

Robotics 1

Direct kinematics

Prof. Alessandro De Luca

Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti

study of ...

geometric and timing aspects of robot motion, without reference to the causes producing it

robot seen as ...

an (open) kinematic chain of rigid bodies interconnected by (revolute or prismatic) joints

Motivations

- functional aspects
 - definition of robot workspace
 - calibration
- operational aspects

task execution
(actuation by motors)task definition and
performance

two different "spaces" related by kinematic (and dynamic) maps

- trajectory planning
- programming
- motion control

Kinematics

formulation and parameterizations

- choice of parameterization q
 - unambiguous and minimal characterization of robot configuration
 - n = # degrees of freedom (dof) = # robot joints (rotational or translational)
- choice of parameterization r
 - compact description of position and/or orientation (pose) variables of interest to the required task
 - usually, $m \le n$ and $m \le 6$ (but none of these is strictly necessary)

Open kinematic chains

- m = 2
 - pointing in space
 - positioning in the plane
- m = 3
 - orientation in space
 - positioning and orientation in the plane

 the structure of the direct kinematics function depends from the chosen r

 $r = f_r(q)$

- methods for computing f_r(q)
 - geometric/by inspection
 - systematic: assigning frames attached to the robot links and using homogeneous transformation matrices

Numbering links and joints

Spatial relation between joint axes

— projected on a plane π orthogonal to the link axis

Denavit-Hartenberg (DH) frames

- unit vector z_i along axis of joint i+1
- unit vector x_i along the common normal to joint i and i+1 axes (i \rightarrow i+1)
- $a_i = \text{distance } DO_i \text{positive if oriented as } x_i \text{ (constant = "length" of link i)}$
- d_i = distance $O_{i-1}D$ positive if oriented as z_{i-1} (variable if joint i is PRISMATIC)
- α_i = twist angle between z_{i-1} and z_i around x_i (constant)
- θ_i = angle between x_{i-1} and x_i around z_{i-i} (variable if joint i is REVOLUTE)

Denavit-Hartenberg layout made simple (a popular 3-minute illustration...)

https://www.youtube.com/watch?v=rA9tm0gTln8

• **note**: the authors of this video use *r* in place of *a*, and do not add subscripts! *Robotics 1*

- *frame*₀: origin and x₀ axis are arbitrary
- *frame_n*: z_n axis is not specified (but x_n must be orthogonal to and intersect z_{n-1})
- when z_{i-1} and z_i are *parallel*: the common normal is not uniquely defined (O_i can be chosen arbitrarily along z_i)
- when z_{i-1} and z_i are *incident*: the positive direction of x_i can be chosen at will (however, we often take x_i = z_{i-1} × z_i)

Homogeneous transformation between successive DH frames (from frame_{i-1} to frame_i)

roto-translation around and along z_{i-1}

roto-translation around and along x_i

$$i'A_{i} = \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & c\alpha_{i} - s\alpha_{i} & 0 \\ 0 & s\alpha_{i} & c\alpha_{i} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 always a constant matrix

Denavit-Hartenberg matrix

J. Denavit and R.S. Hartenberg, "A kinematic notation for lower-pair mechanisms based on matrices," *Trans. ASME J. Applied Mechanics*, **23**: 215–221, 1955

$${}^{i-1}A_i(q_i) = {}^{i-1}A_{i'}(q_i){}^{i'}A_i = \begin{bmatrix} c\theta_i & -c\alpha_i s\theta_i & s\alpha_i s\theta_i & a_i c\theta_i \\ s\theta_i & c\alpha_i c\theta_i & -s\alpha_i c\theta_i & a_i s\theta_i \\ 0 & s\alpha_i & c\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

compact notation: c = cos, s = sin

super-compact notation: $c_i = \cos q_i$, $s_i = \sin q_i$

q₃

q₄

Example: SCARA robot

Sankyo SCARA SR 8447

Sankyo SCARA 8438

Step 1: joint axes

J1 shoulder

Step 2: link axes

the vertical "heights" of the link axes are arbitrary (for the time being)

Step 3: frames

axes **y**_i for i > 0 are not shown (nor needed; they form right-handed frames)

Step 4: DH table of parameters

i	α_i	a _i	d _i	θ_{i}
1	0	a_1	d_1	q ₁
2	0	a ₂	0	q ₂
3	0	0	q ₃	0
4	π	0	d ₄	q ₄

note that: • d_1 and d_4 could be set = 0 •here, it is $d_4 < 0$

Step 5: transformation matrices

$${}^{0}A_{1}(q_{1}) = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & a_{1}c\theta_{1} \\ s\theta_{1} & c\theta_{1} & 0 & a_{1}s\theta_{1} \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}A_{2}(q_{2}) = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & a_{2}c\theta_{2} \\ s\theta_{2} & c\theta_{2} & 0 & a_{2}s\theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{2}A_{3}(q_{3}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$q = (q_{1}, q_{2}, q_{3}, q_{4}) \qquad {}^{3}A_{4}(q_{4}) = \begin{bmatrix} c\theta_{4} & s\theta_{4} & 0 & 0 \\ s\theta_{4} & -c\theta_{4} & 0 & 0 \\ 0 & 0 & -1 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Step 6a: direct kinematics

