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Trajectories in Cartesian space 

  in general, the trajectory planning methods proposed in the 
joint space can be applied also in the Cartesian space 
  consider independently each component of the task vector (i.e., a 

position or an angle of a minimal representation of orientation) 

  however, when planning a trajectory for the three 
orientation angles, the resulting global motion cannot be 
intuitively visualized in advance 

  if possible, we still prefer to plan Cartesian trajectories 
separately for position and orientation 

  the number of knots to be interpolated in the Cartesian 
space is typically low (e.g., 2 knots for a PTP motion, 3 if a 
“via point” is added) ⇒ use simple interpolating paths, such 
as straight lines, arc of circles, …  
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Planning a linear Cartesian path 
(position only) 

pi 

pf 

GIVEN 
pi, pf, vmax, amax 

vi, vf (typically = 0) 

path parameterization 
p(s) = pi + s (pf - pi) 

s ∈ [0,1] 

L 

setting s = σ/L, σ ∈ [0,L] is the arc length 
        (gives the current length of the path) 

p(s) = s = (pf - pi) s 
dp 

ds 

. . . 
p(s) = s2 

d2p 

ds2 

. . . 
= (pf - pi) s s 

dp 

ds 

. . 
+ 

. . 

pf - pi 

L 
σ 
. 

= σ = 
pf - pi 

L 
. . 

unit vector of directional 
cosines of the line 

pf - pi 

║pf - pi║ 
= 

L = ║pf - pi║ 
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Timing law with trapezoidal speed - 1 

σ(t) 

σ(t) 

σ(t) 

. 

. . 

Ts T-Ts T 

t 
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bang- coast- bang 
amax 

vmax 
vmax 

amax 
Ts = 

L amax + vmax
2
 

amaxvmax 
T = 

L 

given*: L, vmax, amax 
find: Ts, T  

Vmax (T - Ts) = L = area of the  
speed profile 

a “coast” phase exists iff: L > vmax
2/amax 

* = other input data combinations are possible (see textbook) 
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Timing law with trapezoidal speed - 2 

σ(t) 

σ(t) 
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amax 

vmax 

L 

amax t2/2 

vmax t - 

- amax (t-T)2/2 + vmax T - 
vmax

2 

amax 

vmax
2 

2 amax 
σ(t) = 

t ∈ [0,Ts] 

t ∈ [Ts,T-Ts] 

t ∈ [T-Ts,T] 

can be used also 
in the joint space! 
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Concatenation of linear paths 

A 

C 

B =“via point” 

A’ 
C’ 

B - A 

║B - A║ 
= KAB 

C - B 

║C - B║ 
= KBC 

unit vectors of 
direction cosines 

given: constant speeds  v1 on linear path AB 
                                v2 on linear path BC 
desired transition: with constant acceleration for a time ΔT 

x 

z 

y 

x(t) 
y(t) 
z(t) 

p(t) = t ∈ [0, ΔT] (transition starts at t = 0) 

over-fly 

note: during over-fly, the path remains always in the plane specified  
by the two lines intersecting at B (in essence, it is a planar problem) 

no need to pass 
(and stop!) there 
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Time profiles on components 
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x(t) 
.. 

x(t) 
. 

y(t) 
. 

z(t) 
. 

y(t) 
.. 

z(t) 
.. 

v1 KAB,x 

v2 KBC,x 

v1 KAB,y 

v2 KBC,y 

v1 KAB,z 

v2 KBC,z 

ΔT 

ΔT 
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Timing law during transition 

A 

B 

C A’ 
C’ 

B - A 

║B - A║ 
= KAB 

C - B 

║C - B║ 
= KBC 

unit vectors of 
direction cosines 

x 

z 

y 
x(t) 
y(t) 
z(t) 

p(t) = t ∈ [0, ΔT] (transition starts at t = 0) 

p(t) = 1/ΔT (v2 KBC - v1 KAB) 
.. 

     p(t) = v1 KAB + t/ΔT (v2 KBC - v1 KAB) 
. 

     p(t) = A’ + v1 KAB t + t2/2ΔT (v2 KBC - v1 KAB) 

⌠ 
⌡ 

⌠ 
⌡ thus, we obtain a 

parabolic blending 
(see textbook 

for this same approach 
in the joint space)  
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Solution 
(various options) 

