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Trajectory planning 
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Trajectory planner interfaces 

external sensors 

task planner* trajectory planner* control* 

internal sensors 

robot 

environment 

functional robot units 

* = programming “points” 

TRAJECTORY 
PLANNER 

robot action described 
as a sequence of poses 

or configurations  
(with possible exchange  

of contact forces) 

reference profile/values  
(continuous or discrete) 
for the robot controller 
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Trajectory definition 
a standard procedure for industrial robots 

1. define Cartesian pose points (position+orientation) using the teach-box 
2. program an (average) velocity between these points, as a 0-100% of a 

maximum system value (different for Cartesian- and joint-space motion) 
3.  linear interpolation in the joint space between points sampled from the 

built trajectory 
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examples of additional features 

    a) over-fly                    b) sensor-driven STOP    c) circular path  
                through 3 points 

A B 

C D 

. . 
. . 

main drawbacks 

  semi-manual programming (as in “first generation” robot languages) 
  limited visualization of motion 

           a mathematical formalization of trajectories is useful/needed 



From task to trajectory 

TRAJECTORY 
of motion pd(t) 

of interaction Fd(t) 

=
 

GEOMETRIC PATH +
 

TIMING LAW 

parameterized by s: p=p(s) 
(e.g., s is the arc length) 

describes the time evolution of s=s(t) 

. 
           px(s) 
p(s) =  py(s) 
           pz(s) 

A 

B 

0 T 

0 smax 

. 
. 

t 

s 

TIME 

PARAMETER 

PATH 

example:  TASK planner provides A, B 
 TRAJECTORY planner generates p(t) 

p(s(t)) 
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Trajectory planning 
operative sequence 

  sequence of pose points (“knots”) in Cartesian space 

  Cartesian geometric path (position + orientation):  p = p(s) 

  sequence of “knots” in joint space 

  geometric path in joint space: q = q(λ) 

  TASK planning 

  interpolation in Cartesian space 

  path sampling and kinematic inversion 

  interpolation in joint space an
al

yt
ic
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additional issues to be considered in the planning process 

  obstacle avoidance 
  on-line/off-line computational load 
  sequence  2  is more “dense” than  1 
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Example 
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q2(λ) 

q1(λ) 
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Cartesian vs. joint trajectory planning 

  planning in Cartesian space 
  allows a more direct visualization of the generated path  
  obstacle avoidance, lack of “wandering” 

  planning in joint space 
  does not need on-line kinematic inversion 

  issues in kinematic inversion 
  q e q (or higher-order derivatives) may also be needed 

  Cartesian task specifications involve the geometric path, 
but also bounds on the associated timing law 

  for redundant robots, choice among ∞n-m inverse solutions, 
based on optimality criteria or additional auxiliary tasks 

  off-line planning in advance is not always feasible 
  e.g., when interaction with the environment occurs or 

sensor-based motion is needed 

. .. 
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p(t) =        s       p(t) =        s +         s2 

Path and timing law 

  after choosing a path, the trajectory definition is completed by 
the choice of a timing law 
  p = p(s)  ⇒ s = s(t)  (Cartesian space) 
  q = q(λ)  ⇒ λ = λ(t)  (joint space) 

  if s(t) = t, path parameterization is the natural one given by time 
  the timing law 

  is chosen based on task specifications (stop in a point, move at 
constant velocity, and so on) 

  may consider optimality criteria (min transfer time, min energy,…) 
  constraints are imposed by actuator capabilities (max torque, max 

velocity,…) and/or by the task (e.g., max acceleration on payload) 

note: on parameterized paths, a space-time decomposition takes place 

dp 
ds 

. . dp 
ds 

d2p 
 ds2 

.. .. . e.g., in Cartesian 
space 
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Trajectory classification 
  space of definition 

  Cartesian, joint 

  task type 
  point-to-point (PTP), multiple points (knots), continuous, 

concatenated 

  path geometry 
  rectilinear, polynomial, exponential, cycloid, … 

  timing law 
  bang-bang in acceleration, trapezoidal in velocity, polynomial, … 

  coordinated or independent 
  motion of all joints (or of all Cartesian components) start and 

ends at the same instants (say, t=0 and t=T) = single timing law 
or  
  motions are timed independently (according to the requested 

displacement and robot capabilities) – mostly only in joint space 
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Relevant characteristics 

  computational efficiency and memory space 
  e.g., store only the coefficients of a polynomial function 

  predictability (vs. “wandering” out of the knots) and 
accuracy (vs. “overshoot” on final position) 

  flexibility (allowing concatenation, over-fly, …) 
  continuity (in space and in time) 
   (at least C1, but also up to jerk =      )  da 

