Robotics 1

Direct kinematics

Prof. Alessandro De Luca

Dipartimento di Ingegneria Informatica
Automatica e Gestionale Antonio Ruberti

SAPIENZA
Università di Roma

Kinematics of robot manipulators

- study of ...
geometric and timing aspects of robot motion, without reference to the causes producing it
- robot seen as ...
an (open) kinematic chain of rigid bodies interconnected by (revolute or prismatic) joints

Motivations

- functional aspects
- definition of robot workspace
- calibration
- operational aspects

task definition and performance

two different "spaces" related by kinematic (and dynamic) maps

- trajectory planning
- programming
- motion control

Kinematics

formulation and parameterizations

- choice of parameterization q
- unambiguous and minimal characterization of robot configuration
- $\mathrm{n}=$ = degrees of freedom (dof) $=$ \# robot joints (rotational or translational)
- choice of parameterization r
- compact description of position and/or orientation (pose) variables of interest to the required task
- usually, $\mathrm{m} \leq \mathrm{n}$ and $\mathrm{m} \leq 6$ (but none of these is strictly necessary)

Open kinematic chains

- $m=2$
- pointing in space
- positioning in the plane
- $\mathrm{m}=3$
- orientation in space
- positioning and orientation in the plane

Classification by kinematic type (first 3 dofs)

Cartesian
gantry
polar or spherical
(RRP)
$\mathrm{R}=1$-dof rotational (revolute) joint
$P=1$-dof translational (prismatic) joint

Direct kinematic map

- the structure of the direct kinematics function depends from the chosen r

$$
r=f_{r}(q)
$$

- methods for computing $f_{r}(q)$
- geometric/by inspection
- systematic: assigning frames attached to the robot links and using homogeneous transformation matrices

Example: direct kinematics of 2R arm

for more general cases, we need a "method"!

Numbering links and joints

Spatial relation between joint axes

$\mathrm{a}_{\mathrm{i}}=$ displacement $\mathbf{A B}$ between joint axes (always well defined)
$\alpha_{i}=$ twist angle between joint axes

- projected on a plane π orthogonal to the link axis
with sign
(pos/neg)!

Spatial relation between link axes

$\mathrm{d}_{\mathrm{i}}=$ displacement $\mathbf{C D}$ (a variable if joint i is prismatic)
$\theta_{i}=$ angle between link axes (a variable if joint i is revolute) - projected on a plane o orthogonal to the joint axis

Denavit-Hartenberg (DH) frames

Denavit-Hartenberg parameters

- unit vector z_{i} along axis of joint $\mathrm{i}+1$
- unit vector x_{i} along the common normal to joint i and $i+1$ axes ($i \rightarrow i+1$)
- $a_{i}=$ distance DO_{i} - positive if oriented as x_{i} (constant = "length" of link i)
- $d_{i}=$ distance $O_{i-1} D$ - positive if oriented as z_{i-1} (variable if joint i is PRISMATIC)
- $\alpha_{i}=$ twist angle between z_{i-1} and z_{i} around x_{i} (constant)
- $\theta_{i}=$ angle between x_{i-1} and x_{i} around z_{i-i} (variable if joint i is REVOLUTE)

Denavit-Hartenberg layout made simple

 (a popular 3-minute illustration...)
https://www.youtube.com/watch?v=rA9tm0gTIn8

- note: the authors of this video use r in place of a, and do not add subscripts!

Ambiguities in defining DH frames

- frame 0 : origin and x_{0} axis are arbitrary
- frame: z_{n} axis is not specified (but x_{n} must be orthogonal to and intersect z_{n-1})
- when $\mathrm{z}_{\mathrm{i}-1}$ and z_{i} are parallel: the common normal is not uniquely defined (O_{i} can be chosen arbitrarily along z_{i})
- when $\mathrm{z}_{\mathrm{i}-1}$ and z_{i} are incident: the positive direction of x_{i} can be chosen at will (however, we often take $\mathrm{x}_{\mathrm{i}}=\mathrm{z}_{\mathrm{i}-1} \times \mathrm{z}_{\mathrm{i}}$)

Homogeneous transformation

roto-translation around and along $\mathrm{z}_{\mathrm{i}-1}$

$$
{ }^{i-1} A_{i^{\prime}}\left(q_{i}\right)=\left[\begin{array}{ccc:c}
c \theta_{i}-s \theta_{i} & 0 & 0 \\
s \theta_{i} & c \theta_{i} & 0 & 0 \\
0 & 0 & 1 & 0 \\
\hdashline 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc:c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
\hdashline 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc:c}
c \theta_{i} & -s \theta_{i} & 0 & 0 \\
s \theta_{i} & c \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
\hdashline 0 & 0 & 0 & 1
\end{array}\right]
$$

rotational joint $\Rightarrow q_{i}=\theta_{i} \quad$ prismatic join

- roto-translation around and along x_{i}

$$
\mathrm{i}^{\prime} \mathrm{A}_{\mathrm{i}}=\left[\begin{array}{ccc:c}
1 & 0 & 0 & a_{i} \\
0 & \mathrm{c} \alpha_{i} & -\mathrm{s} \alpha_{\mathrm{i}} & 0 \\
0 & \mathrm{~s} \alpha_{i} & c \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \longleftarrow \begin{gathered}
\text { always a } \\
\text { constant matrix }
\end{gathered}
$$

