
Robotics 2

Prof. Alessandro De Luca

Dynamic model of robots:
Lagrangian approach



Dynamic model
n provides the relation between 

generalized forces 𝑢(𝑡) acting on the robot 

robot motion, i.e.,
assumed configurations 𝑞(𝑡) over time

𝑢𝑗𝑜𝑖𝑛𝑡𝑠(𝑡) 𝑢𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛(𝑡)

𝑞(𝑡)

a system of 2nd order
differential equations
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𝛷 𝑞, �̇�, �̈� = 𝑢



Direct dynamics
n direct relation

input for 𝑡 ∈ [0, 𝑇]
initial state at 𝑡 = 0

n experimental solution
n apply torques/forces with motors and measure joint variables 

with encoders (with sampling time 𝑇9 )
n solution by simulation

n use dynamic model and integrate numerically the differential 
equations (with simulation step 𝑇: ≤ 𝑇9 )
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𝛷 𝑞, �̇�, �̈� = 𝑢

𝑢 𝑡 =
𝑢<
⋮
𝑢>

𝑞 𝑡 =
𝑞<
⋮
𝑞>

𝑞 0 , �̇�(0) resulting motion



Inverse dynamics
n inverse relation

desired motion
for 𝑡 ∈ [0, 𝑇]

n experimental solution
n repeated motion trials of direct dynamics using 𝑢?(𝑡), with  

iterative learning of nominal torques updated on trial 𝑘 + 1
based on the error in [0, 𝑇] measured in trial 𝑘: lim

?→G
𝑢?(𝑡) ⇒ 𝑢I(𝑡)

n analytic solution
n use dynamic model and compute algebraically the values 𝑢I(𝑡) at 

every time instant 𝑡

𝑢I(𝑡)

required input
for 𝑡 ∈ [0, 𝑇]
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𝛷 𝑞, �̇�, �̈� = 𝑢

𝑞I 𝑡 , �̇�I 𝑡 , �̈�I(𝑡)



Approaches to dynamic modeling

Euler-Lagrange method
(energy-based approach)

n dynamic equations in 
symbolic/closed form

n best for study of dynamic 
properties and analysis of 
control schemes

Newton-Euler method
(balance of forces/torques)

n dynamic equations in 
numeric/recursive form

n best for implementation of 
control schemes (inverse 
dynamics in real time)

§ many other formal methods based on basic principles in mechanics 
are available for the derivation of the robot dynamic model:
§ principle of d’Alembert, of Hamilton, of virtual works, …
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Euler-Lagrange method
(energy-based approach)

basic assumption: the 𝑁 links in motion are considered as rigid bodies

§ principle of least action of Hamilton
§ principle of virtual works
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generalized coordinates (e.g., joint variables, but not only!)𝑞 ∈ ℝ>

Lagrangian

kinetic energy – potential energy 

𝐿 𝑞, �̇� = 𝑇 𝑞, �̇� − 𝑈(𝑞)

𝑖 = 1,… , 𝑁
Euler-Lagrange

equations
𝑑
𝑑𝑡

𝜕𝐿
𝜕�̇�R

−
𝜕𝐿
𝜕𝑞R

= 𝑢R

non-conservative (external or dissipative)
generalized forces performing work on 𝑞R

(+ later on, include also concentrated elasticity at the joints)



Dynamics of an actuated pendulum
a first example

𝑑

𝐹T

viscous friction
𝑏𝑚

𝑏W
transmission
(with reduction gear)

𝑛X ≥ 1
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𝑚𝑔[

= 0

(or 𝑞 = 𝜃])

�̇�] = 𝑛X�̇� 𝜃] = 𝑛X𝜃 + 𝜃][
𝜏 = 𝑛X𝜏]

𝑞 = 𝜃

kinetic energy 𝑇 =
1
2 𝐼W +𝑚𝑑a + 𝐼]𝑛Xa �̇�a =

1
2 𝐼�̇�

a

link inertia
(around the 𝑧-axis through

its center of mass…) 

motor inertia
(around its

spinning axis)

