## Robotics I

## Test 2 - December 17, 2009

Consider the robot in Figure 1, having four revolute joints. The Denavit-Hartenberg frames are already placed, with frame 0 located at the intersection of the first and second joint axis. The configuration shown corresponds (approximately) to $\boldsymbol{\theta} \simeq\left(\begin{array}{ccc}0 & 6 \pi / 10 & \pi\end{array} 6 \pi / 10\right)^{T}$ [rad] (or, equivalently, $\left.\boldsymbol{\theta} \simeq\left(\begin{array}{llll}0 & 108 & 180 & 108\end{array}\right)^{T}[\mathrm{deg}]\right)$.


Figure 1: A 4R spatial manipulator
Let the robot be in the configuration $\boldsymbol{\theta}^{*}=\left(\begin{array}{cccc}0 & 3 \pi / 4 & \pi & \pi\end{array}\right)^{T}[\mathrm{rad}]$, and set $L=1[\mathrm{~m}]$ in the following if you plan to work in a numerical way.

1. Obtain the $6 \times 4$ geometric Jacobian $\boldsymbol{J}\left(\boldsymbol{\theta}^{*}\right)$.
2. Show that the following Cartesian linear/angular velocity vector is feasible:

$$
\left(\begin{array}{ll}
\boldsymbol{v}_{d}^{T} & \boldsymbol{\omega}_{d}^{T}
\end{array}\right)=\left(\begin{array}{llllll}
0 & 0 & -L & 0 & -\frac{\sqrt{2}}{2} & 0
\end{array}\right) .
$$

3. Determine the minimum norm joint velocity vector $\dot{\boldsymbol{\theta}}$ realizing the above Cartesian velocity.
4. Compute the joint torque vector $\boldsymbol{\tau}$ that keeps the robot in static equilibrium when the following Cartesian force/torque vector is applied from the environment to the end-effector:

$$
\left(\begin{array}{ll}
\boldsymbol{F}^{T} & \boldsymbol{M}^{T}
\end{array}\right)=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

5. Consider only the velocity $\boldsymbol{v}$ of point $P$. Verify whether the associated $3 \times 4$ Jacobian $\boldsymbol{J}_{L}(\boldsymbol{\theta})$ is singular or not in the configuration $\boldsymbol{\theta}^{*}$.

## Solution

December 17, 2009
The 4R spatial manipulator is made by the subset of first four joints of the DLR manipulator considered in the textbook (p. 79, Fig. 2.29) ${ }^{1}$. However, the fourth (and last) reference frame is different, due to the missing axes 5, 6, and 7. The Denavit-Hartenberg parameters are given in Table 1 (the first three rows are those of Table 2.7 in the textbook, with $d_{3}=L$ ).

| $i$ | $\alpha_{i}$ | $a_{i}$ | $d_{i}$ | $\theta_{i}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\frac{\pi}{2}$ | 0 | 0 | $\theta_{1}$ |
| 2 | $\frac{\pi}{2}$ | 0 | 0 | $\theta_{2}$ |
| 3 | $\frac{\pi}{2}$ | 0 | $L$ | $\theta_{3}$ |
| 4 | 0 | $L$ | 0 | $\theta_{4}$ |

Table 1: Denavit-Hartenberg parameters
The associated homogeneous transformation matrices are:

