
Robotics 1 1

Robotics 1

Trajectory planning

Prof. Alessandro De Luca

Trajectory planner interfaces

external sensors

task planner* trajectory planner* control*

internal sensors

robot

environment

functional robot units

* = programming “points”

TRAJECTORY
PLANNER

robot action described
as a sequence of poses

or configurations
(with possible exchange

of contact forces)

reference profile/values
(continuous or discrete)
for the robot controller

Robotics 1 2

Trajectory definition
a standard procedure for industrial robots

1. define Cartesian pose points (position+orientation) using the teach-box
2. program an (average) velocity between these points, as a 0-100% of a

maximum system value (different for Cartesian- and joint-space motion)
3.  linear interpolation in the joint space between points sampled from the

built trajectory

Robotics 1 3

examples of additional features

 a) over-fly b) sensor-driven STOP c) circular path
 through 3 points

A B

C D

. .
. .

main drawbacks

  semi-manual programming (as in “first generation” robot languages)
  limited visualization of motion

 a mathematical formalization of trajectories is useful/needed

From task to trajectory

TRAJECTORY
of motion pd(t)

of interaction Fd(t)

=

GEOMETRIC PATH +

TIMING LAW

parameterized by s: p=p(s)
(e.g., s is the arc length)

describes the time evolution of s=s(t)

.
 px(s)
p(s) = py(s)
 pz(s)

A

B

0 T

0 smax

.
.

t

s

TIME

PARAMETER

PATH

example: TASK planner provides A, B
 TRAJECTORY planner generates p(t)

p(s(t))

Robotics 1 4

Trajectory planning
operative sequence

  sequence of pose points (“knots”) in Cartesian space

  Cartesian geometric path (position + orientation): p = p(s)

  sequence of “knots” in joint space

  geometric path in joint space: q = q(λ)

  TASK planning

  interpolation in Cartesian space

  path sampling and kinematic inversion

  interpolation in joint space an
al

yt
ic

in

ve
rs

io
n

1

2

additional issues to be considered in the planning process

  obstacle avoidance
  on-line/off-line computational load
  sequence 2 is more “dense” than 1

Robotics 1 5

Example

.
.

. .
.

.

q1

q2

q3

λ

q3(λ)

.
.

.

.
.
.

.

C B A

.

.

.
p(s)

A . B .

C .

Cartesian space joint space

q2(λ)

q1(λ)

Robotics 1 6

Cartesian vs. joint trajectory planning

  planning in Cartesian space
  allows a more direct visualization of the generated path
  obstacle avoidance, lack of “wandering”

  planning in joint space
  does not need on-line kinematic inversion

  issues in kinematic inversion
  q e q (or higher-order derivatives) may also be needed

  Cartesian task specifications involve the geometric path,
but also bounds on the associated timing law

  for redundant robots, choice among ∞n-m inverse solutions,
based on optimality criteria or additional auxiliary tasks

  off-line planning in advance is not always feasible
  e.g., when interaction with the environment occurs or

sensor-based motion is needed

. ..

Robotics 1 7

p(t) = s p(t) = s + s2

Path and timing law

  after choosing a path, the trajectory definition is completed by
the choice of a timing law
 p = p(s) ⇒ s = s(t) (Cartesian space)
 q = q(λ) ⇒ λ = λ(t) (joint space)

  if s(t) = t, path parameterization is the natural one given by time
  the timing law

  is chosen based on task specifications (stop in a point, move at
constant velocity, and so on)

  may consider optimality criteria (min transfer time, min energy,…)
  constraints are imposed by actuator capabilities (max torque, max

velocity,…) and/or by the task (e.g., max acceleration on payload)

note: on parameterized paths, a space-time decomposition takes place

dp
ds

. . dp
ds

d2p
 ds2

.. .. . e.g., in Cartesian
space

Robotics 1 8

Trajectory classification
  space of definition

  Cartesian, joint

  task type
  point-to-point (PTP), multiple points (knots), continuous,

concatenated

  path geometry
  rectilinear, polynomial, exponential, cycloid, …

  timing law
  bang-bang in acceleration, trapezoidal in velocity, polynomial, …

  coordinated or independent
  motion of all joints (or of all Cartesian components) start and

ends at the same instants (say, t=0 and t=T) = single timing law
or
  motions are timed independently (according to the requested

displacement and robot capabilities) – mostly only in joint space

Robotics 1 9

Relevant characteristics

  computational efficiency and memory space
  e.g., store only the coefficients of a polynomial function

  predictability (vs. “wandering” out of the knots) and
accuracy (vs. “overshoot” on final position)