𝑇 = 𝑇] + 𝑇W

𝑇] =
1
2 𝐼]�̇�]

a 𝑇W =
1
2 𝐼W +𝑚𝑑a �̇�a

(… around the ∥ axis 
through its base) 

𝜏𝑚, 𝜃𝑚
motor

𝐼𝑚

𝜏, 𝜃 𝑙
𝑚

𝐼𝑙



𝐹𝑥

−
𝑑
co
s𝜃

𝜏], 𝜃]

“sum” of 
non-conservative

torques
applied or dissipated torques

on motor side are multiplied by 𝑛X
when moved to the link side

equivalent joint torque
due to force 𝐹𝑥 applied to 

the tip at point 𝑝𝑥
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𝑔[
𝑛X𝜏], 𝜃

𝑝T = 𝑙 sin 𝜃

potential energy𝑈 = 𝑈[ − 𝑚𝑔[𝑑 cos 𝜃

𝐿 = 𝑇 − 𝑈 =
1
2
𝐼�̇�a + 𝑚𝑔[𝑑 cos 𝜃 −𝑈[

�̇�T = 𝑙 cos 𝜃 k �̇� = 𝐽T�̇�

𝜕𝐿
𝜕�̇�

= 𝐼�̇�
𝑑
𝑑𝑡
𝜕𝐿
𝜕�̇�

= 𝐼�̈�
𝜕𝐿
𝜕𝜃

= −𝑚𝑔[𝑑 sin 𝜃

𝑢 = 𝑛X𝜏] − 𝑏W�̇� − 𝑛X𝑏]�̇�] + 𝐽Tm𝐹T

Dynamics of an actuated pendulum (cont)

𝑥

𝑦

𝑚

= 𝑛X𝜏] − 𝑏W + 𝑏]𝑛Xa �̇� + 𝑙 cos 𝜃 𝐹T



Dynamics of an actuated pendulum (cont)

dividing by 𝑛X and substituting 𝜃 = 𝜃]/𝑛X

dynamic model in 𝑞 = 𝜃]

dynamic model in 𝑞 = 𝜃
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𝜏], 𝜃]

𝑛X𝜏], 𝜃
𝐼�̈� + 𝑚𝑔[𝑑 sin 𝜃 = 𝑛X𝜏] − 𝑏W + 𝑏]𝑛Xa �̇� + 𝑙 cos 𝜃 k 𝐹T

𝐼
𝑛Xa
�̈�] +

𝑚
𝑛X
𝑔[𝑑 sin

𝜃]
𝑛X

= 𝜏] −
𝑏W
𝑛Xa
+ 𝑏] �̇�] +

𝑙
𝑛X
cos

𝜃]
𝑛X

k 𝐹T



mass

mass density

𝑚 = p
q
𝜌 𝑥, 𝑦, 𝑧 𝑑𝑥𝑑𝑦𝑑𝑧 =p

q
𝑑𝑚

Kinetic energy of a rigid body

RFc

𝒗𝒄

RF0

body 𝐵

𝑟9

𝝎
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position of
center of mass (CoM) 𝑟9 =

1
𝑚p

q
𝑟 𝑑𝑚

when all vectors are referred to a body frame
RFc attached to the CoM, then 

⇒ p
q
𝑟 𝑑𝑚 = 0𝑟9 = 0

(fundamental)
kinematic relation
for a rigid body

skew-symmetric matrix

𝑣 = 𝑣9 + 𝜔 × 𝑟 = 𝑣9 + 𝑆(𝜔) 𝑟

kinetic energy 𝑇 =
1
2pq

𝑣m 𝑥, 𝑦, 𝑧 𝑣(𝑥, 𝑦, 𝑧) 𝑑𝑚



Kinetic energy of a rigid body (cont)

rotational
kinetic energy 

(of the whole body)

body inertia matrix
(around the CoM)

