Robotics 1

Trajectory planning in Cartesian space

Prof. Alessandro De Luca

Dipartimento di Ingegneria Informatica

Automatica e Gestionale Antonio Ruberti

Trajectories in Cartesian space

- in general, the trajectory planning methods proposed in the joint space can be applied also in the Cartesian space
- consider independently each component of the task vector (i.e., a position or an angle of a minimal representation of orientation)
- however, when planning a trajectory for the three orientation angles, the resulting global motion cannot be intuitively visualized in advance
- if possible, we still prefer to plan Cartesian trajectories separately for position and orientation
- the number of knots to be interpolated in the Cartesian space is typically low (e.g., 2 knots for a PTP motion, 3 if a "via point" is added) \Rightarrow use simple interpolating paths, such as straight lines, arc of circles, ...

Planning a linear Cartesian path

(position only)

$$
\begin{aligned}
\dot{p}(s)=\frac{d p}{d s} \dot{s} & =\left(p_{f}-p_{i}\right) \dot{s} \\
& =\frac{p_{f}-p_{i}}{L} \dot{\sigma}
\end{aligned}
$$

$$
\begin{aligned}
\ddot{p}(s) & =\frac{d^{2} p}{d s^{2}} \dot{s}^{2}+\frac{d p}{d s} \ddot{s}=\left(p_{f}-p_{i}\right) \ddot{s} \\
& =\frac{p_{f}-p_{i}}{L} \ddot{\sigma}
\end{aligned}
$$

Timing law with trapezoidal speed - 1

$$
\begin{aligned}
& \text { given*: } L, v_{\max ,} a_{\max } \\
& \text { find: } T_{s^{\prime}} T
\end{aligned}
$$

$$
\mathrm{V}_{\max }\left(\mathrm{T}-\mathrm{T}_{\mathrm{s}}\right)=\mathrm{L} \quad \begin{aligned}
& \text { = area of the } \\
& \text { speed profile }
\end{aligned}
$$

$$
\mathrm{T}_{\mathrm{s}}=\frac{\mathrm{v}_{\max }}{\mathrm{a}_{\max }}
$$

$$
\mathrm{T}=\frac{\mathrm{L} \mathrm{a}_{\max }+\mathrm{v}_{\max }^{2}}{\mathrm{a}_{\max } \mathrm{v}_{\max }}
$$

a "coast" phase exists iff: $L>v_{\max }{ }^{2} / a_{\max }$

* $=$ other input data combinations are possible (see textbook)

Timing law with trapezoidal speed - 2

Concatenation of linear paths

given: constant speeds v_{1} on linear path $A B$

$$
v_{2} \text { on linear path } B C
$$

desired transition: with constant acceleration for a time ΔT

$$
\mathrm{p}(\mathrm{t})=\left[\begin{array}{l}
\mathrm{x}(\mathrm{t}) \\
\mathrm{y}(\mathrm{t}) \\
\mathrm{z}(\mathrm{t})
\end{array}\right] \quad \mathrm{t} \in[0, \Delta \mathrm{~T}] \text { (transition starts at } \mathrm{t}=0 \text {) }
$$

note: during over-fly, the path remains always in the plane specified by the two lines intersecting at B (in essence, it is a planar problem)

Time profiles on components

Timing law during transition

$$
\frac{\mathrm{B}-\mathrm{A}}{\|\mathrm{~B}-\mathrm{A}\|}=\mathrm{K}_{\mathrm{AB}}
$$

unit vectors of
direction cosines

$$
\left.p(t)=\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right] \quad t \in[0, \Delta T] \text { (transition starts at } t=0\right)
$$

$$
\ddot{\mathrm{p}}(\mathrm{t})=1 / \Delta \mathrm{T}\left(\mathrm{v}_{2} \mathrm{~K}_{\mathrm{BC}}-\mathrm{v}_{1} \mathrm{~K}_{\mathrm{AB}}\right)-\int \dot{\mathrm{p}}(\mathrm{t})=\mathrm{v}_{1} \mathrm{~K}_{\mathrm{AB}}+\mathrm{t} / \Delta \mathrm{T}\left(\mathrm{v}_{2} \mathrm{~K}_{\mathrm{BC}}-\mathrm{v}_{1} \mathrm{~K}_{\mathrm{AB}}\right)
$$

$$
p(t)=A^{\prime}+v_{1} K_{A B} t+t^{2} / 2 \Delta T\left(v_{2} K_{B C}-v_{1} K_{A B}\right)
$$ parabolic blending

Solution

(various options)

| by choosing, e.g., d_{1}
 (namely A) |
| :---: |$\rightarrow \Delta \mathrm{T}=2 \mathrm{~d}_{1} / \mathrm{v}_{1} \Rightarrow \mathrm{~d}_{2}=\mathrm{d}_{1} \mathrm{v}_{2} / \mathrm{v}_{1}$

