
Robotics I
Test — November 10, 2009

Exercise 1

Consider a minimal representation of orientation specified by the following sequence of angles,
defined around fixed axes: α around Y ; β around X; γ around Z.

• Compute the associated rotation matrix RY XZ(α, β, γ).

• Determine all sets of angles (α, β, γ) realizing the orientation specified by the matrix

R =

 0.7392 −0.6124 −0.2803
0.5732 0.3536 0.7392
−0.3536 −0.7071 0.6124

 .

• Characterize all rotation matrices R for which the inverse problem yields undefined angles
in the sequence.

Exercise 2

Consider the kinematic structure in Figure 1, representing a camera mounted on the head of a
humanoid trunk with three revolute joints.

Figure 1: Kinematics of a camera head (units are in cm)

• Assign the frames according to the Denavit-Hartenberg convention in such a way that the
positive (counterclockwise) joint rotations are those shown. Compute the associated table of
parameters.

• Compute the expression of the rotation matrix wRe(θ1, θ2, θ3) relating the orientation of the
given end-effector (camera) frame RFe with respect to the world frame RFw, placed as shown
in Figure 1.

• Provide a rotation matrix wRe that can be realized by infinite pairs of values (θ1, θ3) and a
single value of θ2.

[120 minutes; open books]
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Solutions
November 10, 2009

Exercise 1

By using the elementary rotation matrices around the coordinate axes

RY (α) =

 cosα 0 sinα
0 1 0

− sinα 0 cosα

 ,

RX(β) =

 1 0 0
0 cosβ − sinβ
0 sinβ cosβ

 ,

RZ(γ) =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 ,

and being the sequence of rotations defined around fixes axes, we obtain

RY XZ(α, β, γ) = RZ(γ)RX(β)RY (α),

or

RY XZ(α, β, γ) =

 cosα cos γ − sinα sinβ sin γ − cosβ sin γ sinα cos γ + cosα sinβ sin γ
cosα sin γ + sinα sinβ cos γ cosβ cos γ sinα sin γ − cosα sinβ cos γ

− sinα cosβ sinβ cosα cosβ

 .

The inverse mapping from a given rotation matrix

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33


to the sequence of angles (α, β, γ) is given by

β = ATAN2
{
r32,±

√
r231 + r233

}
and, provided that r231 + r233 6= 0 (i.e., cosβ 6= 0),

α = ATAN2
{
−r31
cosβ

,
r33

cosβ

}
, γ = ATAN2

{
−r12
cosβ

,
r22

cosβ

}
.

For the given data, we obtain the pair of solutions:

(α, β, γ) = (0.5236,−0.7854, 1.0472) [rad] = (30,−45, 60) [deg]

and
(α, β, γ) = (−2.6180,−2.3562,−2.0944) [rad] = (−150,−135,−120) [deg].
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When r31 = r33 = 0, β is uniquely defined whereas the other data provide only information
either on the sum α+ γ or on the difference α− γ. In fact, for an orientation matrix of the form

R =

 r11 0 r13
r21 0 r23
0 1 0

 ,

i.e., with r32 = 1, we have β = π/2 (cosβ = 0, sinβ = 1) and thus

RY XZ(α, π/2, γ) =

 cosα cos γ − sinα sin γ 0 sinα cos γ + cosα sin γ
cosα sin γ + sinα cos γ 0 sinα sin γ − cosα cos γ

0 1 0


=

 cos(α+ γ) 0 sin(α+ γ)
sin(α+ γ) 0 − cos(α+ γ)

0 1 0

 .

Therefore,
α+ γ = ATAN2 {r21, r11} = ATAN2 {r13,−r23} .

