
Robotics 2

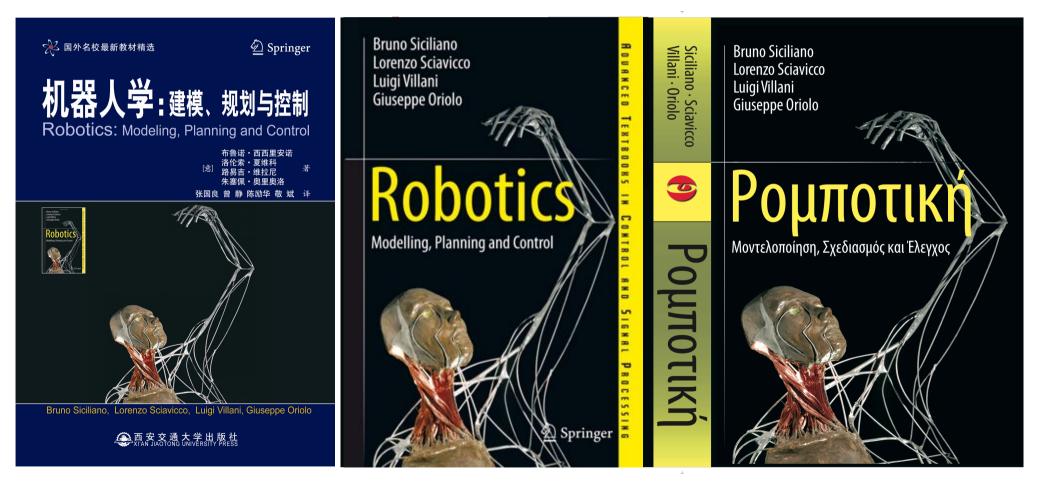
Introduction

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA Automatica e Gestionale Antonio Ruberti

- second semester
 - Monday, February 24 Wednesday, May 27, 2020
- courses of study
 - Master in Artificial Intelligence and Robotics
 - Master in Control Engineering
- credits: 6
 - \sim 60 h of lectures, 90 h of individual study (1 ECTS = 25 h work)
- classes
 - Monday
 08:00-10:00 (room B2, Via Ariosto 25)
 - Wednesday
 14:00-17:00 (room B2, Via Ariosto 25)
- video recordings of the course
 - each lecture will be available soon after in the Robotics 2 playlist on the <u>Video DIAG – Sapienza</u> YouTube channel

General information



- prerequisites
 - Robotics 1 as prerequisite (see <u>www.diag.uniroma1.it/deluca/rob1_en.php</u>)
- aims
 - advanced kinematics & dynamic analysis of robot manipulators
 - design of sensory feedback control laws for free motion and interaction tasks
- textbook
 - B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo: *Robotics: Modelling, Planning and Control*, 3rd Edition, Springer, 2009
- related courses
 - Autonomous and Mobile Robotics: first semester, 6 credits
 - Elective in Robotics: whole year, 12 credits (four modules)
 or Control Problems in Robotics: 6 credits (two out of four modules)
 - Medical Robotics: second semester, 6 credits

An international textbook...

B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo: *Robotics: Modelling, Planning and Control*, 3rd Edition, Springer, 2009

- algorithms for robotics*
 - process inputs from sensors that provide noisy and partial data
 - build geometric and physical models of the robot and the world
 - plan high- and low-level actions at different time horizons
 - execute these actions on actuators with uncertainty/limited precision
- design & analysis of robot algorithms raise a unique combination of questions from many fields
 - control theory
 - computational geometry and topology
 - geometrical and physical modeling
 - reasoning under uncertainty
 - probabilistic algorithms and game theory
 - theoretical computer science

