Robotics 1

Trajectory planning

Prof. Alessandro De Luca

Dipartimento di Ingegneria Informatica
Automatica e Gestionale Antonio Ruberti

Trajectory planner interfaces

robot action described as a sequence of poses or configurations
(with possible exchange of contact forces)

TRAJECTORY PLANNER

reference profile/values
\square (continuous or discrete) for the robot controller

Trajectory definition a standard procedure for industrial robots

1. define Cartesian pose points (position+orientation) using the teach-box
2. program an (average) velocity between these points, as a $0-100 \%$ of a maximum system value (different for Cartesian- and joint-space motion)
3. linear interpolation in the joint space between points sampled from the built trajectory
examples of additional features
a) over-fly

b) sensor-driven STOP
c) circular path through 3 points
main drawbacks

- semi-manual programming (as in "first generation" robot languages)
- limited visualization of motion

\square
a mathematical formalization of trajectories is useful/needed

From task to trajectory

TRAJECTORY
II $\left\{\begin{array}{l}\text { of motion } \mathrm{p}_{\mathrm{d}}(\mathrm{t}) \\ \text { of interaction } \mathrm{F}_{\mathrm{d}}(\mathrm{t})\end{array}\right.$

GEOMETRIC PATH
$+$

TIMING LAW describes the time evolution of $s=s(t)$

Trajectory planning

 operative sequence(1) TASK planning

- sequence of pose points ("knots") in Cartesian space \neg - interpolation in Cartesian space

Cartesian geometric path (position + orientation): $p=p(s) \downarrow$
(2)

- path sampling and kinematic inversion
- sequence of "knots" in joint space \downarrow
- interpolation in joint space
geometric path in joint space: $q=q(\lambda)$
additional issues to be considered in the planning process
- obstacle avoidance
- on-line/off-line computational load
- sequence (2) is more "dense" than (1)

Example

Cartesian vs. joint trajectory planning

- planning in Cartesian space
- allows a more direct visualization of the generated path
- obstacle avoidance, lack of "wandering"
- planning in joint space
- does not need on-line kinematic inversion
- issues in kinematic inversion
- \dot{q} e \ddot{q} (or higher-order derivatives) may also be needed
- Cartesian task specifications involve the geometric path, but also bounds on the associated timing law
- for redundant robots, choice among ∞^{n-m} inverse solutions, based on optimality criteria or additional auxiliary tasks
- off-line planning in advance is not always feasible
- e.g., when interaction with the environment occurs or sensor-based motion is needed

Path and timing law

- after choosing a path, the trajectory definition is completed by the choice of a timing law

$$
\begin{array}{lll}
\mathrm{p}=\mathrm{p}(\mathrm{~s}) & \Rightarrow \mathrm{s}=\mathrm{s}(\mathrm{t}) & \text { (Cartesian space) } \\
\mathrm{q}=\mathrm{q}(\lambda) & \Rightarrow \lambda=\lambda(\mathrm{t}) & \text { (joint space) }
\end{array}
$$

- if $s(t)=t$, path parameterization is the natural one given by time
- the timing law
- is chosen based on task specifications (stop in a point, move at constant velocity, and so on)
- may consider optimality criteria (min transfer time, min energy,...)
- constraints are imposed by actuator capabilities (max torque, max velocity,...) and/or by the task (e.g., max acceleration on payload)
note: on parameterized paths, a space-time decomposition takes place
$\underset{\text { e.g., in Cartesian }}{\text { space }} \quad \dot{p}(\mathrm{t})=\frac{\mathrm{dp}}{\mathrm{ds}} \dot{\mathrm{s}} \quad \ddot{\mathrm{p}}(\mathrm{t})=\frac{\mathrm{dp}}{\mathrm{ds}} \ddot{\mathrm{s}}+\frac{\mathrm{d}^{2} \mathrm{p}}{\mathrm{ds}} \dot{s}^{2} \dot{s}^{2}$

Trajectory classification

- space of definition
- Cartesian, joint
- task type
- point-to-point (PTP), multiple points (knots), continuous, concatenated
- path geometry
- rectilinear, polynomial, exponential, cycloid, ...
- timing law
- bang-bang in acceleration, trapezoidal in velocity, polynomial, ...
- coordinated or independent
- motion of all joints (or of all Cartesian components) start and ends at the same instants (say, $\mathrm{t}=0$ and $\mathrm{t}=\mathrm{T}$) = single timing law
or
- motions are timed independently (according to the requested displacement and robot capabilities) - mostly only in joint space