$$
\begin{aligned}
&{ }^{0} \boldsymbol{A}_{1}\left(\theta_{1}\right)=\left(\begin{array}{cccc}
\cos \theta_{1} & 0 & \sin \theta_{1} & 0 \\
\sin \theta_{1} & 0 & -\cos \theta_{1} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cc}
{ }^{0} \boldsymbol{R}_{1}\left(\theta_{1}\right) & \mathbf{0} \\
\mathbf{0}^{T} & 1
\end{array}\right) \\
&{ }^{1} \boldsymbol{A}_{2}\left(\theta_{2}\right)=\left(\begin{array}{cccc}
\cos \theta_{2} & 0 & \sin \theta_{2} & 0 \\
\sin \theta_{2} & 0 & -\cos \theta_{2} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cc}
{ }^{1} \boldsymbol{R}_{2}\left(\theta_{2}\right) & \mathbf{0} \\
\mathbf{0}^{T} & 1
\end{array}\right) \\
&{ }^{2} \boldsymbol{A}_{3}\left(\theta_{3}\right)=\left(\begin{array}{cccc}
\cos \theta_{3} & 0 & \sin \theta_{3} & 0 \\
\sin \theta_{3} & 0 & -\cos \theta_{3} & 0 \\
0 & 1 & 0 & L \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cc}
{ }^{2} \boldsymbol{R}_{3}\left(\theta_{3}\right) & { }^{2} \boldsymbol{p}_{23} \\
\mathbf{0}^{T} & 1
\end{array}\right) \\
&{ }^{3} \boldsymbol{A}_{4}\left(\theta_{4}\right)= \\
&\left.\begin{array}{cccc}
\cos \theta_{4} & -\sin \theta_{4} & 0 & L \cos \theta_{4} \\
\sin \theta_{4} & \cos \theta_{4} & 0 & L \sin \theta_{4} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cc}
{ }^{3} \boldsymbol{R}_{4}\left(\theta_{4}\right) & { }^{3} \boldsymbol{p}_{34}\left(\theta_{4}\right) \\
\mathbf{0}^{T} & 1
\end{array}\right) .
\end{aligned}
$$

The $6 \times 4$ geometric Jacobian

$$
\boldsymbol{J}(\boldsymbol{\theta})=\binom{\boldsymbol{J}_{L}(\boldsymbol{\theta})}{\boldsymbol{J}_{A}(\boldsymbol{\theta})}
$$

can be computed symbolically or numerically for a given configuration. We present first the general symbolic derivation, and then a more direct numerical approach.

[^0]The $3 \times 4$ upper part $\boldsymbol{J}_{L}$ of the geometric Jacobian relates $\dot{\boldsymbol{\theta}}$ to the velocity $\boldsymbol{v}$ of point $P$. It can be obtained either by (analytic) differentiation of $\boldsymbol{p}_{04}$, i.e., by computing this vector as

$$
\binom{\boldsymbol{p}_{04}(\boldsymbol{\theta})}{1}={ }^{0} \boldsymbol{A}_{1}\left(\theta_{1}\right)^{1} \boldsymbol{A}_{2}\left(\theta_{2}\right)^{2} \boldsymbol{A}_{3}\left(\theta_{3}\right)^{3} \boldsymbol{A}_{4}\left(\theta_{4}\right)\binom{\mathbf{0}}{1}
$$

and obtaining then

$$
\boldsymbol{J}_{L}(\boldsymbol{\theta})=\frac{\partial \boldsymbol{p}_{04}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}
$$

or by the geometric formula

$$
\boldsymbol{J}_{L}(\boldsymbol{\theta})=\left(\begin{array}{cccc}
\boldsymbol{z}_{0} \times \boldsymbol{p}_{04} & \boldsymbol{z}_{1} \times \boldsymbol{p}_{04} & \boldsymbol{z}_{2} \times \boldsymbol{p}_{04} & \boldsymbol{z}_{3} \times\left(\boldsymbol{p}_{04}-\boldsymbol{p}_{03}\right)
\end{array}\right),
$$

where we used the fact that $\boldsymbol{p}_{00}=\boldsymbol{p}_{01}=\boldsymbol{p}_{02}=\mathbf{0}$ (the origins of frames 0,1 , and 2 coincide).
Thus, for deriving its explicit symbolic form we need

$$
\boldsymbol{p}_{04}=L\left(\begin{array}{c}
\cos \theta_{1} \sin \theta_{2}+\cos \theta_{1} \sin \theta_{2} \sin \theta_{4}+\left(\sin \theta_{1} \sin \theta_{3}+\cos \theta_{1} \cos \theta_{2} \cos \theta_{3}\right) \cos \theta_{4} \\
\sin \theta_{1} \sin \theta_{2}+\sin \theta_{1} \sin \theta_{2} \sin \theta_{4}-\left(\cos \theta_{1} \sin \theta_{3}-\sin \theta_{1} \cos \theta_{2} \cos \theta_{3}\right) \cos \theta_{4} \\
-\cos \theta_{2}-\cos \theta_{2} \sin \theta_{4}+\sin \theta_{2} \cos \theta_{3} \cos \theta_{4}
\end{array}\right)
$$