König theorem

+
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Homework #1:
provide the expressions

of the elements of Euler matrix 𝐽𝑐
Homework #2:

prove last equality and provide 
the expressions of the elements

of inertia matrix 𝐼𝑐

𝑇 =
1
2pq

𝑣9 + 𝑆 𝜔 𝑟 m 𝑣9 + 𝑆 𝜔 𝑟 𝑑𝑚

= <
a ∫q 𝑣9m𝑣9 𝑑𝑚 +∫q 𝑣9m𝑆 𝜔 𝑟 𝑑𝑚 + <

a ∫q 𝑟m𝑆m 𝜔 𝑆 𝜔 𝑟 𝑑𝑚

= 𝑣9m𝑆 𝜔 p
q
𝑟𝑑𝑚 = 0

translational
kinetic energy 

(point mass
at CoM)

=
1
2𝑚 𝑣9m𝑣9

𝑎m𝑏 = 𝑡𝑟𝑎𝑐𝑒{𝑎𝑏m}

sum of elements
on the diagonal 

of a matrix

Euler matrix

=
1
2
p
q
𝑡𝑟𝑎𝑐𝑒 𝑆 𝜔 𝑟 𝑟m𝑆m 𝜔 𝑑𝑚

=
1
2
𝑡𝑟𝑎𝑐𝑒 𝑆 𝜔 p

q
𝑟 𝑟m𝑑𝑚 𝑆m 𝜔

=
1
2 𝑡𝑟𝑎𝑐𝑒 𝑆 𝜔 𝐽9 𝑆m 𝜔

=
1
2𝜔

m 𝐼9 𝜔



Examples of body inertia matrices
homogeneous bodies of mass 𝑚, with axes of symmetry
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parallelepiped with sides
𝑎 (length/height), 𝑏 and 𝑐 (base)

x

y

z

𝑏
𝑐 𝑎

𝐼9 =
𝐼TT

𝐼��
𝐼��

=

<
<a𝑚 𝑏a + 𝑐a

<
<a
𝑚 𝑎a + 𝑐a

<
<a
𝑚 𝑎a + 𝑏a

empty cylinder with length ℎ, 
and external/internal radius 𝑎 and 𝑏

x

y

z
𝑎

ℎ
𝑏

z’

𝐼9 =

<
a𝑚 𝑎a + 𝑏a

<
<a𝑚 3 𝑎a + 𝑏a + ℎa

𝐼��

𝐼�� = 𝐼��

(parallel) axis translation theorem𝐼��� = 𝐼�� + 𝑚
ℎ
2

a

… its generalization:
changes on body inertia matrix 
due to a pure translation 𝑟 of

the reference framebody inertia matrix
relative to the CoM

identity
matrix

Steiner theorem

𝐼 = 𝐼9 + 𝑚 𝑟m𝑟 k 𝐸�×� − 𝑟𝑟m = 𝐼9 + 𝑚 𝑆m 𝑟 𝑆 𝑟

Homework #3:
prove the last equality



Robot kinetic energy

𝑁 rigid bodies (+ fixed base)

open kinematic chain

König theorem

absolute velocity
of the center of mass 

(CoM)

absolute
angular velocity
of whole body

RFci

i-th link (body)
of the robot 

𝝎𝒊
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𝒗𝒄𝒊

𝑇R =
1
2
𝑚R𝑣9Rm 𝑣9R +

1
2
𝜔Rm𝐼9R 𝜔R

𝑇 =�
R�<

>

𝑇R

𝑇R = 𝑇R(𝑞�, �̇��; 𝑗 ≤ 𝑖)



Kinetic energy of a robot link

𝜔𝑖, 𝐼𝑐𝑖 should be expressed in the same reference frame, 
but the product 𝜔𝑖

𝑇𝐼𝑐𝑖𝜔𝑖 is invariant w.r.t. any chosen frame

in frame RFci attached to (the center of mass of) link 𝑖

constant!
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𝑇R =
1
2
𝑚R𝑣9Rm 𝑣9R +