Relevant characteristics

- computational efficiency and memory space
- e.g., store only the coefficients of a polynomial function
- predictability (vs. "wandering" out of the knots) and accuracy (vs. "overshoot" on final position)
- flexibility (allowing concatenation, over-fly, ...)
- continuity (in space and in time) (at least \mathbf{C}^{1}, but also up to jerk $=\frac{\mathrm{da}}{\mathrm{dt}}$)

Trajectory planning in joint space

- $\mathrm{q}=\mathrm{q}(\mathrm{t})$ or $\mathrm{q}=\mathrm{q}(\lambda), \lambda=\lambda(\mathrm{t})$
- it is sufficient to work component-wise (q_{i} in vector q)
- an implicit definition of the trajectory, by solving a problem with specified boundary conditions in a given class of functions
- typical classes: polynomials (cubic, quintic,...), (co)sinusoids, clothoids, ...
- imposed conditions
- passage through points = interpolation
- initial, final, intermediate velocity (or geometric tangent for paths)
- initial, final acceleration (or geometric curvature)
- continuity up to the k-th order time (or space) derivative: class \mathbf{C}^{k}
many of the following methods and remarks can be directly applied also to Cartesian trajectory planning (and vice versa)!

Cubic polynomial

$$
\mathrm{q}(0)=\mathrm{q}_{\text {in }} \quad \mathrm{q}(\mathrm{~T})=\mathrm{q}_{\text {fin }} \quad \dot{\mathrm{q}}(0)=\mathrm{v}_{\text {in }} \quad \dot{\mathrm{q}}(\mathrm{~T})=\mathrm{v}_{\text {fin }} \longleftarrow 4 \text { conditions }
$$

$$
\mathrm{q}(\tau)=\mathrm{q}_{\mathrm{in}}+\Delta \mathrm{q}\left[\mathrm{a} \tau^{3}+\mathrm{b} \tau^{2}+\mathrm{c} \tau+\mathrm{d}\right]
$$

$$
\begin{aligned}
& \Delta \mathrm{q}=\mathrm{q}_{\text {fin }}-\mathrm{q}_{\text {in }} \\
& \tau=\mathrm{t} / \mathrm{T}, \tau \in[0,1]
\end{aligned}
$$

4 coefficients \longrightarrow "doubly normalized" polynomial $\mathrm{q}_{N}(\tau)$

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{N}}(0)=0 \Leftrightarrow \mathrm{~d}=0 \\
& \mathrm{q}_{\mathrm{N}}(1)=1 \Leftrightarrow a+b+c=1 \\
& \mathrm{q}_{\mathrm{N}}{ }^{\prime}(0)=\mathrm{dq}_{\mathrm{N}} /\left.\mathrm{d} \tau\right|_{\tau=0}=\mathrm{c}=\mathrm{v}_{\mathrm{in}} \mathrm{~T} / \Delta \mathrm{q} \\
& q_{N}{ }^{\prime}(1)=d q_{N} /\left.d \tau\right|_{\tau=1}=3 a+2 b+c \\
& =\mathrm{v}_{\text {fin }} \mathrm{T} / \Delta \mathrm{q} \\
& \text { special case: } \mathrm{v}_{\text {in }}=\mathrm{v}_{\text {fin }}=0 \text { (rest-to-rest) } \\
& \left.\begin{array}{rl}
\mathrm{q}_{N}^{\prime}(0)=0 & \Leftrightarrow c=0 \\
\mathrm{q}_{N}(1)=1 & \Leftrightarrow a+b=1 \\
\mathrm{q}_{N}{ }^{\prime}(1)=0 & \Leftrightarrow 3 a+2 b=0
\end{array}\right\} \Leftrightarrow \begin{array}{l}
a=-2 \\
b=3
\end{array}
\end{aligned}
$$

