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A general task priority formulation
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n consider a large number 𝑝 of tasks to be executed at best and with 
strict priorities by a robotic system having many dofs

n everything should run efficiently in real time, with possible addition, 
deletion, swap, or reordering of tasks

n a recursive formulation that reduces computations is convenient

projector in the null-space of 𝑘-th task 𝑘-th task 

stack of first 𝑘 tasks augmented Jacobian
of first 𝑘 tasks 

projector in the null-space of the
augmented Jacobian of the first 𝑘 tasks 

(     ) 
even larger!



Recursive solution with priorities - 1
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n start with the first task and reformulate the problem so as to provide 
always a “solution”, at least in terms of minimum error norm



Recursive solution with priorities - 2

Robotics 2 4

prioritized solution
up to task 𝑘 − 1

set of all solutions up to task 𝑘 − 1

LQ problem
for 𝑘-th task

recursive formula
(Siciliano, Slotine:

ICAR 1991)

initialization

prioritized 
solution

up to task 𝑘

correction needed when 
the solution up to task 𝑘 − 1
is not satisfying also task 𝑘

over the steps, the search set
is progressively reduced



Recursive solution with priorities
properties and implementation

Robotics 2 5

n the solution considering the first 𝑘 tasks with their priority

satisfies also (“does not perturb”) the previous 𝑘 − 1 tasks

since 

(Maciejewski, Klein: IJRR 1985): check the four defining properties of a pseudoinverse

n recursive expression also for the null-space projector 

(Baerlocher, Boulic: IROS 1998): for the proof, see Appendix A

=

n when the 𝑘-th task is (close to be) incompatible with the previous ones 
(algorithmic singularity), use “DLS” instead of “#” in 𝑘-th solution...



A list of extensions
(some still on-going research) 

n up to now, only “basic” redundancy resolution schemes
n defined at first-order differential level (velocity)

n it is possible to work in acceleration
n useful for obtaining smoother motion
n allows including the consideration of dynamics

n seen within a planning, not a control perspective
n take into account and recover errors in task execution by 

using kinematic control schemes
n applied to robot manipulators with fixed base

n extend to wheeled mobile manipulators
n tasks specified only by equality constraints

n add also linear inequalities in a complete QP formulation
n very common also for humanoid robots in multiple tasks

n consider hard limits in joint/command space
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Resolution at acceleration level

n rewritten in the form

the problem is formally equivalent to the previous one, 
with acceleration in place of velocity commands

n for instance, in the null-space method

to be chosen given
(at time 𝑡)

known 𝑞, �̇�
(at time 𝑡)

solution with minimum
acceleration norm �̈� *

needed
to damp/stabilize

self-motions
in the null space

(𝐾, > 0)
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𝑟 = 𝑓(𝑞) �̇� = 𝐽(𝑞)�̇� �̈� = 𝐽 𝑞 �̈� + ̇𝐽(𝑞)�̇�

𝐽 𝑞 �̈� = �̈� − ̇𝐽(𝑞)�̇� ≜ �̈�

�̈� = 𝐽# 𝑞 �̈� + 𝐼 − 𝐽# 𝑞 𝐽(𝑞) �̈�:
= ∇<𝐻 − 𝐾,�̇�



Dynamic redundancy resolution

n dynamic model of a robot manipulator (more later!)

𝑁×𝑁 symmetric 
inertia matrix,

positive definite for all 𝑞
Coriolis/centrifugal vector 𝑐(𝑞, �̇�)

+ gravity vector 𝑔(𝑞)
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input torque vector
(provided by the motors)

𝑀 𝑞 �̈� + 𝑛 𝑞, �̇� = 𝜏

𝑀-dimensional
acceleration task

𝐽(𝑞)�̈� = �̈� (= �̈� − ̇𝐽 𝑞 �̇�)

n we can formulate and solve interesting dynamic 
problems in the general framework of LQ optimization(°)

n closed-form expressions can be obtained by the solution 
formula(°) (assuming a full rank Jacobian 𝐽)

