b



$$I_{c} = \begin{pmatrix} \frac{1}{2}m(a^{2} + b^{2}) & & \\ & \frac{1}{12}m(3(a^{2} + b^{2}) + h^{2}) & \\ & & I_{zz} \end{pmatrix} \qquad I_{zz} = I_{yy}$$

 $I'_{zz} = I_{zz} + m \left(\frac{h}{2}\right)^2$ (parallel) axis translation theorem

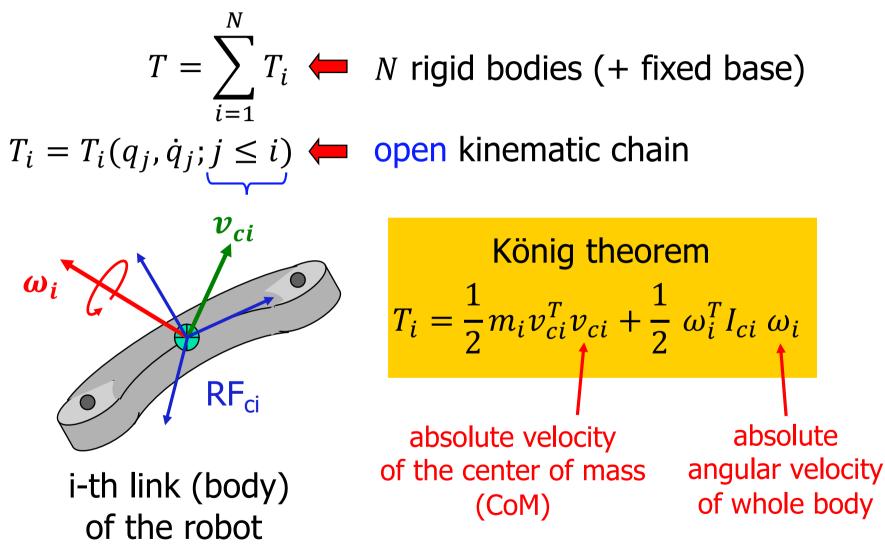
Steiner theorem

$$I = I_c + m(r^T r \cdot E_{3 \times 3} - rr^T) = I_c + m S^T(r)S(r)$$

body inertia matrix
relative to the CoM identity
Bobotics 2 identity
matrix prove the last equality

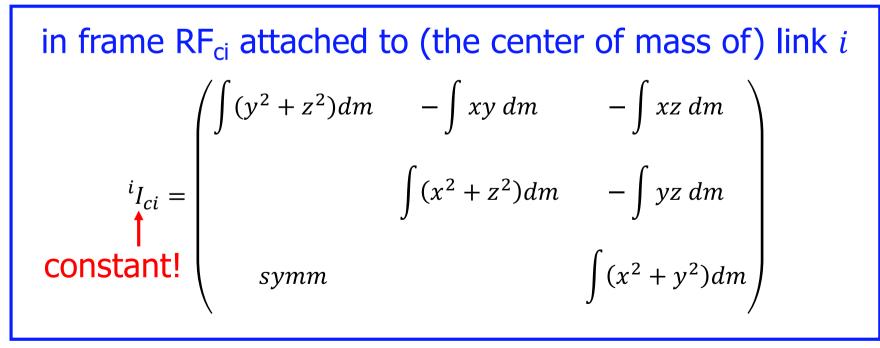
... its generalization: changes on body inertia matrix due to a pure translation r of the reference frame