Program - 1

advanced kinematics

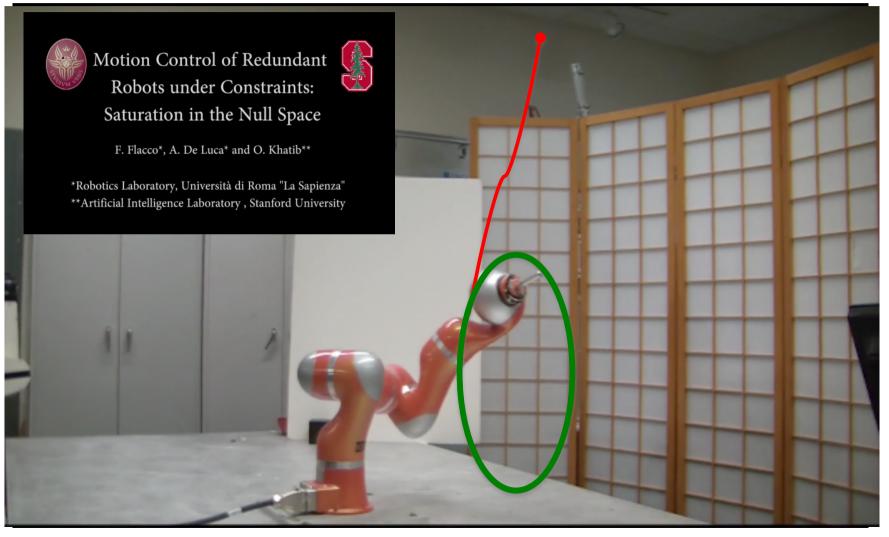
kinematic calibration

all on fixed-base robot manipulators!

- kinematic redundancy and related control methods
- dynamic modeling of manipulators
 - direct and inverse dynamics
 - Euler-Lagrange formulation
 - Newton-Euler formulation
 - properties of the dynamic model
 - identification of dynamic parameters
 - inclusion of flexibility at the joints
 - inclusion of geometric constraints

Program - 2

- design of feedback control laws
 - free motion tasks
 - set-point regulation
 - PD with gravity cancellation or compensation
 - PID or saturated PID
 - iterative learning
 - trajectory tracking
 - feedback linearization and input-output decoupling
 - passivity-based control
 - adaptive (and robust) control
 - interaction tasks with the environment
 - compliance control
 - impedance control
 - hybrid force/velocity control


- exteroceptive feedback control laws
 - image- and position-based visual servoing
 - kinematic treatment
- research-oriented seminars
 - diagnosis of robot actuator faults
 - physical Human-Robot Interaction (pHRI)
 - safety: sensorless collision detection and robot reaction
 - coexistence: collision avoidance while sharing workspace
 - collaboration: intentional exchange of contact forces
- simulation tools
 - Matlab/Simulink
 - CoppeliaSim (was V-REP)

- kinematic redundancy and related control methods
- robot dynamic modeling and identification
- interaction with the environment: force and motion control
- motion control in the presence of joint flexibility or variable stiffness actuation
- safe physical human-robot interaction & collaboration

Kinematic/dynamic control and redundancy SNS algorithm handles hard bounds on robot motion

KUKA LWR4 robot Robotics 2 video DIAG Sapienza/Stanford, IEEE ICRA 2012

Kinematic control and redundancy

(standing) HRP-2 humanoid robot

video @LAAS/CNRS Toulouse

Hierarchical Quadratic Programming

A. Escande N. Mansard JRL/CNRS-AIST LAAS/CNRS

rd P-B. Wieber RS INRIA-Grenoble

Application of the hierarchical solver to the generation of motion with the humanoid robot HRP-2