dt 
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Trajectory planning in joint space 

  q = q(t) or q = q(λ), λ = λ(t)  

  it is sufficient to work component-wise (qi in vector q) 

  an implicit definition of the trajectory, by solving a problem with 
specified boundary conditions in a given class of functions 

  typical classes: polynomials (cubic, quintic,…), (co)sinusoids, 
clothoids, … 

  imposed conditions 
  passage through points = interpolation 

  initial, final, intermediate velocity (or geometric tangent for paths) 

  initial, final acceleration (or geometric curvature) 

  continuity up to the k-th order time (or space) derivative: class Ck 

many of the following methods and remarks can be 
directly applied also to Cartesian trajectory planning (and vice versa)! 
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Cubic polynomial 

q(0) = qin   q(T) = qfin q(0) = vin   q(T) = vfin 
. . 

q(τ) = qin + Δq [a τ3 + b τ2 + c τ + d]  
Δq = qfin - qin   

τ = t/T, τ ∈[0, 1]  
“doubly normalized” polynomial qN(τ) 

qN(0) = 0  ⇔   d = 0 qN(1) = 1 ⇔  a + b + c = 1 

4 conditions 

4 coefficients 

qN’(0) = dqN/dτ|τ=0 = c = vinT/Δq  

special case: vin = vfin = 0 (rest-to-rest) 

qN’(0) = 0   ⇔   c = 0  

qN(1) = 1   ⇔   a + b = 1  

qN’(1) = 0   ⇔   3a + 2b = 0  
⇔ a = - 2 

b = 3 

qN’(1) = dqN/dτ|τ=1 = 3a + 2b + c 
        = vfinT/Δq  
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Quintic polynomial 

q(0) = q0   q(1) = q1 q’(0) = v0T  q’(1) = v1T 

q(τ) = a τ5 + b τ4 + c τ3 + d τ2 + e τ + f  

Δq = q1 - q0 

6 coefficients 

special case: v0 = v1 = a0 = a1 = 0 

allows to satisfy 6 conditions, for example (in normalized time τ) 

τ = t/T, τ ∈ [0, 1] 

q’’(0) = a0T2  q’’(1) = a1T2 

q(τ) = (1 - τ)3[q0 + (3q0+v0T) τ + (a0T2+6v0T+12q0) τ2/2]  

          + τ3 [q1 + (3q1 -v1T)(1- τ) + (a1T2 -6v1T+12q1) (1 - τ)2/2]  

q(τ) = q0 + Δq [6 τ5 - 15 τ4 + 10 τ3]  
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4-3-4 polynomials 

three phases (Lift off, Travel, Set down) in pick-and-place operations 

qL(t) = 4th order polynomial 
qT(t) = 3rd order polynomial 
qS(t) = 4th order polynomial 

14 coefficients . . 
. . 

t0 t1 t2 tf 

q0 

q1 

q2 

qf 

initial depart approach final 

q(t0) = q0   q(t1-) = q(t1+) = q1     q(t2-) = q(t2+) = q2   q(tf) = qf  

q(t0) = q(tf) = 0       q(t0) = q(tf) = 0  

q(ti-) = q(ti+)                 q(ti-) = q(ti+)    i = 1,2 

boundary conditions 

. . .. .. 

. . .. .. 

6 passages 

4 initial/final 
velocity/acceleration 

4 continuity 
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Higher-order polynomials 

  a suitable solution class for satisfying symmetric boundary 
conditions (in a PTP motion) that impose zero values on 
higher-order derivatives 

  the interpolating polynomial is always of odd degree 
  the coefficients of such (doubly normalized) polynomial are always 

integers, alternate in sign, sum up to unity, and are zero for all 
terms up to the power = (degree-1)/2 

  in all other cases (e.g., for interpolating a large number N of 
points), their use is not recommended 

  N-th order polynomials have N-1 maximum and minimum points 
  oscillations arise out of the interpolation points (wandering)  
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Numerical examples 

9th 
degree 

29th 
degree 

normalized 
velocity 

14 derivatives  
are zero! 