A 

B 

C A’ 

C’ 

B - A’= d1 KAB 

C’ - B = d2 KBC 

     p(t) = A’ + v1 KAB t + t2/2ΔT (v2 KBC - v1 KAB) 

d1 

d2 

ΔT = 2d1/v1 d2 = d1 v2/v1  
by choosing, e.g., d1 

(namely A’) 

1 

 - B + A’ + ΔT/2 (v1 KAB + v2 KBC) = C’ - B 

     p(ΔT) = A’ + ΔT/2 (v1 KAB + v2 KBC) = C’ 

d1 KAB + d2 KBC = ΔT/2 (v1 KAB + v2 KBC) 

d1 = v1 ΔT/2  d2 = v2 ΔT/2  

1 
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A numerical example 
  transition from A=(3,3) to C=(8,9) via B=(1,9), with speed from v1=1 to v2=2 
  exploiting two options for solution (resulting in different paths!) 

  assign transition time: ΔT=4 (we re-center it here for t ∈ [-ΔT/2, ΔT/2]) 
  assign distance from B for departing: d1=3 (assign d2 for landing is handled similarly) 

ΔT=4 

A 

B C 

d1=3 

A 

B C 

A’ 
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A numerical example (cont’d) 

actually, the same vel/acc profiles only with a different time scale!! 

first option: ΔT=4 (resulting in d1=2, d2=4)  

second option: d1=3 (resulting in ΔT=6, d2=6) 
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Alternative solution 
(imposing acceleration)  

A 

B 

C A’ 

C’ 
p(t) = 1/ΔT (v2 KBC - v1 KAB) 
.. 

v1 = v2 = vmax (for simplicity) 

║p(t)║ = amax 

       .. 

           ΔT = (vmax /amax) ║KBC - KAB║  

      = (vmax /amax) √ 2 (1 - KBC,xKAB,x - KBC,yKAB,y - KBC,zKAB,z) 

then, d1 = d2 = vmax ΔT/2  
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Application example 
plan a Cartesian trajectory from A to C (rest-to-rest)  
that avoids the obstacle O, with a ≤ amax and v ≤ vmax 

on AA’ →  amax     on A’B and BC’ →  vmax     on C’C  →  - amax  
+ over-fly between A” e C” 

A 

B 

C 

A” 
C” 

O 
A’ 

C’ 

add a via point B 
“sufficiently far” from O 
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Other Cartesian paths 

  circular path through 3 points in 3D (often built-in feature) 
  linear path for the end-effector with constant orientation 
  in robots with spherical wrist: planning can be decomposed into a path 

for wrist center and one for E-E orientation, with a common timing law 
  though more complex in general, it is often convenient to parameterize 

the Cartesian geometric path p(s) in terms of its arc length (e.g., with     
s = Rθ for circular paths), so that 

  velocity: dp/dt = dp/ds · ds/dt 
  dp/ds = unit vector (║·║=1) tangent to the path: tangent direction t(s) 
  ds/dt = absolute value of tangential velocity (= speed) 

  acceleration: d2p/dt2 = d2p/ds2 · (ds/dt)2 + dp/ds · d2s/dt2 

  ║d2p/ds2║ = curvature κ(s) (= 1/radius of curvature) 
  d2p/ds2·(ds/dt)2 = centripetal acceleration: normal direction n(s) ⊥ to the 

path, on the osculating plane; binormal direction b(s) = t(s) × n(s)  
  d2s/dt2 = scalar value (with any sign) of tangential acceleration 
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Definition of Frenet frame 
  For a generic (smooth) path p(s) in R3, parameterized by s (not 

necessarily its arc length), one can define a reference frame as in figure 

s 

t(s) n(s) 

b(s) 

p’ = dp/ds p’’ = d2p/ds2 
derivatives w.r.t. the parameter 

t(s) = p’(s)/║p’(s)║ 

n(s) = p’’(s)/║p’’(s)║ 

b(s) = t(s) × n(s) 

unit tangent vector 

unit normal vector 
(∈ osculating plane) 

unit binormal vector 

  general expression of path curvature (at a path point p(s)) 