and, when following the geometric construction, also

$$
\boldsymbol{p}_{04}-\boldsymbol{p}_{03}=L\left(\begin{array}{c}
\cos \theta_{1} \sin \theta_{2} \sin \theta_{4}+\left(\sin \theta_{1} \sin \theta_{3}+\cos \theta_{1} \cos \theta_{2} \cos \theta_{3}\right) \cos \theta_{4} \\
\sin \theta_{1} \sin \theta_{2} \sin \theta_{4}-\left(\cos \theta_{1} \sin \theta_{3}-\sin \theta_{1} \cos \theta_{2} \cos \theta_{3}\right) \cos \theta_{4} \\
-\cos \theta_{2} \sin \theta_{4}+\sin \theta_{2} \cos \theta_{3} \cos \theta_{4}
\end{array}\right)
$$

as well as

$$
\begin{aligned}
& \boldsymbol{z}_{0}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& \boldsymbol{z}_{1}={ }^{0} \boldsymbol{R}_{1}\left(\theta_{1}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
\sin \theta_{1} \\
-\cos \theta_{1} \\
0
\end{array}\right) \\
& \boldsymbol{z}_{2}={ }^{0} \boldsymbol{R}_{1}\left(\theta_{1}\right){ }^{1} \boldsymbol{R}_{2}\left(\theta_{2}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
\cos \theta_{1} \sin \theta_{2} \\
\sin \theta_{1} \sin \theta_{2} \\
-\cos \theta_{2}
\end{array}\right) \\
& \boldsymbol{z}_{3}={ }^{0} \boldsymbol{R}_{1}\left(\theta_{1}\right)^{1} \boldsymbol{R}_{2}\left(\theta_{2}\right)^{2} \boldsymbol{R}_{3}\left(\theta_{3}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
-\sin \theta_{1} \cos \theta_{3}+\cos \theta_{1} \cos \theta_{2} \sin \theta_{3} \\
\cos \theta_{1} \cos \theta_{3}+\sin \theta_{1} \cos \theta_{2} \sin \theta_{3} \\
\sin \theta_{2} \sin \theta_{3}
\end{array}\right) .
\end{aligned}
$$

Performing symbolic computations ${ }^{2}$, and factoring out the length $L$, we obtain

$$
\boldsymbol{J}_{L}(\boldsymbol{\theta})=L \cdot\left(\begin{array}{cccc}
\boldsymbol{J}_{L, 1} & \boldsymbol{J}_{L, 2} & \boldsymbol{J}_{L, 3} & \boldsymbol{J}_{L, 4}
\end{array}\right),
$$

[^1]where:
\[

$$
\begin{gathered}
\boldsymbol{J}_{L, 1}=\left(\begin{array}{c}
-\sin \theta_{1} \sin \theta_{2}-\sin \theta_{1} \sin \theta_{2} \sin \theta_{4}+\left(\cos \theta_{1} \sin \theta_{3}-\sin \theta_{1} \cos \theta_{2} \cos \theta_{3}\right) \cos \theta_{4} \\
\cos \theta_{1} \sin \theta_{2}+\cos \theta_{1} \sin \theta_{2} \sin \theta_{4}+\left(\sin \theta_{1} \sin \theta_{3}+\cos \theta_{1} \cos \theta_{2} \cos \theta_{3}\right) \cos \theta_{4} \\
0
\end{array}\right) \\
\boldsymbol{J}_{L, 2}=\left(\begin{array}{c}
\cos \theta_{1}\left(\cos \theta_{2}+\cos \theta_{2} \sin \theta_{4}-\sin \theta_{2} \cos \theta_{3} \cos \theta_{4}\right) \\
\sin \theta_{1}\left(\cos \theta_{2}+\cos \theta_{2} \sin \theta_{4}-\sin \theta_{2} \cos \theta_{3} \cos \theta_{4}\right) \\
\sin \theta_{2}+\sin \theta_{2} \sin \theta_{4}+\cos \theta_{2} \cos \theta_{3} \cos \theta_{4}
\end{array}\right) \\
\boldsymbol{J}_{L, 3}=\left(\begin{array}{c}
\left(\sin \theta_{1} \cos \theta_{3}-\cos \theta_{1} \cos \theta_{2} \sin \theta_{3}\right) \cos \theta_{4} \\
-\left(\cos \theta_{1} \cos \theta_{3}+\sin \theta_{1} \cos \theta_{2} \sin \theta_{3}\right) \cos \theta_{4} \\
-\sin \theta_{2} \sin \theta_{3} \cos \theta_{4}
\end{array}\right) \\
\boldsymbol{J}_{L, 4}=\left(\begin{array}{c}
\cos \theta_{1} \sin \theta_{2} \cos \theta_{4}-\left(\sin \theta_{1} \sin \theta_{3}+\cos \theta_{1} \cos \theta_{2} \cos \theta_{3}\right) \sin \theta_{4} \\
\sin \theta_{1} \sin \theta_{2} \cos \theta_{4}+\left(\cos \theta_{1} \sin \theta_{3}-\sin \theta_{1} \cos \theta_{2} \cos \theta_{3}\right) \sin \theta_{4} \\
-\cos \theta_{2} \cos \theta_{4}-\sin \theta_{2} \cos \theta_{3} \sin \theta_{4}
\end{array}\right) .
\end{gathered}
$$
\]