as homogeneous matrix ${}^{B}T_{E}$ (products of ${}^{i}A_{i+1}$)

$${}^{0}A_{3}(q_{1},q_{2},q_{3}) = \begin{bmatrix} c_{12} - s_{12} & 0 & a_{1}c_{1} + a_{2}c_{12} \\ s_{12} & c_{12} & 0 & a_{1}s_{1} + a_{2}s_{12} \\ 0 & 0 & 1 & d_{1} + q_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$${}^{3}A_{4}(q_{4}) = \begin{bmatrix} c_{4} & s_{4} & 0 & 0 \\ s_{4} & -c_{4} & 0 & 0 \\ 0 & 0 & -1 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix} p = p(q_{1},q_{2},q_{3})$$
$$R(q_{1},q_{2},q_{4})=[n \ s \ a \]$$
$$BT_{E} = {}^{0}A_{4}(q_{1},q_{2},q_{3},q_{4}) = \begin{bmatrix} c_{124} & s_{124} & 0 \\ s_{124} & -c_{124} & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_{1}c_{1} + a_{2}c_{12} \\ a_{1}s_{1} + a_{2}s_{12} \\ a_{1}s_{1} + a_{2}s_{12} \\ d_{1} + q_{3} + d_{4} \end{bmatrix}$$

Step 6b: direct kinematics

as task vector $r \in \mathbb{R}^m$

Stanford manipulator

6-dof: 2R-1P-3R (spherical wrist)

shoulder offset

"one possible" DH assignment of $z_{4}(\bar{a})$ frames is shown determine the associated

- DH parameters table
- homogeneous transformation matrices
- direct kinematics

write a program for computing the direct kinematics

- numerically (Matlab)
- symbolically (Mathematica, Maple, Symbolic Manipulation Toolbox of Matlab, ...)

DH table for Stanford manipulator

• 6-dof: 2R-1P-3R (spherical wrist)

i	α _i	a _i	d _i	$ heta_{i}$
1	-π/2	0	d ₁ >0	q ₁ =0
2	π/2	0	d ₂ >0	q ₂ =0
3	0	0	q ₃ >0	-π/2
4	-π/2	0	0	q ₄ =0
5	π/2	0	0	q ₅ =-π/2
6	0	0	d ₆ >0	q ₆ =0

joint variables are in red, with their current value in the shown configuration

Robotics 1

KUKA KR5 Sixx R650

• 6R (offsets at shoulder and elbow, spherical wrist)

- homogeneous transformation matrices
- direct kinematics

Robotics 1

DIAG Robotics Lab

KUKA LWR 4+

7R (no offsets, spherical shoulder and spherical wrist)

available at **DIAG Robotics Lab**

- determine
 - frames and table of DH parameters
 - homogeneous transformation matrices
 - direct kinematics
 - d_1 and d_7 can be set = 0 or not(as needed)

Robotics 1

Appendix: Modified DH convention

- a modified version used in J. Craig's book "Introduction to Robotics", 1986
 - has z_i axis on joint i
 - $a_i \& \alpha_i = distance \& twist angle from <math>z_i$ to z_{i+1} , measured along & about x_i
 - $d_i \& \theta_i$ = distance & angle from x_{i-1} to x_i , measured along & about z_i
 - source of much confusion... if you are not aware of it (or don't mention it!)
 - convenient with link flexibility: a rigid frame at the base, another at the tip...

$$\begin{aligned} \text{Classical}_{i-1} & \begin{pmatrix} c\theta_i & -c\alpha_i s\theta_i & s\alpha_i s\theta_i & a_i c\theta_i \\ s\theta_i & c\alpha_i c\theta_i & -s\alpha_i c\theta_i & a_i s\theta_i \\ 0 & s\alpha_i & c\alpha_i & d_i \\ 0 & 0 & 0 & 1 \\ \end{pmatrix} \\ \hline \text{modified}_{i-1} & A_i^{\text{mod}} = \begin{pmatrix} c\theta_i & -s\theta_i & 0 & a_{i-1} \\ c\alpha_{i-1} s\theta_i & c\alpha_{i-1} c\theta_i & -s\alpha_{i-1} & -d_i s\alpha_{i-1} \\ s\alpha_{i-1} s\theta_i & s\alpha_{i-1} c\theta_i & c\alpha_{i-1} & d_i c\alpha_{i-1} \\ 0 & 0 & 0 & 1 \\ \end{pmatrix} \\ \hline \text{modified} & \text{modified}_{i-1} & A_i^{\text{mod}} = \begin{pmatrix} c\theta_i & -s\theta_i & 0 & a_{i-1} \\ c\alpha_{i-1} s\theta_i & c\alpha_{i-1} c\theta_i & -s\alpha_{i-1} & -d_i s\alpha_{i-1} \\ 0 & 0 & 0 & 1 \\ \end{pmatrix} \\ \hline \text{modified} & \text{modified}_{i-1} & \text{mod$$