1
2
𝜔Rm𝐼9R 𝜔R

R𝐼9R =

p 𝑦a + 𝑧a 𝑑𝑚 −p𝑥𝑦 𝑑𝑚 −p𝑥𝑧 𝑑𝑚

p 𝑥a + 𝑧a 𝑑𝑚 −p𝑦𝑧 𝑑𝑚

𝑠𝑦𝑚𝑚 p 𝑥a + 𝑦a 𝑑𝑚



Dependence of 𝑇 from 𝑞 and �̇�

𝑞1

link 1

𝑞R�<
𝑞𝑖

𝑞𝑁link 𝑖 − 1

link 𝑁link 𝒊𝑞2
𝑞R�<
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𝝎𝒊 𝒗𝒄𝒊

3 rows

(partial) Jacobians
typically expressed in RF0

𝑣9R = 𝐽�R 𝑞 �̇� = 1 ⋮ 𝑖
0 0
0 ⋮ 0
0 0

�̇�

3 rows𝜔R = 𝐽�R 𝑞 �̇� = 1 ⋮ 𝑖
0 0
0 ⋮ 0
0 0

�̇�



robot (generalized) inertia matrix
§ symmetric
§ positive definite, ∀𝑞 ⇒ always invertible

𝑇 =
1
2
�̇�m𝑀(𝑞)�̇�

Final expression of 𝑇

NOTE 1: 
in practice, NEVER 
use this formula  

(or partial Jacobians)
for computing 𝑇

⟹ a better method 
is available...
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𝑇 =
1
2
�
R�<

>

𝑚R𝑣9Rm 𝑣9R + 𝜔Rm𝐼9R 𝜔R

=
1
2 �̇�

m �
R�<

>

𝑚R 𝐽�Rm (𝑞)𝐽�R(𝑞) + 𝐽�Rm 𝑞 𝐼9R 𝐽�R(𝑞) �̇�

else

constant if 𝜔R is 
expressed in RFci

[𝐼9R 𝑞 = [𝑅R 𝑞
R𝐼9R

[𝑅R
m(𝑞)

NOTE 2: 
I used previously

the notation 𝐵(𝑞)
for the robot 

inertia matrix ...
(see past exams!)



Robot potential energy
assumption: GRAVITY contribution only

gravity acceleration 
vector

position of the 
center of mass of link 𝑖

typically 
expressed

in RF0

𝑁 rigid bodies (+ fixed base)

open kinematic chain
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𝑈 =�
R�<

>

𝑈R

𝑈R = 𝑈R(𝑞�; 𝑗 ≤ 𝑖)

𝑈R = −𝑚R𝑔m𝑟[,9R

dependence on 𝑞

NOTE: need to work with homogeneous coordinates

𝑟[,9R
1 = [𝐴<(𝑞<) <𝐴a(𝑞a)⋯ R�<𝐴R(𝑞R)

𝑟R,9R
1

constant
in RFi



Summarizing ...

kinetic
energy

Robotics 2 18

Euler-Lagrange
equations 𝑘 = 1,… , 𝑁

𝑑
𝑑𝑡

𝜕𝐿
𝜕�̇�?

−
𝜕𝐿
𝜕𝑞?

= 𝑢?

𝑇 =
1
2 �̇�

m𝑀 𝑞 �̇� =
1
2�

R,�

𝑚R�(𝑞)�̇�R�̇��

potential
energy 𝑈 = 𝑈(𝑞)

positive definite
quadratic form

𝑇 = 0 �̇� = 0
𝑇 ≥ 0,

Lagrangian 𝐿 = 𝑇 𝑞, �̇� − 𝑈(𝑞)

non-conservative (active/dissipative)
generalized forces performing work on 𝑞? coordinate 



Applying Euler-Lagrange equations
(the scalar derivation ⎯ see Appendix for vector format)

NONLINEAR terms in CONFIGURATION 𝑞

LINEAR terms in ACCELERATION �̈�

QUADRATIC terms in VELOCITY �̇�
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𝐿(𝑞, �̇�) =
1
2
�
R,�

𝑚R� 𝑞 �̇�R�̇�� − 𝑈(𝑞)

(dependences of
elements on 𝑞
are not shown)

𝜕𝐿
𝜕�̇�?