The $3 \times 4$ lower part $\boldsymbol{J}_{A}$ of the geometric Jacobian, relating $\dot{\boldsymbol{\theta}}$ to the angular velocity $\boldsymbol{\omega}$ of frame 4 , is given instead by

$$
\boldsymbol{J}_{A}(\boldsymbol{\theta})=\left(\begin{array}{llll}
\boldsymbol{z}_{0} & \boldsymbol{z}_{1} & \boldsymbol{z}_{2} & \boldsymbol{z}_{3}
\end{array}\right),
$$

where the previous symbolic expressions for $\boldsymbol{z}_{i}, i=0,1,2,3$, are used.
At this stage, the elements of the Jacobian matrix $\boldsymbol{J}(\boldsymbol{\theta})$ should be evaluated at the given configuration

$$
\boldsymbol{\theta}^{*}=\left(\begin{array}{llll}
0 & 3 \pi / 4 & \pi & \pi
\end{array}\right)^{T} .
$$

In this configuration, the end-effector (the origin of frame 4) is positioned along the axis of joint 1.
Alternatively (and in a much faster way for the problem at hand!), we may first evaluate numerically the homogeneous transformations at the configuration $\boldsymbol{\theta}^{*}$, using in this case also $L=1$, and then perform all the required operations, including products of matrices and (vector) cross products, so as to obtain the numerical value of the geometric Jacobian. The Matlab code is:

```
% configuration data
th1=0;
th2=3*pi/4;
th3=pi;
th4=pi;
L=1;
% homogeneous transformations
A1 = [cos(th1) 0 sin(th1) 0;
        sin(th1) 0 - cos(th1) 0;
    0 1 0 0;
    0 0 0 1];
A2 = [cos(th2) 0 sin(th2) 0;
    sin(th2) 0 -cos(th2) 0;
```

```
    0 1 0 0;
    0 0 0 1];
A3 = [cos(th3) 0 sin(th3) 0;
    sin(th3) 0 -cos(th3) 0;
    0 1 0 L;
    0 0 0 1];
A4 = [cos(th4) -sin(th4) 0 L*\operatorname{cos}(th4);
    sin(th4) cos(th4) 0 L*sin(th4);
    0 0 1 0;
    0 0 0 1];
```

```
A12=A1*A2;
```