(°) in block Kinematic redundancy - Part 1, slide #26



Dynamic redundancy resolution
as Linear-Quadratic optimization problems

torque norm
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(squared inverse inertia weighted) torque norm

n typical dynamic objectives to be locally minimized at (𝑞, �̇�)

𝐻E �̈� =
1
2 𝜏 * =

1
2 �̈�

G𝑀* 𝑞 �̈� + 𝑛G 𝑞, �̇� 𝑀 𝑞 �̈� +
1
2 𝑛

G 𝑞, �̇� 𝑛 𝑞, �̇�

𝐻* �̈� =
1
2
𝜏 HIJ

* =
1
2
𝜏G𝑀K* 𝑞 𝜏

=
1
2
�̈�G�̈� + 𝑛G 𝑞, �̇� 𝑀KE(𝑞)�̈� +

1
2
𝑛G 𝑞, �̇� 𝑀K*(𝑞)𝑛 𝑞, �̇�

(inverse inertia weighted) torque norm

𝐻L �̈� =
1
2 𝜏 HIM

* =
1
2 𝜏

G𝑀KE 𝑞 𝜏

=
1
2 �̈�

G𝑀 𝑞 �̈� + 𝑛G 𝑞, �̇� �̈� +
1
2 𝑛

G 𝑞, �̇� 𝑀KE(𝑞)𝑛 𝑞, �̇�



Closed-form solutions
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minimum torque norm solution

• good for short trajectories (in fact, it is still only a “local” solution!)
• for longer trajectories it leads to torque “oscillation/explosion” (whipping effect)

minimum (squared inverse inertia weighted) torque norm solution

• good performance in general, to be preferred

𝜏E = 𝐽 𝑞 𝑀KE(𝑞) # �̈� − ̇𝐽 𝑞 �̇� + 𝐽 𝑞 𝑀KE 𝑞 𝑛(𝑞, �̇�)

𝜏* = 𝑀(𝑞)𝐽#(𝑞) �̈� − ̇𝐽 𝑞 �̇� + 𝐽 𝑞 𝑀KE 𝑞 𝑛(𝑞, �̇�)

𝜏L = 𝐽G(𝑞) 𝐽 𝑞 𝑀KE(𝑞)𝐽G(𝑞) KE �̈� − ̇𝐽 𝑞 �̇� + 𝐽 𝑞 𝑀KE 𝑞 𝑛(𝑞, �̇�)

1
2
𝜏 *

1
2
𝜏 HIJ

*

1
2
𝜏 HIM

*

minimum (inverse inertia weighted) torque norm solution

• a solution with a leading 𝐽𝑇(𝑞) term: what is its nice physical interpretation?

May we add terms in a (dynamic) null space? Easy to do in the LQ framework!



Stabilizing the minimum torque solution
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video

video

Universal
Robots 
UR-10
(6-dof)

KUKA
LRW 4
(7-dof,

last joint
not used)

IEEE Robotics and 
Automation Lett. 2019

min E
*
𝜏 * = MTN

versus

• MBP = minimizing 
torque also at a short 
preview instant
• MTND = damping 
joint velocity in the 
null space
• MBPD = … do both



Kinematic control
n given a desired 𝑀-dimensional task 𝑟O(𝑡), in order to recover 

a task error 𝑒 = 𝑟O – 𝑟 due to initial mismatch or due to 
n disturbances
n inherent linearization error in using the Jacobian (first-order motion)
n discrete-time implementation

we need to “close” a feedback loop on task execution, by 
replacing (with diagonal matrix gains 𝐾 > 0 or 𝐾R, 𝐾, > 0)

where 𝑟 = 𝑓 𝑞 , �̇� = 𝐽(𝑞)�̇�

in velocity-based...