= �
�

𝑚?��̇��
𝑑
𝑑𝑡

𝜕𝐿
𝜕�̇�?

= �
�

𝑚?��̈�� +�
R,�

𝜕𝑚?�

𝜕𝑞R
�̇�R�̇��

𝜕𝐿
𝜕𝑞?

=
1
2
�
R,�

𝜕𝑚R�

𝜕𝑞?
�̇�R�̇�� −

𝜕𝑈
𝜕𝑞?



𝑘-th dynamic equation ...

𝑐?R� = 𝑐?�R Christoffel symbols
of the first kind
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𝑑
𝑑𝑡

𝜕𝐿
𝜕�̇�?

−
𝜕𝐿
𝜕𝑞?

= 𝑢?

�
�

𝑚?��̈�� +�
R,�

𝜕𝑚?�

𝜕𝑞R
−
1
2
𝜕𝑚R�

𝜕𝑞?
�̇�R�̇�� +

𝜕𝑈
𝜕𝑞?

= 𝑢?

exchanging
“mute” indices 𝑖, 𝑗

⋯+�
R,�

1
2
𝜕𝑚?�

𝜕𝑞R
+
𝜕𝑚?R

𝜕𝑞�
−
𝜕𝑚R�

𝜕𝑞?
�̇�R�̇�� + ⋯



… and interpretation of dynamic terms

INERTIAL
terms

CENTRIFUGAL (𝑖 = 𝑗)
and CORIOLIS (𝑖 ≠ 𝑗) terms

GRAVITY
terms 𝑔?(𝑞)

𝑘 = 1,… , 𝑁

𝑚?�(𝑞) = inertia “seen” at joint 𝑘 when joint 𝑗 accelerates

𝑐?R� 𝑞 = coefficient of the Coriolis force at joint 𝑘 when 
joint 𝑖 and joint 𝑗 are both moving

𝑚??(𝑞) = inertia at joint 𝑘 when joint 𝑘 accelerates (𝑚?? > 0!!)

𝑐?RR(𝑞) = coefficient of the centrifugal force at joint 𝑘 when        
joint 𝑖 is moving (𝑐RRR = 0, ∀𝑖) 
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�
�

𝑚?�(𝑞)�̈�� +�
R,�

𝑐?R� 𝑞 �̇�R�̇�� +
𝜕𝑈
𝜕𝑞?

= 𝑢?



Robot dynamic model
in vector formats

symmetric
matrix!

1.
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𝑀 𝑞 �̈� + 𝑐 𝑞, �̇� + 𝑔 𝑞 = 𝑢

𝑘-th component
of vector 𝑐

𝑐? 𝑞, �̇� = �̇�m𝐶?(𝑞)�̇�

𝐶?(𝑞) =
1
2
𝜕𝑀?

𝜕𝑞
+

𝜕𝑀?

𝜕𝑞

m

−
𝜕𝑀
𝜕𝑞?

𝑘-th column
of matrix 𝑀(𝑞)

NOTE: 
the model
is in the form

as expected
𝛷 𝑞, �̇�, �̈� = 𝑢

2. 𝑀 𝑞 �̈� + 𝑆 𝑞, �̇� �̇� + 𝑔 𝑞 = 𝑢
NOT a

symmetric
matrix

in general

factorization of 𝑐
by 𝑆 is not unique!𝑠?� 𝑞, �̇� = �

R

𝑐?R� 𝑞 �̇�R



Dynamic model of a PR robot

𝑞1

𝑞2
𝑥

𝑦
𝑝𝑐2
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𝑑9a
𝑑𝑐1

𝑝𝑐1

𝑈 = constant ⇒ 𝑔(𝑞) ≡ 0
(on horizontal plane)

