
Robotics 1

Trajectory planning
in Cartesian space

Prof. Alessandro De Luca

Robotics 1 1

Trajectories in Cartesian space

  in general, the trajectory planning methods proposed in the
joint space can be applied also in the Cartesian space
  consider independently each component of the task vector (i.e., a

position or an angle of a minimal representation of orientation)

  however, when planning a trajectory for the three
orientation angles, the resulting global motion cannot be
intuitively visualized in advance

  if possible, we still prefer to plan Cartesian trajectories
separately for position and orientation

  the number of knots to be interpolated in the Cartesian
space is typically low (e.g., 2 knots for a PTP motion, 3 if a
“via point” is added) ⇒ use simple interpolating paths, such
as straight lines, arc of circles, …

Robotics 1 2

Planning a linear Cartesian path
(position only)

pi

pf

GIVEN
pi, pf, vmax, amax

vi, vf (typically = 0)

path parameterization
p(s) = pi + s (pf - pi)

s ∈ [0,1]

L

setting s = σ/L, σ ∈ [0,L] is the arc length
 (gives the current length of the path)

p(s) = s = (pf - pi) s
dp

ds

. . .
p(s) = s2

d2p

ds2

. . .
= (pf - pi) s s

dp

ds

. .
+

. .

pf - pi

L
σ
.

= σ =
pf - pi

L
. .

unit vector of directional
cosines of the line

pf - pi

║pf - pi║
=

L = ║pf - pi║

Robotics 1 3

Timing law with trapezoidal speed - 1

σ(t)

σ(t)

σ(t)

.

. .

Ts T-Ts T

t

t

t

bang- coast- bang
amax

vmax
vmax

amax
Ts =

L amax + vmax
2

amaxvmax
T =

L

given*: L, vmax, amax
find: Ts, T

Vmax (T - Ts) = L = area of the
speed profile

a “coast” phase exists iff: L > vmax
2/amax

* = other input data combinations are possible (see textbook)
Robotics 1 4

Timing law with trapezoidal speed - 2

σ(t)

σ(t)

σ(t)

.

. .

Ts T-Ts T

t

t

t

amax

vmax

L

amax t2/2

vmax t -

- amax (t-T)2/2 + vmax T -
vmax

2

amax

vmax
2

2 amax
σ(t) =

t ∈ [0,Ts]

t ∈ [Ts,T-Ts]

t ∈ [T-Ts,T]

can be used also
in the joint space!

Robotics 1 5

Concatenation of linear paths

A

C

B =“via point”

A’
C’

B - A

║B - A║
= KAB

C - B

║C - B║
= KBC

unit vectors of
direction cosines

given: constant speeds v1 on linear path AB
 v2 on linear path BC
desired transition: with constant acceleration for a time ΔT

x

z

y

x(t)
y(t)
z(t)

p(t) = t ∈ [0, ΔT] (transition starts at t = 0)

over-fly

note: during over-fly, the path remains always in the plane specified
by the two lines intersecting at B (in essence, it is a planar problem)

no need to pass
(and stop!) there

Robotics 1 6

Time profiles on components

t

t

t

t

t

t

x(t)
..

x(t)
.

y(t)
.

z(t)
.

y(t)
..

z(t)
..

v1 KAB,x

v2 KBC,x

v1 KAB,y

v2 KBC,y

v1 KAB,z

v2 KBC,z

ΔT

ΔT

Robotics 1 7

Timing law during transition

A

B

C A’
C’

B - A

║B - A║
= KAB

C - B

║C - B║
= KBC

unit vectors of
direction cosines

x

z

y
x(t)
y(t)
z(t)

p(t) = t ∈ [0, ΔT] (transition starts at t = 0)

p(t) = 1/ΔT (v2 KBC - v1 KAB)
..

 p(t) = v1 KAB + t/ΔT (v2 KBC - v1 KAB)
.

 p(t) = A’ + v1 KAB t + t2/2ΔT (v2 KBC - v1 KAB)

⌠
⌡

⌠
⌡ thus, we obtain a

parabolic blending
(see textbook

for this same approach
in the joint space)

Robotics 1 8

Solution
(various options)