…in acceleration-based methods
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�̇�

�̈�

�̇�O + 𝐾 𝑟O − 𝑟

�̈�O + 𝐾, �̇�O − �̇� + 𝐾R 𝑟O − 𝑟



Mobile manipulators
n coordinates: 𝑞S of the base and 𝑞T of the manipulator
n differential map: from available commands 𝑢S on the mobile 

base and 𝑢T on the manipulator to task output velocity

𝑟 = 𝑓 𝑞 ∈ ℝH

(task output, e.g.,  
the E-E pose)

𝑞S

𝑞T

kinematic
model of the 
wheeled base

(subject to
nonholonomic
constraints) 

𝑁X ≤ 𝑁
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𝑞 =
𝑞S
𝑞T

∈ ℝZ

𝑢 =
𝑢S
𝑢T ∈ ℝZ[

�̇�S = 𝐺(𝑞S)𝑢S
�̇�T = 𝑢T



Mobile manipulator Jacobian

n … most previous results follow by just replacing

Nonholonomic Mobile Manipulator (NMM)
Jacobian (𝑀×𝑁X)

(redundancy if 𝑁X − 𝑀 > 0)
namely, the

available velocity commands
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𝐽 ⟹ 𝐽ZHH �̇� ⟹ 𝑢

𝑟 = 𝑓 𝑞 = 𝑓(𝑞S, 𝑞T)

�̇� =
𝜕𝑓(𝑞)
𝜕𝑞S

�̇�S +
𝜕𝑓(𝑞)
𝜕𝑞T

�̇�T = 𝐽S 𝑞 �̇�S + 𝐽T 𝑞 �̇�T

= 𝐽S 𝑞 𝐺(𝑞S)𝑢S + 𝐽T 𝑞 𝑢T = 𝐽S(𝑞)𝐺(𝑞S) 𝐽T(𝑞)
𝑢S
𝑢T

= 𝐽ZHH 𝑞 𝑢



Mobile manipulators

wheeled Justin with centered
steering wheels 

(𝑁 = 3 + 4×2,𝑁X = 8)
“dancing” in controlled

but otherwise passive mode

car-like+2R planar arm
(𝑁 = 6,𝑁X = 4):

E-E trajectory control on a line (𝑁X − 𝑀 = 2)
with maximization of 𝐽ZHH manipulability 
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Automatica Fair 2008video
video



Quadratic Programming (QP)
with equality and inequality constraints
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n minimize a quadratic objective function (typically positive definite, like when 
using norms of vectors) subject to linear equality and inequality constraints, 
all expressed in terms of joint velocity commands

within a given convex set
solution set, with only equality constraints

(non-negative) slack variables

solution set, with only inequality constraints

QP complete formulation

(possibly with prioritization
of constraints)



Equality and inequality linear constraints
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inequality
constraint

inequality
constraint

feasible convex area 
(from inequalities)

equality
constraint

feasible convex area

inequality ➁

inequality ➂inequality ➀

equality

NO exact
solution here

any priority order
gives the same
final solution

... equality ≻ inequalities

... inequalities ≻ equality

minimum norm
solution

active

feasible convex area

inequality ①

inequality ➁
equality

higher priority ≻ lower priority

NO exact
solution here

solution if 
ineq ① ≻ ineq ➁

solution if 
ineq ➁ ≻ ineq ①

set of possible 
minimum error
solutions if ...

feasible convex area

inequality ①

inequality ➁

equality

solution if 
{ineq ①, ineq➁} 
≻ equality 

solution if equality 
≻ {ineq ①, ineq➁}

𝑤E = 𝑤*

(top priority)

slack variables
minimizing E

* 𝒘 *
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n an efficient task priority approach, with simultaneous inequality tasks 
handled as hard (cannot be violated) or soft (can be relaxed) constraints

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS) 2015

video

Equality and Inequality Tasks 
6R planar robot (simulations) and 7R KUKA LWR (experiment)



Equality and Inequality Tasks 
for the high-dof humanoid robot HRP2
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n a systematic task priority approach, with several simultaneous tasks

IEEE Int. Conf. on Robotics and Automation (ICRA) 2009

in any order of priority 
• avoid the obstacle
• gaze at the object
• reach the object
• ...
while keeping balance!