4 derivatives  
are zero 

2.5 4.5!! 

no 
overshoot 

nor 
wandering 

velocity 
peaking 

at midpoint 
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Interpolation using splines 

  problem 
interpolate N knots, with continuity up to the second derivative 

  solution 
spline: N-1 cubic polynomials, concatenated so as to pass through N 
knots and being continuous in velocity and acceleration in the N-2 
internal knots 

  4(N-1) coefficients 
  4(N-1)-2 conditions, or 

  2(N-1) of passage (for each cubic, in the two knots at its ends) 
  N-2 of continuity for velocity (at the internal knots) 
  N-2 of continuity for acceleration (at the internal knots) 

  2 free parameters are still left over 
  can be used, e.g., to assign initial and final velocities, v1 and vN 

  presented next in terms of time t, but similar in terms of space λ 
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Building a cubic spline 
q = θ(t) = {θK(t), t ∈ [tk, tk + hk]}  

. . . . . . q(t) 

q1 q2 

qk 

qk+1 

qN-1 

qN 

vN 

v1 

t1 t2 tk tk+1 tN-1 tN 

time intervals hk 

θK(τ) = ak0 + ak1 τ + ak2 τ2 + ak3 τ3  τ ∈[0, hk], τ = t - tk 

continuity conditions  
for velocity and acceleration 

θK(hk) = θK+1(0) 

θK(hk) = θK+1(0) 

. . 

.. .. k = 1, …, N-2 

(k = 1, …, N-1) 
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An efficient algorithm 
1.  if all velocities vk at internal knots were known, then each cubic in the spline 

would be uniquely determined by 

2.  impose the continuity for accelerations (N-2 conditions) 

3.  expressing the coefficients ak2, ak3, ak+1,2  in terms of the still unknown knot 
velocities (see step 1.) yields a linear system of equations that is always (easily) 
solvable 

v2 
v3 
: 

vN-1 

A(h) b(h,q,v1,vN) = 

tri-diagonal matrix 
always invertible 

unknown known vector 

θK(0) = qK = aK0 

θK(0) = vK = aK1 

. hK
2     hK

3  

2hK
    3hK

2 

aK2 

aK3 

qK+1 - qK - vK hK 

vK+1 - vK 
= 

θK(hk) = 2 aK2 + 6 aK3 hK = θK+1(0) = 2 aK+1,2  
.. .. 

1 

to be substituted then back in  1 
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Structure of A(h) 

2(h1+h2)       h1 

hN-1        2(hN-2+hN-1)  

h3      2(h2+h3)       h2 

hN-2     2(hN-3+hN-2)     hN-3  

. . . 

diagonally dominant matrix (for hk > 0) 
[the same matrix for all joints] 
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Structure of b(h,q,v1,vN) 

[h1
2(q3 - q2) + h2

2(q2 - q1)] - h2v1 
  3 
h1h2 

[h2
2(q4 - q3) + h3

2(q3 - q2)] 
  3 
h2h3 

[hN-3
2(qN-1 - qN-2) + hN-2

2(qN-2 - qN-3)] 
      3 
hN-3hN-2 

[hN-2
2(qN - qN-1) + hN-1

2(qN-1 - qN-2)] -  hN-2vN 
       3 
hN-2hN-1 

…
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Properties of splines 

  the spline is the solution with minimum curvature among all 
interpolating functions having continuous second derivative 

  a spline is uniquely determined from the set of data q1,…,qN,  
 h1,…,hN-1, v1, vN 

  the total transfer time is T = Σhk = tN - t1 

  the time intervals hk can be chosen so as to minimize T (linear 
objective function) under (nonlinear) bounds on velocity and 
acceleration in [0,T]  

  for cyclic tasks (q1=qN), it is preferable to simply impose continuity of 
velocity and acceleration at t1=tN as the “squaring” conditions 
  in fact, even choosing v1=vN doesn’t guarantee acceleration continuity 
  in this way, the first=last knot will be handled as all other internal knots 

  when initial and final accelerations are also assigned, the spline 
construction can be suitably modified 
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A modification 
handling assigned initial and final accelerations 

  two more parameters are needed in order to impose also the 
initial acceleration α1 and final acceleration αN 

  two “fictitious knots” are inserted in the first and last original 
intervals, increasing the number of cubic polynomials from N-1 
to N+1 

  in these two knots only continuity conditions on position, 
velocity and acceleration are imposed  
 ⇒  two free parameters are left over (one in the first cubic and 
the other in the last cubic), which are used to satisfy the 
boundary conditions on acceleration 

  depending on the (time) placement of the two additional knots, 
the resulting spline changes 
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A numerical example 
  N = 4 knots (3 cubic polynomials) 

  joint values q1 = 0, q2 = 2π, q3 = π/2, q4 = π  
  at t1 = 0, t2 = 2, t3 = 3, t4 = 5 (thus, h1 = 2, h2 = 1, h3 = 2) 
  boundary velocities v1 = v4 = 0 

  2 added knots to impose accelerations at both ends (5 cubic polynomials) 
  boundary accelerations α1 = α4 = 0 
  two placements: at t1’ = 0.5 and t4’ = 4.5 (×), or t1” = 1.5 and t4” = 3.5 (∗) 

= placement’  = placement”  
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