A

B

C A’

C’

B - A’= d1 KAB

C’ - B = d2 KBC

 p(t) = A’ + v1 KAB t + t2/2ΔT (v2 KBC - v1 KAB)

d1

d2

ΔT = 2d1/v1 d2 = d1 v2/v1
by choosing, e.g., d1

(namely A’)

1

 - B + A’ + ΔT/2 (v1 KAB + v2 KBC) = C’ - B

 p(ΔT) = A’ + ΔT/2 (v1 KAB + v2 KBC) = C’

d1 KAB + d2 KBC = ΔT/2 (v1 KAB + v2 KBC)

d1 = v1 ΔT/2 d2 = v2 ΔT/2

1

Robotics 1 9

A numerical example
  transition from A=(3,3) to C=(8,9) via B=(1,9), with speed from v1=1 to v2=2
  exploiting two options for solution (resulting in different paths!)

  assign transition time: ΔT=4 (we re-center it here for t ∈ [-ΔT/2, ΔT/2])
  assign distance from B for departing: d1=3 (assign d2 for landing is handled similarly)

ΔT=4

A

B C

d1=3

A

B C

A’

Robotics 1 10

A numerical example (cont’d)

actually, the same vel/acc profiles only with a different time scale!!

first option: ΔT=4 (resulting in d1=2, d2=4)

second option: d1=3 (resulting in ΔT=6, d2=6)

Robotics 1 11

Alternative solution
(imposing acceleration)

A

B

C A’

C’
p(t) = 1/ΔT (v2 KBC - v1 KAB)
..

v1 = v2 = vmax (for simplicity)

║p(t)║ = amax

 ..

 ΔT = (vmax /amax) ║KBC - KAB║

 = (vmax /amax) √ 2 (1 - KBC,xKAB,x - KBC,yKAB,y - KBC,zKAB,z)

then, d1 = d2 = vmax ΔT/2

Robotics 1 12

Application example
plan a Cartesian trajectory from A to C (rest-to-rest)
that avoids the obstacle O, with a ≤ amax and v ≤ vmax

on AA’ → amax on A’B and BC’ → vmax on C’C → - amax
+ over-fly between A” e C”

A

B

C

A”
C”

O
A’

C’

add a via point B
“sufficiently far” from O

Robotics 1 13

Other Cartesian paths

  circular path through 3 points in 3D (often built-in feature)
  linear path for the end-effector with constant orientation
  in robots with spherical wrist: planning can be decomposed into a path

for wrist center and one for E-E orientation, with a common timing law
  though more complex in general, it is often convenient to parameterize

the Cartesian geometric path p(s) in terms of its arc length (e.g., with
s = Rθ for circular paths), so that

  velocity: dp/dt = dp/ds · ds/dt
  dp/ds = unit vector (║·║=1) tangent to the path: tangent direction t(s)
  ds/dt = absolute value of tangential velocity (= speed)

  acceleration: d2p/dt2 = d2p/ds2 · (ds/dt)2 + dp/ds · d2s/dt2

  ║d2p/ds2║ = curvature κ(s) (= 1/radius of curvature)
  d2p/ds2·(ds/dt)2 = centripetal acceleration: normal direction n(s) ⊥ to the

path, on the osculating plane; binormal direction b(s) = t(s) × n(s)
  d2s/dt2 = scalar value (with any sign) of tangential acceleration

Robotics 1 14

Definition of Frenet frame
  For a generic (smooth) path p(s) in R3, parameterized by s (not

necessarily its arc length), one can define a reference frame as in figure

s

t(s) n(s)

b(s)

p’ = dp/ds p’’ = d2p/ds2
derivatives w.r.t. the parameter

t(s) = p’(s)/║p’(s)║

n(s) = p’’(s)/║p’’(s)║

b(s) = t(s) × n(s)

unit tangent vector

unit normal vector
(∈ osculating plane)

unit binormal vector

  general expression of path curvature (at a path point p(s))

κ(s) = ║p’(s) × p’’(s)║/║p’(s)║3

Robotics 1 15

Optimal trajectories

  for Cartesian robots (e.g., PPP joints)
1.  the straight line joining two position points in the Cartesian space is one path

that can be executed in minimum time under velocity/acceleration constraints
(but other such paths may exist, if (joint) motion can also be not coordinated)