A12=A1*A2;
A13=A12*A3;
A13=A12*A3;
A14=A13*A4;
A14=A13*A4;
% geometric Jacobian
z0=[[0}0011]'
z1=A1(1:3,3);
z2=A12(1:3,3);
z3=A13(1:3,3);
p0=[[0}0000]'
p1=A1 (1:3,4);
p2=A12(1:3,4);
p3=A13(1:3,4);
p4=A14(1:3,4);
J(1:3,1)=cross (z0,p4-p0);
J (1:3,2)=cross (z1,p4-p1);
J (1:3,3)=cross (z2,p4-p2);
J (1:3,4)=cross (z3,p4-p3);
J (4:6,1)=z0;
J (4:6,2)=z1;
J (4:6,3)=z2;
J (4:6,4)=z3;
% end

```

Whatever approach is followed, one ends up with the following matrix (where \(L=1\), if we have
worked numerically):
\[
\boldsymbol{J}\left(\boldsymbol{\theta}^{*}\right)=\left(\begin{array}{cccc}
0 & -L \sqrt{2} & 0 & -L \frac{\sqrt{2}}{2} \\
0 & 0 & -L & 0 \\
0 & 0 & 0 & -L \frac{\sqrt{2}}{2} \\
0 & 0 & \frac{\sqrt{2}}{2} & 0 \\
0 & -1 & 0 & -1 \\
1 & 0 & \frac{\sqrt{2}}{2} & 0
\end{array}\right)
\]

It can be seen that the rank of \(\boldsymbol{J}_{L}\left(\boldsymbol{\theta}^{*}\right)\) is 3 , and thus the given configuration \(\boldsymbol{\theta}^{*}\) is not singular for this sub-Jacobian. By inspection of this matrix, the desired linear/angular velocity vector \(\left(\begin{array}{cc}\boldsymbol{v}_{d}^{T} & \boldsymbol{\omega}_{d}^{T}\end{array}\right)^{T}\) is realized by choosing
\[
\dot{\boldsymbol{\theta}}_{d}=\left(\begin{array}{llll}
0 & -\frac{\sqrt{2}}{2} & 0 & \sqrt{2}
\end{array}\right)^{T},
\]
obtaining in fact
\[
\boldsymbol{J}\left(\boldsymbol{\theta}^{*}\right) \dot{\boldsymbol{\theta}}_{d}=\left(\begin{array}{c}
0 \\
0 \\
-L \\
0 \\
-\frac{\sqrt{2}}{2} \\
0
\end{array}\right)
\]

Moreover, one can see that the joint velocity vector \(\dot{\boldsymbol{\theta}}_{d}\) is the only one providing the desired linear/angular velocity. Therefore, \(\dot{\boldsymbol{\theta}}_{d}\) is the minimum norm solution (with \(\left\|\dot{\boldsymbol{\theta}}_{d}\right\|=1.5811\) ). As a check, it can be verified that
\[
\boldsymbol{J}^{\#}\left(\boldsymbol{\theta}^{*}\right)\binom{\boldsymbol{v}_{d}}{\boldsymbol{\omega}_{d}}=\dot{\boldsymbol{\theta}}_{d},
\]
where the pseudoinverse \(\boldsymbol{J}^{\#}\left(\boldsymbol{\theta}^{*}\right)\) can be computed either by using the Matlab function pinv or by its explicit expression in case of a full (column) rank matrix \(\boldsymbol{J}\) with more rows than columns,
\[
\boldsymbol{J}^{\#}=\left(\boldsymbol{J}^{T} \boldsymbol{J}\right)^{-1} \boldsymbol{J}^{T},
\]
which applies to the present case since the rank of \(\boldsymbol{J}\left(\boldsymbol{\theta}^{*}\right)\) is 4 . Finally, the joint torque vector \(\boldsymbol{\tau}\) that balances the specified Cartesian force/torque vector \(\left(\begin{array}{ll}\boldsymbol{F}^{T} & \boldsymbol{M}^{T}\end{array}\right)^{T}\) is computed as
\[
\boldsymbol{\tau}=-\boldsymbol{J}^{T}\left(\boldsymbol{\theta}^{*}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
L \sqrt{2} \\
0 \\
L \frac{\sqrt{2}}{2}
\end{array}\right)
\]
i.e., it is given by the transpose of the first row of \(\boldsymbol{J}\left(\boldsymbol{\theta}^{*}\right)\), changed of sign (the usual convention holds also for joint torques: positive torques are counterclockwise).```


[^0]:    ${ }^{1}$ Note that in Fig. 2.29 the $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$, and $\boldsymbol{x}_{3}$ axes are drawn in a wrong way. The associated Table 2.7 of DH parameters is instead correct for the full 7 R arm.

[^1]:    ${ }^{2}$ When using the Matlab Symbolic Toolbox, take advantage of the simplify instruction to reduce the length/complexity of terms.