𝑇 = 𝑇< + 𝑇a

𝑝9< =
𝑞< − 𝑑9<

0
0

𝑣9< a = �̇�9<m �̇�9< = �̇�<a

𝑇< =
1
2
𝑚<�̇�<a

𝑇a =
1
2
𝑚a𝑣9am 𝑣9a +

1
2
𝜔am𝐼9a𝜔a

𝑝9a =
𝑞< + 𝑑9a cos 𝑞a
𝑑9a sin 𝑞a

0
𝑣9a =

�̇�< − 𝑑9a sin 𝑞a �̇�a
𝑑9a cos 𝑞a �̇�a

0
𝜔a =

0
0
�̇�a

𝑇a =
<
a
𝑚a �̇�<a + 𝑑9aa �̇�aa − 2𝑑9a sin 𝑞a �̇�<�̇�a + <

a
𝐼9a,���̇�aa



Dynamic model of a PR robot (cont)

where
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𝑀 𝑞 =
𝑚< + 𝑚a −𝑚a𝑑9a sin 𝑞a

−𝑚a𝑑9a sin 𝑞a 𝐼9a,�� + 𝑚a𝑑9aa

𝑀< 𝑀a
𝑐? 𝑞, �̇� = �̇�m𝐶?(𝑞)�̇�

𝐶?(𝑞) =
1
2
𝜕𝑀?
𝜕𝑞 +

𝜕𝑀?
𝜕𝑞

m

−
𝜕𝑀
𝜕𝑞?

𝑐 𝑞, �̇� = 𝑐< 𝑞, �̇�
𝑐a 𝑞, �̇�

𝐶< 𝑞 =
1
2

0 0
0 −𝑚a𝑑9a cos 𝑞a

+ 0 0
0 −𝑚a𝑑9a cos 𝑞a

− 0 0
0 0

𝐶a 𝑞 =
1
2

0 −𝑚a𝑑9a cos 𝑞a
0 0 +

0 0
−𝑚a𝑑9a cos 𝑞a 0

−
0 −𝑚a𝑑9a cos 𝑞a

−𝑚a𝑑9a cos 𝑞a 0

= 0

𝑐< 𝑞, �̇� = −𝑚a𝑑9a cos 𝑞a �̇�aa

𝑐a 𝑞, �̇� = 0



Dynamic model of a PR robot (cont)

Q5: which is the configuration with “maximum inertia”?

Q2: why Coriolis terms are not present?

Q3: when applying a force 𝑢<, does the second joint accelerate? … always?

Q4: what is the expression of a factorization matrix 𝑆? … is it unique here?
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𝑀 𝑞 �̈� + 𝑐 𝑞, �̇� = 𝑢

𝑚< + 𝑚a −𝑚a𝑑9a sin 𝑞a
−𝑚a𝑑9a sin 𝑞a 𝐼9a,�� + 𝑚a𝑑9aa

�̈�<
�̈�a

+ −𝑚a𝑑9a cos 𝑞a �̇�aa
0

=
𝑢<
𝑢a

NOTE: the 𝑚>> element (here, for 𝑁 = 2) of 𝑀(𝑞) is always constant!

Q1: why does variable 𝑞< not appear in 𝑀(𝑞)? … this is a general property!



A structural property
Matrix �̇� − 2𝑆 is skew-symmetric

(when using Christoffel symbols to define matrix 𝑆)
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Proof

using the
symmetry of 𝑀

�̇�?� =�
R

𝜕𝑚?�

𝜕𝑞R
�̇�R 2𝑠?� = �

R

2𝑐?R� �̇�R = �
R

𝜕𝑚?�

𝜕𝑞R
+
𝜕𝑚?R

𝜕𝑞�
−
𝜕𝑚R�

𝜕𝑞?
�̇�R

�̇�?� − 2𝑠?� = �
R

𝜕𝑚R�

𝜕𝑞?
−
𝜕𝑚?R
𝜕𝑞�

�̇�R = 𝑛?�

𝑛�? = �̇��? − 2𝑠�? =�
R

𝜕𝑚R?
𝜕𝑞�

−
𝜕𝑚�R
𝜕𝑞?