Quintic polynomial

$$
\begin{aligned}
& q(\tau)=a \tau^{5}+b \tau^{4}+c \tau^{3}+d \tau^{2}+e \tau+f \quad 6 \text { coefficients } \\
& \tau=t / T, \tau \in[0,1]
\end{aligned}
$$

allows to satisfy 6 conditions, for example (in normalized time τ)

$$
\begin{gathered}
q(0)=q_{0} q(1)=q_{1} \quad q^{\prime}(0)=v_{0} T \quad q^{\prime}(1)=v_{1} T \quad q^{\prime \prime}(0)=a_{0} T^{2} q^{\prime \prime}(1)=a_{1} T^{2} \\
q(\tau)= \\
(1-\tau)^{3}\left[q_{0}+\left(3 q_{0}+v_{0} T\right) \tau+\left(a_{0} T^{2}+6 v_{0} T+12 q_{0}\right) \tau^{2} / 2\right] \\
\\
+\tau^{3}\left[q_{1}+\left(3 q_{1}-v_{1} T\right)(1-\tau)+\left(a_{1} T^{2}-6 v_{1} T+12 q_{1}\right)(1-\tau)^{2} / 2\right]
\end{gathered}
$$

$$
\text { special case: } \mathrm{v}_{0}=\mathrm{v}_{1}=\mathrm{a}_{0}=\mathrm{a}_{1}=0
$$

$$
\mathrm{q}(\tau)=\mathrm{q}_{0}+\Delta \mathrm{q}\left[6 \tau^{5}-15 \tau^{4}+10 \tau^{3}\right] \quad \Delta \mathrm{q}=\mathrm{q}_{1}-\mathrm{q}_{0}
$$

4-3-4 polynomials

three phases (Lift off, Travel, Set down) in pick-and-place operations

Higher-order polynomials

- a suitable solution class for satisfying symmetric boundary conditions (in a PTP motion) that impose zero values on higher-order derivatives
- the interpolating polynomial is always of odd degree
- the coefficients of such (doubly normalized) polynomial are always integers, alternate in sign, sum up to unity, and are zero for all terms up to the power $=($ degree- 1$) / 2$
- in all other cases (e.g., for interpolating a large number N of points), their use is not recommended
- N-th order polynomials have N-1 maximum and minimum points
- oscillations arise out of the interpolation points (wandering)

Numerical examples

Interpolation using splines

- problem
interpolate N knots, with continuity up to the second derivative
- solution
spline: $\mathrm{N}-1$ cubic polynomials, concatenated so as to pass through N knots and being continuous in velocity and acceleration in the $\mathrm{N}-2$ internal knots
- 4(N-1) coefficients
- 4(N-1)-2 conditions, or
- 2(N-1) of passage (for each cubic, in the two knots at its ends)
- N-2 of continuity for velocity (at the internal knots)
- N -2 of continuity for acceleration (at the internal knots)
- 2 free parameters are still left over
- can be used, e.g., to assign initial and final velocities, v_{1} and v_{N}
- presented next in terms of time t, but similar in terms of space λ

Building a cubic spline

time intervals h_{k}

$$
\theta_{k}(\tau)=a_{k 0}+a_{k 1} \tau+a_{k 2} \tau^{2}+a_{k 3} \tau^{3} \quad \tau \in\left[0, h_{k}\right], \tau=t-t_{k}(k=1, \ldots, N-1)
$$

continuity conditions
for velocity and acceleration

$$
\begin{aligned}
& \dot{\theta}_{\mathrm{K}}\left(h_{\mathrm{k}}\right)=\dot{\theta}_{\mathrm{K}+1}(0) \\
& \ddot{\theta}_{\mathrm{K}}\left(\mathrm{~h}_{\mathrm{k}}\right)=\ddot{\theta}_{\mathrm{K}+1}(0)
\end{aligned}
$$

An efficient algorithm

1. if all velocities v_{k} at internal knots were known, then each cubic in the spline would be uniquely determined by

$$
\begin{align*}
& \theta_{\mathrm{K}}(0)=\mathrm{q}_{\mathrm{K}}=a_{\mathrm{K} 0} \tag{1}\\
& \dot{\theta}_{\mathrm{K}}(0)=v_{\mathrm{K}}=a_{\mathrm{K} 1}
\end{align*} \quad\left(\begin{array}{cc}
h_{\mathrm{K}}^{2} & h_{\mathrm{K}}^{3} \\
2 h_{\mathrm{K}} & 3 h_{K_{k}^{2}}^{2}
\end{array}\right)\binom{a_{\mathrm{K} 2}}{a_{\mathrm{K} 3}}=\binom{\mathrm{q}_{\mathrm{K}+1}-q_{\mathrm{K}}-v_{\mathrm{K}} h_{\mathrm{K}}}{v_{\mathrm{K}+1}-v_{\mathrm{K}}}
$$