On the other hand, for an orientation matrix of the form

R =

 r11 0 r13
r21 0 r23
0 −1 0

 ,

i.e., with r32 = −1, we have β = −π/2 (cosβ = 0, sinβ = −1) and thus

RY XZ(α,−π/2, γ) =

 cosα cos γ + sinα sin γ 0 sinα cos γ − cosα sin γ
cosα sin γ − sinα cos γ 0 sinα sin γ + cosα cos γ

0 −1 0


=

 cos(α− γ) 0 sin(α− γ)
− sin(α− γ) 0 cos(α− γ)

0 −1 0

 .

Therefore,
α− γ = ATAN2 {−r21, r11} = ATAN2 {r13, r23} .

In both cases, the angles α and γ are not fully defined.

Exercise 2

Consider the assignment of Denavit-Hartenberg frames as in Figure 2, where the positive direction
of the axes zi (i = 0, 1, 2) has been chosen consistently with the requirement in the text. The
shown configuration has θ1 = 0, θ2 = 0, and θ3 equal to some positive angle between π/2 and
3π/4.

The Denavit-Hartenberg parameters are given in Table 1, with d2 = 25 cm. The associated
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Figure 2: Denavit-Hartenberg frames
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Table 1: Denavit-Hartenberg parameters

homogeneous transformation matrices are

0A1(θ1) =


cos θ1 0 − sin θ1 0
sin θ1 0 cos θ1 0

0 −1 0 0
0 0 0 1

 =

 0R1(θ1) 0

0T 1

 ,

1A2(θ2) =


cos θ2 0 sin θ2 0
sin θ2 0 − cos θ2 0

0 1 0 d2

0 0 0 1

 =

 1R2(θ2) 1p12

0T 1

 ,

2A3(θ3) =


cos θ3 0 sin θ3 0
sin θ3 0 − cos θ3 0

0 1 0 0
0 0 0 1

 =

 2R3(θ3) 0

0T 1

 .
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In addition, we can define the following (constant) homogenous transformation matrices

wT 0 =


0 0 1 0
1 0 0 0
0 1 0 d0

0 0 0 1

 =

 wR0
wpw0

0T 1

 ,

3T e =


1 0 0 0
0 1 0 0
0 0 1 de

0 0 0 1

 =

 3Re
3p3e

0T 1

 ,

with d0 = 20 cm and de = 10 cm. Note that 3Re = I.

The orientation of frame RFe w.r.t. the world frame RFw is thus

wRe(θ) = wR0
0R1(θ1) 1R2(θ2) 2R3(θ3) 3Re

=

 0 0 1
1 0 0
0 1 0

 ·
 cos θ1 cos θ2 cos θ3 − sin θ1 sin θ3 cos θ1 sin θ2 cos θ1 cos θ2 sin θ3 + sin θ1 cos θ3

sin θ1 cos θ2 cos θ3 + cos θ1 sin θ3 sin θ1 sin θ2 sin θ1 cos θ2 sin θ3 − cos θ1 cos θ3
− sin θ2 cos θ3 cos θ2 − sin θ2 sin θ3

 .

One can now proceed by solving the inverse kinematics of this three-dof robotic structure for a
given orientation matrix wRe. In particular, we can solve for θ the following kinematic equation

0R1(θ1) 1R2(θ2) 2R3(θ3) = wRT
0

wRe = 0Re =

 0r11
0r12

0r13
0r21

0r22
0r23

0r31 r32
0r33

 ,

where the right-hand side matrix is a constant. By similar reasoning as in Exercise 1, one can
see that the inverse problem has an infinity set of values for θ1 and θ3 (with a prescribed sum or
difference) if and only if

0r31 = 0r33 = 0 (0r32 = ±1).

All possible rotation matrices wRe leading to this situation are then of the form

wRe =

 0 0 1
1 0 0
0 1 0

 0r11 0 0r13
0r21 0 0r23

0 ±1 0

 =

 0 ±1 0
0r11 0 0r13
0r21 0 0r23

 .

For example, one candidate is

wRe =

 0 1 0
−1 0 0
0 0 1

 .

∗ ∗ ∗ ∗ ∗
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