A numerical example

- transition from $A=(3,3)$ to $C=(8,9)$ via $B=(1,9)$, with speed from $v_{1}=1$ to $v_{2}=2$
- exploiting two options for solution (resulting in different paths!)
- assign transition time: $\Delta \mathrm{T}=4$ (we re-center it here for $\mathrm{t} \in[-\Delta \mathrm{T} / 2, \Delta \mathrm{~T} / 2]$)
- assign distance from B for departing: $d_{1}=3$ (assign d_{2} for landing is handled similarly)

A numerical example (cont'd)

first option: $\Delta T=4$ (resulting in $d_{1}=2, d_{2}=4$)

second option: $d_{1}=3$ (resulting in $\Delta T=6, d_{2}=6$)

Alternative solution (imposing acceleration)

$$
\ddot{p}(t)=1 / \Delta T\left(v_{2} K_{B C}-v_{1} K_{A B}\right)
$$

$$
v_{1}=v_{2}=v_{\max } \text { (for simplicity) }
$$

$$
\|\ddot{\mathrm{p}}(\mathrm{t})\|=\mathrm{a}_{\max }
$$

$$
\begin{aligned}
& \Delta \mathrm{T}=\left(\mathrm{v}_{\max } / \mathrm{a}_{\max }\right)\left\|\mathrm{K}_{\mathrm{BC}}-\mathrm{K}_{\mathrm{AB}}\right\| \\
& =\left(\mathrm{v}_{\max } / \mathrm{a}_{\max }\right) \sqrt{2\left(1-\mathrm{K}_{\mathrm{BC}, \mathrm{X}} \mathrm{~K}_{\mathrm{AB}, \mathrm{X}}-\mathrm{K}_{\mathrm{BC}, \mathrm{y}} \mathrm{~K}_{\mathrm{AB}, \mathrm{y}}-\mathrm{K}_{\mathrm{BC}, \mathrm{Z}} \mathrm{~K}_{\mathrm{AB}, \mathrm{Z}}\right)}
\end{aligned}
$$

then, $\mathrm{d}_{1}=\mathrm{d}_{2}=\mathrm{v}_{\max } \Delta \mathrm{T} / 2$

Application example

plan a Cartesian trajectory from A to C (rest-to-rest) that avoids the obstacle 0 , with $\mathrm{a} \leq \mathrm{a}_{\max }$ and $\mathrm{v} \leq \mathrm{v}_{\max }$

Other Cartesian paths

- circular path through 3 points in 3D (often built-in feature)
- linear path for the end-effector with constant orientation
- in robots with spherical wrist: planning can be decomposed into a path for wrist center and one for E-E orientation, with a common timing law
- though more complex in general, it is often convenient to parameterize the Cartesian geometric path p(s) in terms of its arc length (e.g., with $s=R \theta$ for circular paths), so that
- velocity: $\mathrm{dp} / \mathrm{dt}=\mathrm{dp} / \mathrm{ds} \cdot \mathrm{ds} / \mathrm{dt}$
- $\mathrm{dp} / \mathrm{ds}=$ unit vector $(\|\cdot\|=1)$ tangent to the path: tangent direction $\mathrm{t}(\mathrm{s})$
- $\mathrm{ds} / \mathrm{dt}=$ absolute value of tangential velocity ($=$ speed)
- acceleration: $\mathrm{d}^{2} \mathrm{p} / \mathrm{dt}^{2}=\mathrm{d}^{2} \mathrm{p} / \mathrm{ds}^{2} \cdot(\mathrm{ds} / \mathrm{dt})^{2}+\mathrm{dp} / \mathrm{ds} \cdot \mathrm{d}^{2} \mathrm{~s} / \mathrm{dt}^{2}$
- $\left\|\mathrm{d}^{2} \mathrm{p} / \mathrm{ds}^{2}\right\|=$ curvature $\kappa(\mathrm{s})$ (= 1 /radius of curvature)
- $\mathrm{d}^{2} \mathrm{p} / \mathrm{ds}^{2} \cdot(\mathrm{ds} / \mathrm{dt})^{2}=$ centripetal acceleration: normal direction $\mathrm{n}(\mathrm{s}) \perp$ to the path, on the osculating plane; binormal direction $\mathrm{b}(\mathrm{s})=\mathrm{t}(\mathrm{s}) \times \mathrm{n}(\mathrm{s})$
- $\mathrm{d}^{2} \mathrm{~s} / \mathrm{dt}^{2}=$ scalar value (with any sign) of tangential acceleration

Definition of Frenet frame

- For a generic (smooth) path $p(s)$ in R^{3}, parameterized by s (not necessarily its arc length), one can define a reference frame as in figure

- general expression of path curvature (at a path point $p(s)$)

$$
\kappa(s)=\left\|p^{\prime}(s) \times p^{\prime \prime}(s)\right\| /\left\|p^{\prime}(s)\right\|^{3}
$$

Optimal trajectories

- for Cartesian robots (e.g., PPP joints)

1. the straight line joining two position points in the Cartesian space is one path that can be executed in minimum time under velocity/acceleration constraints (but other such paths may exist, if (joint) motion can also be not coordinated)
2. the optimal timing law is of the bang-coast-bang type in acceleration (in this special case, also in terms of actuator torques)