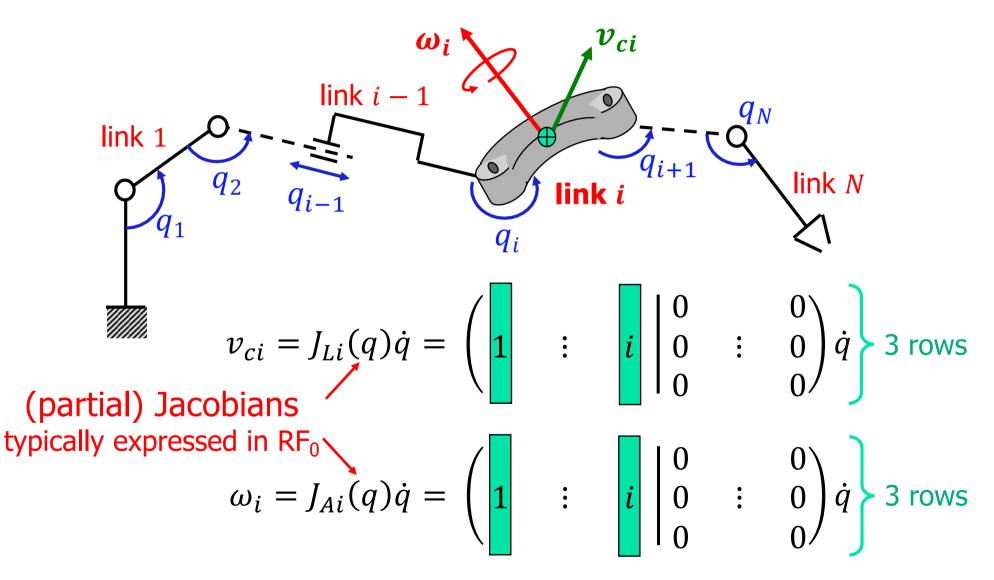
Robot kinetic energy



$$T_i = \frac{1}{2} m_i v_{ci}^T v_{ci} + \frac{1}{2} \omega_i^T I_{ci} \omega_i$$

 ω_i , I_{ci} should be expressed in the **same reference frame**, but the product $\omega_i^T I_{ci} \omega_i$ is **invariant** w.r.t. any chosen frame





Final expression of T

$$T = \frac{1}{2} \sum_{i=1}^{N} (m_i v_{ci}^T v_{ci} + \omega_i^T I_{ci} \omega_i)$$

$$T = \frac{1}{2} \sum_{i=1}^{N} (m_i v_{ci}^T v_{ci} + \omega_i^T I_{ci} \omega_i)$$
NOTE 1:
in practice, NEVER
use this formula
(or partial Jacobians)
for computing T
 \Rightarrow a better method
is available...
NOTE 2:
NOTE 2:
NOTE 2:
NOTE 2:

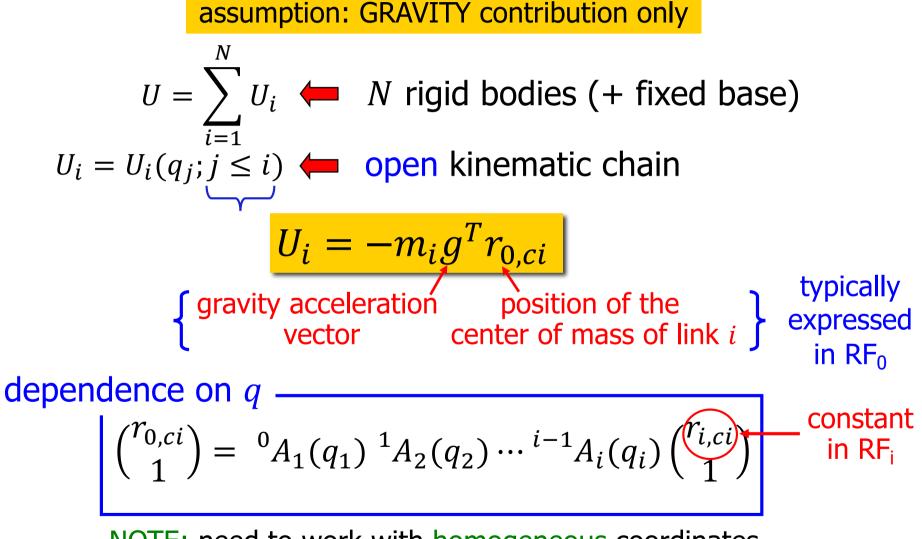
$$T = \frac{1}{2} \dot{q}^T M(q) \dot{q}$$

NOTE 2: I used previously the notation B(q)for the robot inertia matrix ... (see past exams!)

robot (generalized) inertia matrix

- symmetric
- positive definite, $\forall q \Rightarrow$ **always invertible**

Robot potential energy



NOTE: need to work with homogeneous coordinates

Robotics 2

Summarizing ...

kinetic energy T	$=\frac{1}{2}\dot{q}^T M(q)\dot{q} = \frac{1}{2}\sum_i m_{ij}(q)\dot{q}_i\dot{q}_j$	positive definite quadratic form
potential	L L Li,j	$T \ge 0,$ $T = 0 \Leftrightarrow \dot{q} = 0$
energy	U = U(q)	
Lagrangian	$L = T(q, \dot{q}) - U(q)$	
Euler-Lagrange equations	$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_k} - \frac{\partial L}{\partial q_k} = u_k \qquad k = 1$	L,, N
non-conservative (active/dissipative)		

generalized forces **performing work** on q_k coordinate

Applying Euler-Lagrange equations (the scalar derivation – see Appendix for vector format)