Multimedia Extension #1

International Journal of Robotics Research

HQP approach for multiple equality and inequality tasks with priorities

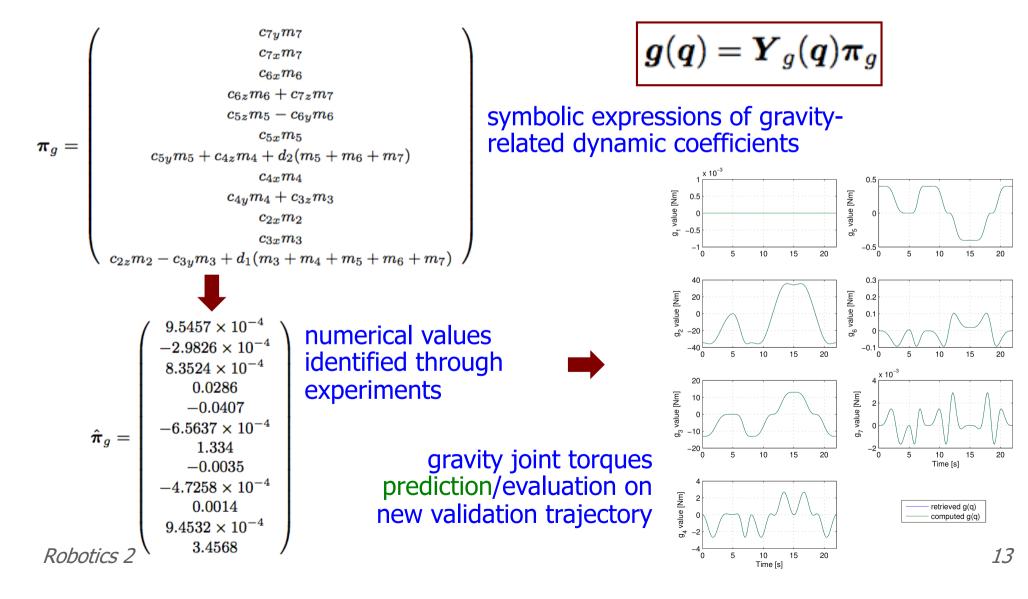
Dynamic modeling and identification

data acquisition for identification

KUKA LWR4+ robot with joint torque sensing

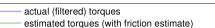
2 videos ICRA 2014 @DIAG Robotics Lab

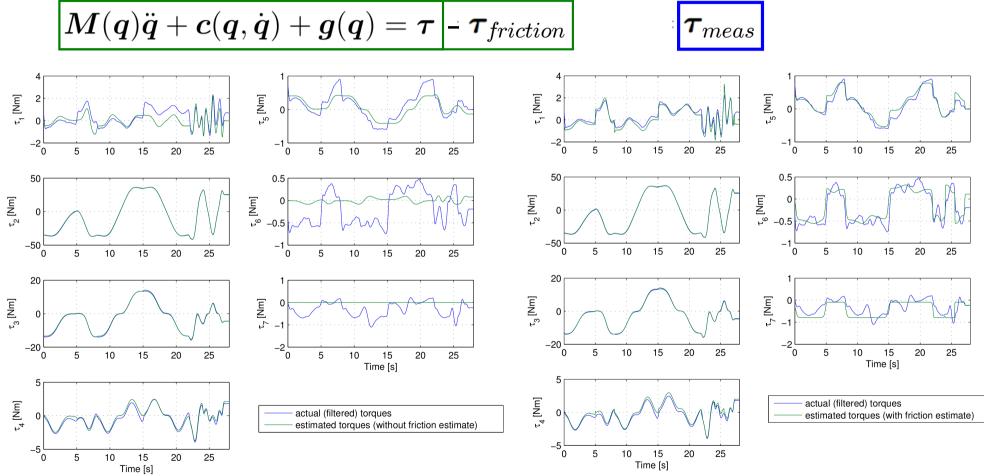
model validation by torque prediction


> dynamic simulation with V-REP

video

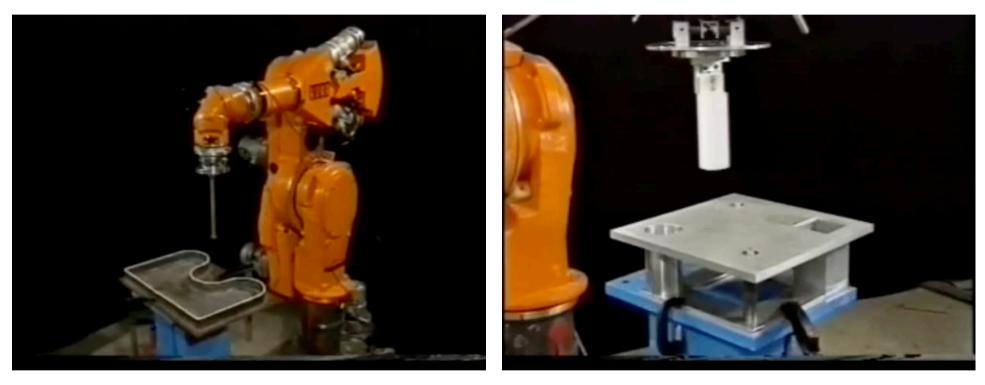
Dynamic modeling and identification


e.g., linear parametrization of gravity term in robot dynamic model


Dynamic modeling and identification

complete dynamic model estimation vs. joint torque sensor measurement

including an identified joint friction model



without the use of a joint friction model

Control of environment interaction

2 video clips extracted from Springer Handbook of Robotics - Multimedia

surface contour following

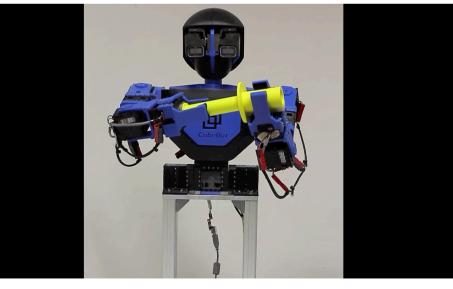
peg-in-hole insertion strategy

De Schutter et al @KU Leuven, Belgium (mid '90s)

Motion control

low-damped oscillations due to flexibility of robot transmissions at the joints (use of Harmonic Drives)

2 videos @DLR München


end-effector response to forces with impedance control (behavior selective in directions)

Motion control with VSA

3 videos @University of Pisa

modular, low-cost *qbmove* units

compliant motion with Variable Stiffness Actuators

Sensorless collision detection

2 videos @DLR München

during my sabbatical in 2005-06

residual method to detect collisions: uses robot dynamic model, encoder readings, commanded torques (in case of rigid joints) master student Sami Haddadin in 2006

NEVER DO THIS! (unless you're 100% sure of your research results ...)

finalist video IROS 2013 @DIAG Robotics Lab

Safe Physical Human-Robot Collaboration

Fabrizio Flacco Alessandro De Luca

Robotics Lab, DIAG Sapienza Università di Roma

March 2013

Physical human-robot interaction control