Denavit-Hartenberg matrix

J. Denavit and R.S. Hartenberg, "A kinematic notation for lower-pair mechanisms based on matrices," Trans. ASME J. Applied Mechanics, 23: 215-221, 1955

compact notation: $\mathrm{c}=\cos , \mathrm{s}=\sin$

$$
\text { super-compact notation: } c_{i}=\cos q_{i}, s_{i}=\sin q_{i}
$$

Direct kinematics of manipulators

Example: SCARA robot

Sankyo SCARA 8438

Sankyo SCARA SR 8447

Step 1: joint axes

Step 2: link axes

Step 3: frames

axes $\mathbf{y}_{\mathbf{i}}$ for $\mathbf{i}>0$ are not shown (nor needed; they form right-handed frames)

Step 4: DH table of parameters

i	α_{i}	a_{i}	d_{i}	θ_{i}
1	0	a_{1}	$\mathrm{~d}_{1}$	q_{1}
2	0	a_{2}	0	q_{2}
3	0	0	q_{3}	0
4	π	0	$\mathrm{~d}_{4}$	q_{4}

note that:
$\cdot \mathrm{d}_{1}$ and d_{4} could be set $=0$ -here, it is $\mathrm{d}_{4}<0$

Step 5: transformation matrices

$$
\begin{aligned}
&{ }^{0} A_{1}\left(q_{1}\right)=\left[\begin{array}{cccc}
c \theta_{1} & -s \theta_{1} & 0 & a_{1} c \theta_{1} \\
s \theta_{1} & c \theta_{1} & 0 & a_{1} s \theta_{1} \\
0 & 0 & 1 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right] \\
&{ }^{1} A_{2}\left(q_{2}\right)=\left[\begin{array}{llll}
c \theta_{2} & -s \theta_{2} & 0 & a_{2} c \theta_{2} \\
s \theta_{2} & c \theta_{2} & 0 & a_{2} s \theta_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]{ }^{2} A_{3}\left(q_{3}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& q=\left(q_{1}, q_{2}, q_{3}, q_{4}\right) \\
&=\left(\theta_{1,} \theta_{2}, d_{3}, \theta_{4}\right) \\
& \text { Robotics 1 }
\end{aligned}
$$

Step 6a: direct kinematics

as homogeneous matrix ${ }^{B} T_{E}$ (products of ${ }^{i} A_{i+1}$)

Step 6b: direct kinematics

Stanford manipulator

- 6-dof: 2R-1P-3R (spherical wrist)

shoulder offset
"one possible" DH assignment of frames is shown
determine the associated
- DH parameters table
- homogeneous transformation matrices
- direct kinematics
write a program for computing the direct kinematics
- numerically (Matlab)
- symbolically (Mathematica, Maple, Symbolic Manipulation Toolbox of Matlab, ...)

DH table for Stanford manipulator

- 6-dof: 2R-1P-3R (spherical wrist)

KUKA KR5 Sixx R650

- 6R (offsets at shoulder and elbow, spherical wrist)

- determine

- frames and table of DH parameters
- homogeneous transformation matrices
- direct kinematics
available at
DIAG Robotics Lab

KUKA LWR 4+

- 7R (no offsets, spherical shoulder and spherical wrist)

available at DIAG Robotics Lab

- determine
- frames and table of DH parameters
- homogeneous transformation matrices
- direct kinematics
- d_{1} and d_{7} can be set $=0$ or not (as needed)

Appendix:
 Modified DH convention

- a modified version used in J. Craig's book "Introduction to Robotics", 1986
- has z_{i} axis on joint i
- $\mathrm{a}_{\mathrm{i}} \& \alpha_{\mathrm{i}}=$ distance \& twist angle from z_{i} to $\mathrm{z}_{\mathrm{i}+1}$, measured along \& about x_{i}
- $d_{i} \& \theta_{i}=$ distance $\&$ angle from x_{i-1} to x_{i}, measured along \& about z_{i}
- source of much confusion... if you are not aware of it (or don't mention it!)
- convenient with link flexibility: a rigid frame at the base, another at the tip...

$$
\begin{aligned}
& \text { classical }\left(\begin{array}{cccc}
c \theta_{i} & -c \alpha_{i} s \theta_{i} & s \alpha_{i} s \theta_{i} & a_{i} c \theta_{i} \\
s \theta_{i} & c \alpha_{i} c \theta_{i} & -s \alpha_{i} c \theta_{i} & a_{i} s \theta_{i} \\
0 & s \alpha_{i} & c \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right) \\
& { }_{i-1}^{\bmod } A_{i}^{\bmod }=\left(\begin{array}{ccc}
c \theta_{i} & -s \theta_{i} & 0 \\
c \alpha_{i-1} s \theta_{i} & c \alpha_{i-1} c \theta_{i} & -s \alpha_{i-1} \\
s \alpha_{i-1} s \theta_{i} & s \alpha_{i-1} c \theta_{i} & c \alpha_{i-1} s \alpha_{i-1} \\
0 & 0 & d_{i} c \alpha_{i-1}
\end{array}\right)
\end{aligned}
$$

modified DH tends to place frames at the base of each link