  flexibility (allowing concatenation, over-fly, …)
  continuity (in space and in time)
 (at least C1, but also up to jerk =) da

dt

Robotics 1 10

Trajectory planning in joint space

  q = q(t) or q = q(λ), λ = λ(t)

  it is sufficient to work component-wise (qi in vector q)

  an implicit definition of the trajectory, by solving a problem with
specified boundary conditions in a given class of functions

  typical classes: polynomials (cubic, quintic,…), (co)sinusoids,
clothoids, …

  imposed conditions
  passage through points = interpolation

  initial, final, intermediate velocity (or geometric tangent for paths)

  initial, final acceleration (or geometric curvature)

  continuity up to the k-th order time (or space) derivative: class Ck

many of the following methods and remarks can be
directly applied also to Cartesian trajectory planning (and vice versa)!

Robotics 1 11

Cubic polynomial

q(0) = qin q(T) = qfin q(0) = vin q(T) = vfin
. .

q(τ) = qin + Δq [a τ3 + b τ2 + c τ + d]
Δq = qfin - qin

τ = t/T, τ ∈[0, 1]
“doubly normalized” polynomial qN(τ)

qN(0) = 0 ⇔ d = 0 qN(1) = 1 ⇔ a + b + c = 1

4 conditions

4 coefficients

qN’(0) = dqN/dτ|τ=0 = c = vinT/Δq

special case: vin = vfin = 0 (rest-to-rest)

qN’(0) = 0 ⇔ c = 0

qN(1) = 1 ⇔ a + b = 1

qN’(1) = 0 ⇔ 3a + 2b = 0
⇔ a = - 2

b = 3

qN’(1) = dqN/dτ|τ=1 = 3a + 2b + c
 = vfinT/Δq

Robotics 1 12

Quintic polynomial

q(0) = q0 q(1) = q1 q’(0) = v0T q’(1) = v1T

q(τ) = a τ5 + b τ4 + c τ3 + d τ2 + e τ + f

Δq = q1 - q0

6 coefficients

special case: v0 = v1 = a0 = a1 = 0

allows to satisfy 6 conditions, for example (in normalized time τ)

τ = t/T, τ ∈ [0, 1]

q’’(0) = a0T2 q’’(1) = a1T2

q(τ) = (1 - τ)3[q0 + (3q0+v0T) τ + (a0T2+6v0T+12q0) τ2/2]

 + τ3 [q1 + (3q1 -v1T)(1- τ) + (a1T2 -6v1T+12q1) (1 - τ)2/2]

q(τ) = q0 + Δq [6 τ5 - 15 τ4 + 10 τ3]

Robotics 1 13

4-3-4 polynomials

three phases (Lift off, Travel, Set down) in pick-and-place operations

qL(t) = 4th order polynomial
qT(t) = 3rd order polynomial
qS(t) = 4th order polynomial

14 coefficients . .
. .

t0 t1 t2 tf

q0

q1

q2

qf

initial depart approach final

q(t0) = q0 q(t1-) = q(t1+) = q1 q(t2-) = q(t2+) = q2 q(tf) = qf

q(t0) = q(tf) = 0 q(t0) = q(tf) = 0

q(ti-) = q(ti+) q(ti-) = q(ti+) i = 1,2

boundary conditions

.

.

6 passages

4 initial/final
velocity/acceleration

4 continuity

Robotics 1 14

Higher-order polynomials

  a suitable solution class for satisfying symmetric boundary
conditions (in a PTP motion) that impose zero values on
higher-order derivatives

  the interpolating polynomial is always of odd degree
  the coefficients of such (doubly normalized) polynomial are always

integers, alternate in sign, sum up to unity, and are zero for all
terms up to the power = (degree-1)/2

  in all other cases (e.g., for interpolating a large number N of
points), their use is not recommended

  N-th order polynomials have N-1 maximum and minimum points
  oscillations arise out of the interpolation points (wandering)

Robotics 1 15

Numerical examples

9th
degree

29th
degree

normalized
velocity

14 derivatives
are zero!