all subtasks are locally
expressed by linear 

equalities or inequalities
(possibly relaxed
when needed)

on joint velocities

video



Inclusion of hard limits in joint space
Saturation in the Null Space (SNS) method
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n robot has “limited” capabilities: hard limits on joint ranges and/or on joint 
motion or commands (max velocity, acceleration, torque) 

n represented as box inequalities that can never be violated (at most, active 
constraints or saturated commands) – kept separated from “stack” of tasks

n (equality) tasks are usually executed in full (with priorities, if desired), but 
can be relaxed (scaled) in case of need (i.e., when robot capabilities are used 
at their limits)

n saturate one overdriven joint command at a time, until a feasible and better 
performing solution is found ⇒ Saturation in the Null Space = SNS

n on-line decision: which joint commands to saturate and how, so that this 
does not affect task execution

n for tasks that are (certainly) not feasible, SNS embeds the selection of a task 
scaling factor preserving execution of the task direction with minimal scaling

diagonal
0/1 matrix

contains
saturated 

joint
velocitiesscaling

factor



Geometric view on SNS operation
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hard bounds
(box inequality constraints)

in the space of velocity commands

hard bounds
(box inequality constraints)

NO exact
solution here

=

=

the total correction to the original pseudoinverse solution
is always in the null space of the Jacobian (up to task scaling, if present)



Illustrative example - 1
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consider a 4R robot with equal links of unitary length

task: end-effector Cartesian position

manipulator configuration

differential map

desired Cartesian velocity
commanded joint velocity

task Jacobian

velocity limits



Illustrative example - 2
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current configuration

associated Jacobian

desired end-effector velocity
2.0 -2.0

direct (velocity =) task scaling?

saturating only the most violating velocity?

[                       ]



Joint velocity bounds

joint space 
limits

conversion: control sampling (piece-wise constant velocity commands) + max feasible velocities 
and decelerations to stay/stop within the joint range

joint velocity bounds

smooth velocity bound “anticipates” the reaching of a hard limit
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SNS at velocity level
Algorithm 1
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initialization
W : diagonal matrix with (𝑗, 𝑗) element

= 1 if joint 𝑗 is enabled
= 0 if joint 𝑗 is disabled

: vector with saturated velocities in 
correspondence of disabled joints 

s : current task scale factor

s*: largest task scale factor so far  



SNS at velocity level
Algorithm 1
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compute the joint velocity with 
initialized values 

compute the task scaling factor 
and the most critical joint

if a larger task scaling factor is 
obtained, save the current solution

disable the most critical joint by 
forcing it at its saturated velocity

check the joint velocity bounds



SNS at velocity level
Algorithm 1
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check if task can be accomplished 
with the remaining enabled joints

if NOT, use the parameters that 
allow the largest task scaling 
factor and exit

repeat until no joint limit is 
exceeded 



Task scaling factor
Algorithm 2
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yields the best task scaling factor 
(i.e., closest to the ideal value = 1) 

for the most critical joint in the 
current joint velocity solution



Simulation results
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[deg]

[deg/s]

[ms]

7-dof KUKA LWR IV

[deg/s2]



Simulation results
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requested task 
move the end-effector through six 
desired Cartesian positions along 
linear paths with constant speed V

task redundancy degree = 7 – 3 = 4

robot starts at the configuration

(with a small initial approaching phase)

for increasing V

Neglecting
Constraint

Task
Scaling

SNS
approach

[deg]



Experimental results
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KUKA LWR IV with hard joint-space limits video

IEEE Transactions on Robotics 2015



Variations of the SNS method
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SNS at the acceleration command level + consideration of multiple tasks with priority
video

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS) 2012
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Appendix A - Recursive Task Priority
proof of recursive expression for null-space projector
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n proof based on a result on pseudoinversion of partitioned matrices (Cline: J. SIAM 1964)

n (i)

n (ii)

n (i) + (ii) ⇒ Q.E.D. 

n if 𝑘-th task is scalar
=

(Greville formula)