$$L(q, \dot{q}) = \frac{1}{2} \sum_{i,j} m_{ij}(q) \dot{q}_i \dot{q}_j - U(q)$$

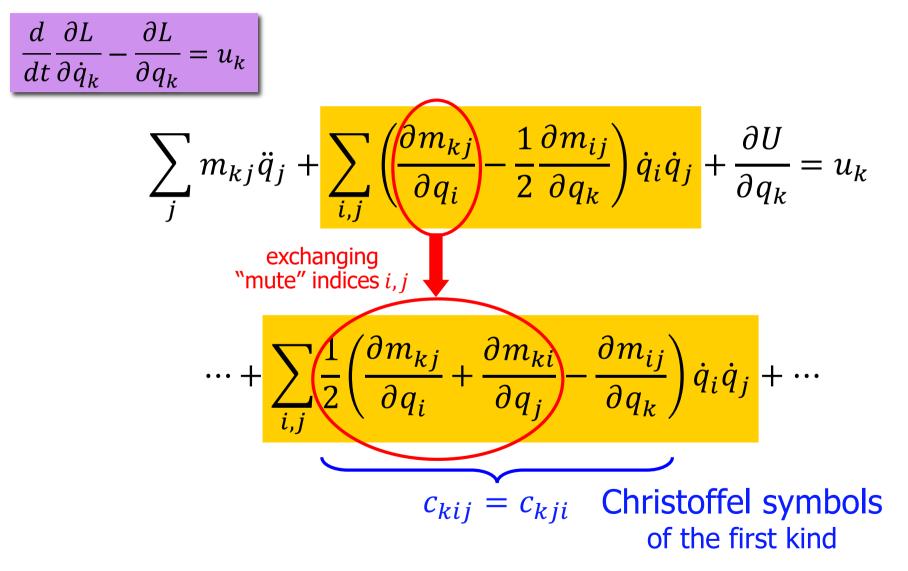
$$\frac{\partial L}{\partial \dot{q}_k} = \sum_j m_{kj} \dot{q}_j \implies \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_k} = \sum_j m_{kj} \ddot{q}_j + \sum_{i,j} \frac{\partial m_{kj}}{\partial q_i} \dot{q}_i \dot{q}_j$$
(dependences of
elements on q
are not shown)
$$\frac{\partial L}{\partial q_k} = \frac{1}{2} \sum_{i,j} \frac{\partial m_{ij}}{\partial q_k} \dot{q}_i \dot{q}_j - \frac{\partial U}{\partial q_k}$$

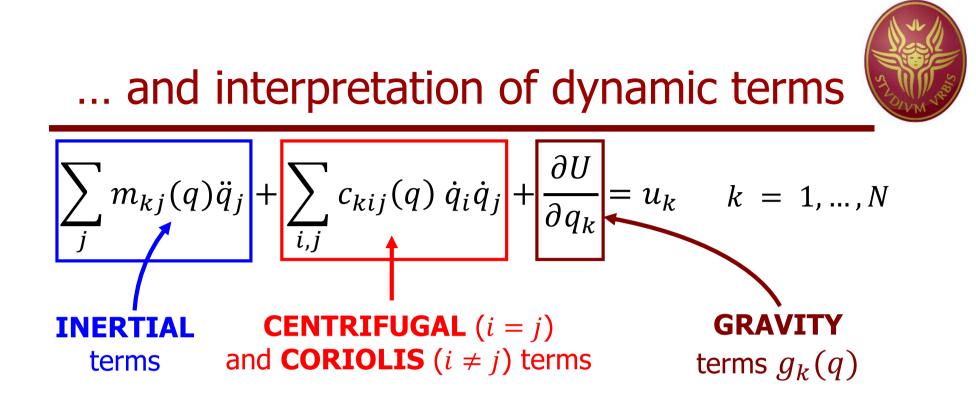
LINEAR terms in ACCELERATION *q*

QUADRATIC terms in VELOCITY *q*

NONLINEAR terms in CONFIGURATION q

k-th dynamic equation ...