2. impose the continuity for accelerations ($\mathrm{N}-2$ conditions)

$$
\ddot{\theta}_{\mathrm{K}}\left(h_{\mathrm{k}}\right)=2 \mathrm{a}_{\mathrm{K} 2}+6 \mathrm{a}_{\mathrm{K} 3} h_{\mathrm{K}}=\ddot{\theta}_{\mathrm{K}+1}(0)=2 a_{\mathrm{K}+1,2}
$$

3. expressing the coefficients $a_{k 2}, a_{k 3}, a_{k+1,2}$ in terms of the still unknown knot velocities (see step 1.) yields a linear system of equations that is always (easily) solvable

Structure of $A(h)$

diagonally dominant matrix (for $h_{k}>0$) [the same matrix for all joints]

Structure of $b\left(h, q, v_{1}, v_{N}\right)$

$$
\begin{gathered}
\frac{3}{h_{1} h_{2}}\left[h_{1}^{2}\left(q_{3}-q_{2}\right)+h_{2}^{2}\left(q_{2}-q_{1}\right)\right]-h_{2} v_{1} \\
\frac{3}{h_{2} h_{3}}\left[h_{2}^{2}\left(q_{4}-q_{3}\right)+h_{3}^{2}\left(q_{3}-q_{2}\right)\right] \\
\vdots \\
\frac{3}{h_{N-3} h_{N-2}}\left[h_{N-3}^{2}\left(q_{N-1}-q_{N-2}\right)+h_{N-2}^{2}\left(q_{N-2}-q_{N-3}\right)\right] \\
\frac{3}{h_{N-2} h_{N-1}}\left[h_{N-2}^{2}\left(q_{N}-q_{N-1}\right)+h_{N-1} 2\left(q_{N-1}-q_{N-2}\right)\right]-h_{N-2} v_{N}
\end{gathered}
$$

Properties of splines

- the spline is the solution with minimum curvature among all interpolating functions having continuous second derivative
- a spline is uniquely determined from the set of data $\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{N}}$, $h_{1}, \ldots, h_{N-1}, v_{1}, v_{N}$
- the total transfer time is $T=\Sigma h_{k}=t_{N}-t_{1}$
- the time intervals h_{k} can be chosen so as to minimize T (linear objective function) under (nonlinear) bounds on velocity and acceleration in $[0, \mathrm{~T}]$
- for cyclic tasks $\left(q_{1}=q_{N}\right)$, it is preferable to simply impose continuity of velocity and acceleration at $t_{1}=t_{N}$ as the "squaring" conditions
- in fact, even choosing $\mathrm{v}_{1}=\mathrm{v}_{\mathrm{N}}$ doesn't guarantee acceleration continuity
- in this way, the first=last knot will be handled as all other internal knots
- when initial and final accelerations are also assigned, the spline construction can be suitably modified

A modification handling assigned initial and final accelerations

- two more parameters are needed in order to impose also the initial acceleration α_{1} and final acceleration α_{N}
- two "fictitious knots" are inserted in the first and last original intervals, increasing the number of cubic polynomials from $\mathrm{N}-1$ to $\mathrm{N}+1$
- in these two knots only continuity conditions on position, velocity and acceleration are imposed
\Rightarrow two free parameters are left over (one in the first cubic and the other in the last cubic), which are used to satisfy the boundary conditions on acceleration
- depending on the (time) placement of the two additional knots, the resulting spline changes

A numerical example

- $N=4$ knots (3 cubic polynomials)
- joint values $\mathrm{q}_{1}=0, \mathrm{q}_{2}=2 \pi, \mathrm{q}_{3}=\pi / 2, \mathrm{q}_{4}=\pi$
- at $\mathrm{t}_{1}=0, \mathrm{t}_{2}=2, \mathrm{t}_{3}=3, \mathrm{t}_{4}=5$ (thus, $\mathrm{h}_{1}=2, \mathrm{~h}_{2}=1, \mathrm{~h}_{3}=2$)
- boundary velocities $\mathrm{v}_{1}=\mathrm{v}_{4}=0$
- 2 added knots to impose accelerations at both ends (5 cubic polynomials)
- boundary accelerations $\alpha_{1}=\alpha_{4}=0$
- two placements: at $\mathrm{t}_{1}{ }^{\prime}=0.5$ and $\mathrm{t}_{4}{ }^{\prime}=4.5(\times)$, or $\mathrm{t}_{1}{ }^{\prime \prime}=1.5$ and $\mathrm{t}_{4}{ }^{\prime \prime}=3.5(*)$