video ICRA 2015 @DIAG Robotics Lab

Control of Generalized Contact Motion and Force in Physical Human-Robot Interaction

Emanuele Magrini, Fabrizio Flacco, Alessandro De Luca

Robotics Lab, DIAG Sapienza Università di Roma

September 2014

Some recent EU research projects

FP7 SAPHARI (2011-15)

- Safe and Autonomous Physical Human-Aware Robot Interaction
- www.saphari.eu

H2020 SYMPLEXITY (2015-18)

- Symbiotic Human-Robot Solutions for Complex Surface Finishing Operations
- www.symplexity.eu
- H2020 COMANOID (2015-18)
 - Multi-Contact Collaborative Humanoids in Aircraft Manufacturing
 - <u>comanoid.cnrs.fr</u>

Contacts

office hours

- Tuesday 12:00-13:30 c/o A-210, left wing, floor 2, DIAG, Via Ariosto 25
- .. and/or by email (with some advance)
- Iook at the tab "My travel dates" on my web site
- communication by email
 - deluca@diag.uniroma1.it
 - please check/add your address in my Robotics 2 mailing list
- URL: http://www.diag.uniroma1.it/deluca
- video channel: http://www.youtube.com/user/RoboticsLabSapienza
- course material (lecture slides, videos, written exams, ...)
 - http://www.diag.uniroma1.it/deluca/rob2_en.html
 - lecture slides ready (will be updated during the course)
- registration to exams in infostud (code 1021883)

Exams and Master Thesis

- type of exam
 - classroom midterm test (qualifies for final project)
 - written test + oral part (or final project + oral presentation)
- schedule for academic year 2019/20 (already in infostud)
 - 2 sessions at the end of this semester
 - June 5, 9:00, room B2 and July 15, 9:00, room B2
 - 1 session after the summer break
 - September 11, 9:00, room B2
 - 2 extra sessions only for students of previous years, part-time, etc.
 - in April (between 15 and 21) and in October 2020: times/rooms tbd
 - 2 sessions at the end of the first semester of next year
 - January and February 2021
 - registration in infostud, up to one week before!
- master theses
 - available at DIAG Robotics Lab: http://www.diag.uniroma1.it/labrob