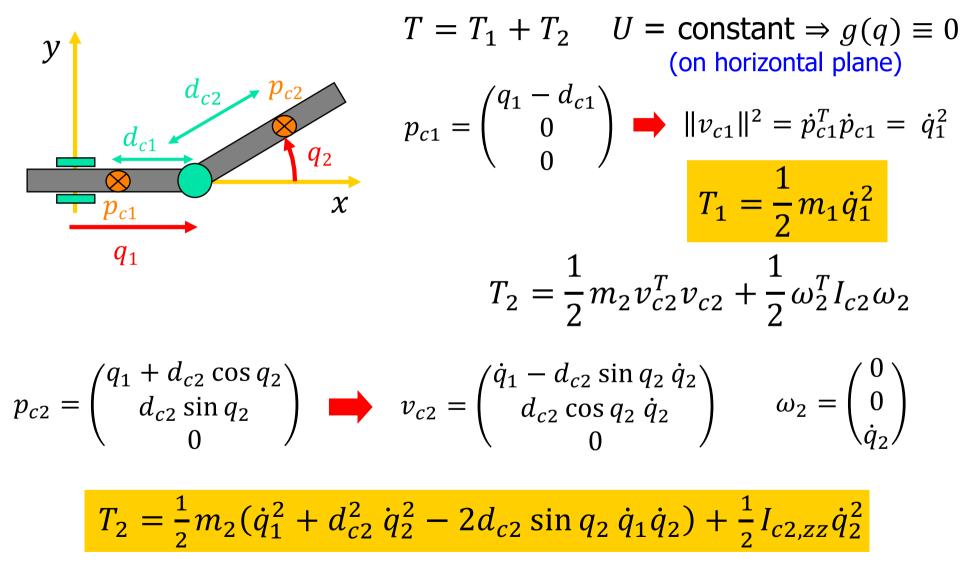
 $m_{kk}(q) = \text{inertia at joint } k \text{ when joint } k \text{ accelerates } (m_{kk} > 0!!)$ $m_{kj}(q) = \text{inertia "seen" at joint } k \text{ when joint } j \text{ accelerates}$ $c_{kii}(q) = \text{coefficient of the centrifugal force at joint } k \text{ when joint } i \text{ is moving } (c_{iii} = 0, \forall i)$ $c_{kij}(q) = \text{coefficient of the Coriolis force at joint } k \text{ when joint } k \text{$

joint *i* and joint *j* are both moving

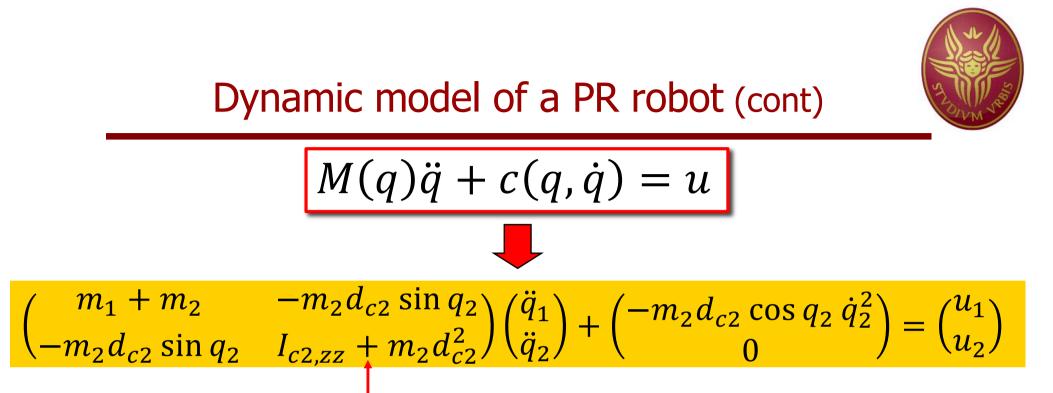
Robot dynamic model
in vector formats
1.
$$M(q)\ddot{q} + c(q,\dot{q}) + g(q) = u$$

I. $M(q)\ddot{q} + c(q,\dot{q}) + g(q) = u$
k-th column
of matrix $M(q)$
 $c_k(q,\dot{q}) = \dot{q}^T C_k(q)\dot{q}$
 $c_k(q) = \frac{1}{2} \left(\frac{\partial M_k}{\partial q} + \left(\frac{\partial M_k}{\partial q} \right)^T - \frac{\partial M}{\partial q_k} \right) + \text{symmetric matrix!}$
2. $M(q)\ddot{q} + S(q,\dot{q})\dot{q} + g(q) = u$
NOTE:
the model
is in the form
 $P(q,\dot{q},\ddot{q}) = u$
as expected
Robotics 2
NOT a symmetric matrix in general
 $S_{kj}(q,\dot{q}) = \sum_i c_{kij}(q)\dot{q}_i$ factorization of c
by S is not unique!