�̇�R = −𝑛?�

𝑥m �̇� − 2𝑆 𝑥 = 0, ∀𝑥



n total robot energy

n its evolution over time (using the dynamic model)

n if 𝑢 ≡ 0, total energy is constant (no dissipation or increase)

Energy conservation

here, any
factorization
of vector 𝑐

by a matrix 𝑆
can be used

weaker property than skew-symmetry, as
the external vector in the quadratic form
is the same velocity �̇� that appears also 

inside the two internal matrices �̇� also 𝑆

in general, the variation
of the total energy is 
equal to the work of 

non-conservative forces

𝐸 = 𝑇 + 𝑈 =
1
2
�̇�m𝑀 𝑞 �̇� + 𝑈(𝑞)

�̇� = �̇�m𝑀 𝑞 �̈� +
1
2 �̇�

m�̇� 𝑞 �̇� +
𝜕𝑈
𝜕𝑞 �̇�

= �̇�m 𝑢 − 𝑆 𝑞, �̇� �̇� − 𝑔(𝑞) +
1
2 �̇�

m�̇� 𝑞 �̇� + �̇�m𝑔(𝑞)

= �̇�m𝑢 +
1
2
�̇�m �̇� 𝑞 − 2𝑆 𝑞, �̇� �̇�

�̇� = 0 �̇�m �̇� 𝑞 − 2𝑆 𝑞, �̇� �̇� = 0, ∀𝑞, �̇�
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�̇� = �̇�m𝑢



Appendix 
dynamic model: alternative vector format derivation 
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𝑑
𝑑𝑡

𝜕𝐿
𝜕�̇�

m
−

𝜕𝐿
𝜕𝑞

m
= 𝑢 𝐿 =

1
2 �̇�

m𝑀 𝑞 �̇� − 𝑈(𝑞)

𝑖-th
position

dyadic expansion

𝑀(𝑞) = 𝑀<(𝑞) ⋯ 𝑀R(𝑞) ⋯ 𝑀>(𝑞) =�
R�<

>

𝑀R(𝑞)𝑒Rm

0 ⋯ 1 ⋯ 0

𝜕𝐿
𝜕�̇�

m

= �̇�m𝑀(𝑞) m = 𝑀 𝑞 �̇�
𝑑
𝑑𝑡

𝜕𝐿
𝜕�̇�

m

= 𝑀 𝑞 �̈� + �̇� 𝑞 �̇� = 𝑀 𝑞 �̈� +�
R�<

>
𝜕𝑀R

𝜕𝑞 �̇��̇�R

𝜕𝐿
𝜕𝑞

m

=
1
2 �̇�

m �
R�<

>
𝜕𝑀R(𝑞)
𝜕𝑞 𝑒Rm �̇� −

𝜕𝑈(𝑞)
𝜕𝑞

m

=
1
2�
R�<

>
𝜕𝑀R

𝜕𝑞

m

�̇�R �̇� −
𝜕𝑈
𝜕𝑞

m

𝑀 𝑞 �̈� + �
R�<

>
𝜕𝑀R

𝜕𝑞
−
1
2
𝜕𝑀R

𝜕𝑞

m

�̇�R �̇� +
𝜕𝑈
𝜕𝑞

m

= 𝑢

𝑔(𝑞)𝑆(𝑞, �̇�)
𝑘-th row of matrix 𝑆

𝑆?m 𝑞, �̇� = �̇�m𝐶?(𝑞)

this construction
gives to �̇� − 2𝑆
skew-symmetry