2.  the optimal timing law is of the bang-coast-bang type in acceleration (in this
special case, also in terms of actuator torques)

  for articulated robots (with at least a R joint)
  1. e 2. are no longer true in general in the Cartesian space, but time-optimality

still holds in the joint space when assuming bounds on joint velocity/acceleration
  straight line paths in the joint space do not correspond to straight line paths

in the Cartesian space, and vice-versa
  bounds on joint acceleration are conservative (though kinematically tractable)

w.r.t. actual ones on actuator torques, which involve the robot dynamics
  when changing robot configuration/state, different torque values are needed

to impose the same joint accelerations

Robotics 1 16

Planning orientation trajectories

  using minimal representations of orientation (e.g., ZXZ Euler angles φ,θ,ψ),
we can plan independently a trajectory for each component
  e.g., a linear path in space φ θ ψ, with a cubic timing law

 ⇒ but poor prediction/understanding of the resulting intermediate orientations

  alternative method: based on the axis/angle representation
  determine the (neutral) axis r and the angle θAB: R(r,θAB) = RA

T RB (rotation
matrix changing the orientation from A to B ⇒ inverse axis-angle problem)

  plan a timing law θ(t) for the (scalar) angle θ interpolating 0 with θAB (with
possible constraints/boundary conditions on its time derivatives)

  ∀t, RAR(r,θ(t)) specifies then the actual end-effector orientation at time t

A B
xA

yA

zA zB

yB

xB

Robotics 1 17

Uniform time scaling
  for a given path p(s) (in joint or Cartesian space) and a given timing law

s(τ) (τ=t/T, T=“motion time”), we need to check if existing bounds vmax
on (joint) velocity and/or amax on (joint) acceleration are violated or not
  … unless such constraints have already been taken into account during the

trajectory planning, e.g., by using a bang-coast-bang acceleration timing law

  velocity scales linearly with motion time
  dp/dt = dp/ds·ds/dτ·1/T

  acceleration scales quadratically with motion time
  d2p/dt2 = (d2p/ds2·(ds/dτ)2 + dp/ds·d2s/dτ2)·1/T2

  if motion is unfeasible, scale (increase) time T → kT (k>1), based on the
“most violated” constraint (max of the ratios |v|/vmax and |a|/amax)

  if motion is “too slow” w.r.t. the robot capabilities, decrease T (k<1)
  in both cases, after scaling, there will be (at least) one instant of saturation

(for at least one variable)
  no need to re-compute motion profiles from scratch after the scaling!

Robotics 1 18

Numerical example - 1

  2R planar robot with links of unitary length (1 [m])
  linear Cartesian path p(s) from q0=(110°, 140°) ⇒ p0=f(q0)=(-.684, 0) [m]

to p1=(0.816, 1.4), with rest-to-rest cubic timing law s(t), T=1 [s]
  bounds in joint space: max (absolute) velocity vmax,1= 2, vmax,2= 2.5 [rad/s],

max (absolute) acceleration amax,1= 5, amax,2= 7 [rad/s2]

Robotics 1 19

path length L=2.0518 [m]
zero initial and

final speed

p0

T=1

p1

q0

non-zero
(symmetric)
acceleration

s=s(t)

smax≈3 [m/s]
.

Numerical example - 2

  violation of both joint velocity and acceleration bounds with T=1 [s]
  max relative violation of joint velocities: kvel = 2.898
  max relative violation of joint accelerations: kacc = 6.2567

  minimum uniform time scaling of Cartesian trajectory to recover feasibility
 k = max {1, kvel , √kacc} = 2.898 ⇒ Tscaled = kT = 2.898 > T

Robotics 1 20

= joint 2 = joint 1

Numerical example - 3
  scaled trajectory with Tscaled = 2.898 [s]

  speed [acceleration] on path and joint velocities [accelerations] scale linearly [quadratically]

Robotics 1 21 = joint 2 = joint 1

at least 1 instant of saturation!

traced Cartesian path
and associated joint paths

remain the same!