- for articulated robots (with at least a R joint)
- 1. e 2. are no longer true in general in the Cartesian space, but time-optimality still holds in the joint space when assuming bounds on joint velocity/acceleration
- straight line paths in the joint space do not correspond to straight line paths in the Cartesian space, and vice-versa
- bounds on joint acceleration are conservative (though kinematically tractable) w.r.t. actual ones on actuator torques, which involve the robot dynamics
- when changing robot configuration/state, different torque values are needed to impose the same joint accelerations

Planning orientation trajectories

- using minimal representations of orientation (e.g., ZXZ Euler angles ϕ, θ, ψ), we can plan independently a trajectory for each component
- e.g., a linear path in space $\phi \theta \psi$, with a cubic timing law
\Rightarrow but poor prediction/understanding of the resulting intermediate orientations
- alternative method: based on the axis/angle representation
- determine the (neutral) axis r and the angle $\theta_{A B}: R\left(r, \theta_{A B}\right)=R_{A}^{\top} R_{B}$ (rotation matrix changing the orientation from A to $B \Rightarrow$ inverse axis-angle problem)
- plan a timing law $\theta(\mathrm{t})$ for the (scalar) angle θ interpolating 0 with θ_{AB} (with possible constraints/boundary conditions on its time derivatives)
- $\forall t, R_{A} R(r, \theta(t))$ specifies then the actual end-effector orientation at time t

Uniform time scaling

- for a given path $\mathrm{p}(\mathrm{s})$ (in joint or Cartesian space) and a given timing law $\mathrm{s}(\tau)\left(\tau=\mathrm{t} / \mathrm{T}, \mathrm{T}=\right.$ "motion time"), we need to check if existing bounds $\mathrm{v}_{\text {max }}$ on (joint) velocity and/or $a_{\text {max }}$ on (joint) acceleration are violated or not
- ... unless such constraints have already been taken into account during the trajectory planning, e.g., by using a bang-coast-bang acceleration timing law
- velocity scales linearly with motion time
- dp/dt = dp/ds•ds/dr•1/T
- acceleration scales quadratically with motion time
- $\mathrm{d}^{2} \mathrm{p} / \mathrm{dt}^{2}=\left(\mathrm{d}^{2} \mathrm{p} / \mathrm{ds}^{2} \cdot(\mathrm{ds} / \mathrm{dr})^{2}+\mathrm{dp} / \mathrm{ds}^{\prime} \cdot \mathrm{d}^{2} \mathrm{~s} / \mathrm{d} \tau^{2}\right) \cdot 1 / \mathrm{T}^{2}$
- if motion is unfeasible, scale (increase) time $\mathrm{T} \rightarrow \mathrm{kT}(\mathrm{k}>1)$, based on the "most violated" constraint (max of the ratios $|\mathrm{v}| / \mathrm{v}_{\text {max }}$ and $|\mathrm{a}| / \mathrm{a}_{\text {max }}$)
- if motion is "too slow" w.r.t. the robot capabilities, decrease $T(k<1)$
- in both cases, after scaling, there will be (at least) one instant of saturation (for at least one variable)
- no need to re-compute motion profiles from scratch after the scaling!

Numerical example - 1

- 2R planar robot with links of unitary length (1 [m])
- linear Cartesian path $p(s)$ from $q_{0}=\left(110^{\circ}, 140^{\circ}\right) \Rightarrow p_{0}=f\left(q_{0}\right)=(-.684,0)$ [m] to $p_{1}=(0.816,1.4)$, with rest-to-rest cubic timing law $s(t), T=1[s]$
- bounds in joint space: \max (absolute) velocity $\mathrm{v}_{\max , 1}=2, \mathrm{v}_{\max , 2}=2.5[\mathrm{rad} / \mathrm{s}]$, \max (absolute) acceleration $\mathrm{a}_{\max , 1}=5, \mathrm{a}_{\max , 2}=7\left[\mathrm{rad} / \mathrm{s}^{2}\right]$

Numerical example - 2

- violation of both joint velocity and acceleration bounds with $\mathrm{T}=1$ [s]
- max relative violation of joint velocities: $\mathrm{k}_{\mathrm{vel}}=2.898$
- max relative violation of joint accelerations: $\mathrm{k}_{\mathrm{acc}}=6.2567$
- minimum uniform time scaling of Cartesian trajectory to recover feasibility

$$
\mathrm{k}=\max \left\{1, \mathrm{k}_{\mathrm{vel}}, \sqrt{\mathrm{k}_{\mathrm{acc}}}\right\}=2.898 \Rightarrow \mathrm{~T}_{\text {scaled }}=\mathrm{kT}=2.898>\mathrm{T}
$$

Numerical example - 3

- scaled trajectory with $\mathrm{T}_{\text {scaled }}=2.898[\mathrm{~s}]$
- speed [acceleration] on path and joint velocities [accelerations] scale linearly [quadratically]

Robotics 1