Dynamic model of a PR robot



$$M(q) = \begin{pmatrix} m_1 + m_2 \\ -m_2 d_{c2} \sin q_2 \\ m_1 - m_2 d_{c2} \sin q_2 \\ m_1 & m_2 \\ m_1 & m_2 \\ m_1 & m_2 \\ m_1 & m_2 \\ m_2 & c_k(q) = \frac{1}{q}^T C_k(q) \dot{q} \\ where \ C_k(q) = \frac{1}{2} \begin{pmatrix} \frac{\partial M_k}{\partial q} + \left(\frac{\partial M_k}{\partial q}\right)^T - \frac{\partial M}{\partial q_k} \end{pmatrix} \\ C_1(q) = \frac{1}{2} \begin{pmatrix} 0 & 0 \\ 0 & -m_2 d_{c2} \cos q_2 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & -m_2 d_{c2} \cos q_2 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ c_1(q, \dot{q}) = -m_2 d_{c2} \cos q_2 \dot{q}_2^2 \\ C_2(q) = \frac{1}{2} \begin{pmatrix} \begin{pmatrix} 0 & -m_2 d_{c2} \cos q_2 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -m_2 d_{c2} \cos q_2 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ -m_2 d_{c2} \cos q_2 \end{pmatrix} \\ - \begin{pmatrix} 0 & -m_2 d_{c2} \cos q_2 \\ -m_2 d_{c2} \cos q_2 \end{pmatrix} \end{pmatrix} = 0 \\ c_2(q, \dot{q}) = 0 \end{pmatrix}$$

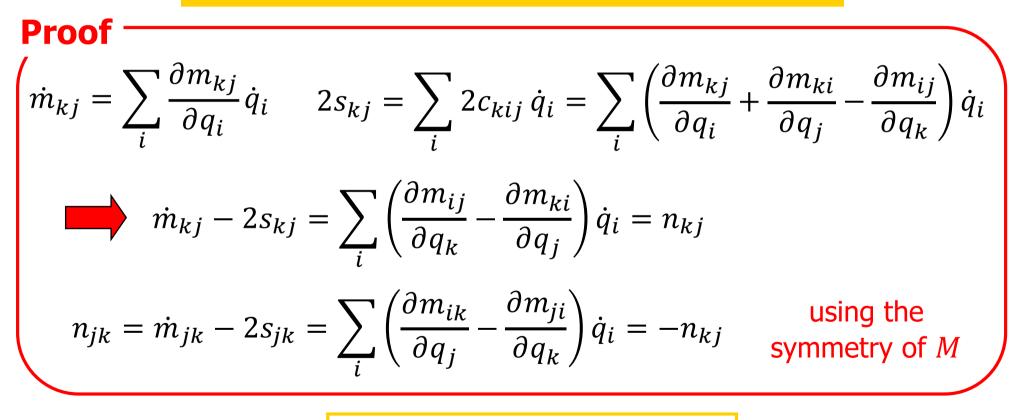


NOTE: the m_{NN} element (here, for N = 2) of M(q) is always constant!

- Q1: why does variable q_1 not appear in M(q)? ... this is a general property! Q2: why Coriolis terms are not present?
- Q3: when applying a force u_1 , does the second joint accelerate? ... always?
- Q4: what is the expression of a factorization matrix S? ... is it unique here?
- Q5: which is the configuration with "maximum inertia"?

A structural property

Matrix $\dot{M} - 2S$ is skew-symmetric (when using Christoffel symbols to define matrix S)



$$x^T (\dot{M} - 2S) x = 0, \forall x$$

Energy conservation

total robot energy

$$E = T + U = \frac{1}{2}\dot{q}^T M(q)\dot{q} + U(q)$$

• its evolution over time (using the dynamic model) $\dot{E} = \dot{q}^T M(q) \ddot{q} + \frac{1}{2} \dot{q}^T \dot{M}(q) \dot{q} + \frac{\partial U}{\partial q} \dot{q}$ $= \dot{q}^T (u - S(q, \dot{q}) \dot{q} - g(q)) + \frac{1}{2} \dot{q}^T \dot{M}(q) \dot{q} + \dot{q}^T g(q)$ $= \dot{q}^T u + \frac{1}{2} \dot{q}^T \left(\dot{M}(q) - 2S(q, \dot{q}) \right) \dot{q}$

here, any factorization of vector *c* by a matrix *S* can be used

• if $u \equiv 0$, total energy is constant (no dissipation or increase)

$$\dot{E} = 0 \quad \Longrightarrow \quad \dot{q}^T \left(\dot{M}(q) - 2S(q, \dot{q}) \right) \dot{q} = 0, \forall q, \dot{q}$$

weaker property than skew-symmetry, as the external vector in the quadratic form is the same velocity \dot{q} that appears also inside the two internal matrices \dot{M} also S $\implies \dot{E} = \dot{q}^T u$

in general, the variation of the total energy is equal to the work of non-conservative forces

Appendix

dynamic model: alternative vector format derivation