κ(s) = ║p’(s) × p’’(s)║/║p’(s)║3  
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Optimal trajectories 

  for Cartesian robots (e.g., PPP joints) 
1.  the straight line joining two position points in the Cartesian space is one path 

that can be executed in minimum time under velocity/acceleration constraints 
(but other such paths may exist, if (joint) motion can also be not coordinated) 

2.  the optimal timing law is of the bang-coast-bang type in acceleration (in this 
special case, also in terms of actuator torques) 

  for articulated robots (with at least a R joint) 
  1. e 2. are no longer true in general in the Cartesian space, but time-optimality 

still holds in the joint space when assuming bounds on joint velocity/acceleration  
  straight line paths in the joint space do not correspond to straight line paths 

in the Cartesian space, and vice-versa 
  bounds on joint acceleration are conservative (though kinematically tractable) 

w.r.t. actual ones on actuator torques, which involve the robot dynamics  
  when changing robot configuration/state, different torque values are needed 

to impose the same joint accelerations 
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Planning orientation trajectories 

  using minimal representations of orientation (e.g., ZXZ Euler angles φ,θ,ψ), 
we can plan independently a trajectory for each component  
  e.g., a linear path in space φ θ ψ, with a cubic timing law  

 ⇒  but poor prediction/understanding of the resulting intermediate orientations 

  alternative method: based on the axis/angle representation 
  determine the (neutral) axis r and the angle θAB: R(r,θAB) = RA

T RB (rotation   
matrix changing the orientation from A to B ⇒ inverse axis-angle problem) 

  plan a timing law θ(t) for the (scalar) angle θ interpolating 0 with θAB (with 
possible constraints/boundary conditions on its time derivatives) 

  ∀t, RAR(r,θ(t)) specifies then the actual end-effector orientation at time t 

A B 
xA 

yA 

zA zB 

yB 

xB 

Robotics 1                    17 



Uniform time scaling 
  for a given path p(s) (in joint or Cartesian space) and a given timing law 

s(τ) (τ=t/T, T=“motion time”), we need to check if existing bounds vmax 
on (joint) velocity and/or amax on (joint) acceleration are violated or not  
  … unless such constraints have already been taken into account during the 

trajectory planning, e.g., by using a bang-coast-bang acceleration timing law 

  velocity scales linearly with motion time 
  dp/dt = dp/ds·ds/dτ·1/T  

  acceleration scales quadratically with motion time 
  d2p/dt2 = (d2p/ds2·(ds/dτ)2 + dp/ds·d2s/dτ2)·1/T2 

  if motion is unfeasible, scale (increase) time T → kT (k>1), based on the 
“most violated” constraint (max of the ratios |v|/vmax and |a|/amax) 

  if motion is “too slow” w.r.t. the robot capabilities, decrease T (k<1) 
  in both cases, after scaling, there will be (at least) one instant of saturation 

(for at least one variable)  
  no need to re-compute motion profiles from scratch after the scaling! 
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Numerical example - 1 

  2R planar robot with links of unitary length (1 [m]) 
  linear Cartesian path p(s) from q0=(110°, 140°) ⇒ p0=f(q0)=(-.684, 0) [m] 

to p1=(0.816, 1.4), with rest-to-rest cubic timing law s(t), T=1 [s] 
  bounds in joint space: max (absolute) velocity vmax,1= 2, vmax,2= 2.5 [rad/s], 

max (absolute) acceleration amax,1= 5, amax,2= 7 [rad/s2] 
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path length L=2.0518 [m] 
zero initial and 

final speed 

p0 

T=1 

p1 

q0 

non-zero 
(symmetric) 
acceleration 

s=s(t) 

smax≈3 [m/s] 
. 



Numerical example - 2 

  violation of both joint velocity and acceleration bounds with T=1 [s] 
  max relative violation of joint velocities: kvel = 2.898  
  max relative violation of joint accelerations: kacc = 6.2567  

  minimum uniform time scaling of Cartesian trajectory to recover feasibility           
       k = max {1, kvel , √kacc} = 2.898   ⇒   Tscaled = kT = 2.898 > T 
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Numerical example - 3 
  scaled trajectory with Tscaled = 2.898 [s] 

  speed [acceleration] on path and joint velocities [accelerations] scale linearly [quadratically] 
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at least 1 instant of saturation! 

traced Cartesian path  
and associated joint paths 

remain the same! 