4 derivatives
are zero

2.5 4.5!!

no
overshoot

nor
wandering

velocity
peaking

at midpoint

Robotics 1 16

Interpolation using splines

  problem
interpolate N knots, with continuity up to the second derivative

  solution
spline: N-1 cubic polynomials, concatenated so as to pass through N
knots and being continuous in velocity and acceleration in the N-2
internal knots

  4(N-1) coefficients
  4(N-1)-2 conditions, or

  2(N-1) of passage (for each cubic, in the two knots at its ends)
  N-2 of continuity for velocity (at the internal knots)
  N-2 of continuity for acceleration (at the internal knots)

  2 free parameters are still left over
  can be used, e.g., to assign initial and final velocities, v1 and vN

  presented next in terms of time t, but similar in terms of space λ

Robotics 1 17

Building a cubic spline
q = θ(t) = {θK(t), t ∈ [tk, tk + hk]}

. q(t)

q1 q2

qk

qk+1

qN-1

qN

vN

v1

t1 t2 tk tk+1 tN-1 tN

time intervals hk

θK(τ) = ak0 + ak1 τ + ak2 τ2 + ak3 τ3 τ ∈[0, hk], τ = t - tk

continuity conditions
for velocity and acceleration

θK(hk) = θK+1(0)

θK(hk) = θK+1(0)

. .

.. .. k = 1, …, N-2

(k = 1, …, N-1)

Robotics 1 18

An efficient algorithm
1.  if all velocities vk at internal knots were known, then each cubic in the spline

would be uniquely determined by

2.  impose the continuity for accelerations (N-2 conditions)

3.  expressing the coefficients ak2, ak3, ak+1,2 in terms of the still unknown knot
velocities (see step 1.) yields a linear system of equations that is always (easily)
solvable

v2
v3
:

vN-1

A(h) b(h,q,v1,vN) =

tri-diagonal matrix
always invertible

unknown known vector

θK(0) = qK = aK0

θK(0) = vK = aK1

. hK
2 hK

3

2hK
 3hK

2

aK2

aK3

qK+1 - qK - vK hK

vK+1 - vK
=

θK(hk) = 2 aK2 + 6 aK3 hK = θK+1(0) = 2 aK+1,2
.. ..

1

to be substituted then back in 1
Robotics 1 19

Structure of A(h)

2(h1+h2) h1

hN-1 2(hN-2+hN-1)

h3 2(h2+h3) h2

hN-2 2(hN-3+hN-2) hN-3

. . .

diagonally dominant matrix (for hk > 0)
[the same matrix for all joints]

Robotics 1 20

Structure of b(h,q,v1,vN)

[h1
2(q3 - q2) + h2

2(q2 - q1)] - h2v1
 3
h1h2

[h2
2(q4 - q3) + h3

2(q3 - q2)]
 3
h2h3

[hN-3
2(qN-1 - qN-2) + hN-2

2(qN-2 - qN-3)]
 3
hN-3hN-2

[hN-2
2(qN - qN-1) + hN-1

2(qN-1 - qN-2)] - hN-2vN
 3
hN-2hN-1

…

Robotics 1 21

Properties of splines

  the spline is the solution with minimum curvature among all
interpolating functions having continuous second derivative

  a spline is uniquely determined from the set of data q1,…,qN,
 h1,…,hN-1, v1, vN

  the total transfer time is T = Σhk = tN - t1

  the time intervals hk can be chosen so as to minimize T (linear
objective function) under (nonlinear) bounds on velocity and
acceleration in [0,T]

  for cyclic tasks (q1=qN), it is preferable to simply impose continuity of
velocity and acceleration at t1=tN as the “squaring” conditions
  in fact, even choosing v1=vN doesn’t guarantee acceleration continuity
  in this way, the first=last knot will be handled as all other internal knots

  when initial and final accelerations are also assigned, the spline
construction can be suitably modified

Robotics 1 22

A modification
handling assigned initial and final accelerations

  two more parameters are needed in order to impose also the
initial acceleration α1 and final acceleration αN

  two “fictitious knots” are inserted in the first and last original
intervals, increasing the number of cubic polynomials from N-1
to N+1

  in these two knots only continuity conditions on position,
velocity and acceleration are imposed
 ⇒ two free parameters are left over (one in the first cubic and
the other in the last cubic), which are used to satisfy the
boundary conditions on acceleration

  depending on the (time) placement of the two additional knots,
the resulting spline changes

Robotics 1 23

A numerical example
  N = 4 knots (3 cubic polynomials)

  joint values q1 = 0, q2 = 2π, q3 = π/2, q4 = π
  at t1 = 0, t2 = 2, t3 = 3, t4 = 5 (thus, h1 = 2, h2 = 1, h3 = 2)
  boundary velocities v1 = v4 = 0

  2 added knots to impose accelerations at both ends (5 cubic polynomials)
  boundary accelerations α1 = α4 = 0
  two placements: at t1’ = 0.5 and t4’ = 4.5 (×), or t1” = 1.5 and t4” = 3.5 (∗)

= placement’ = placement”

Robotics 1 24

