
Robotics I
Test 2 — December 17, 2009

Consider the robot in Figure 1, having four revolute joints. The Denavit-Hartenberg frames are
already placed, with frame 0 located at the intersection of the first and second joint axis. The
configuration shown corresponds (approximately) to θ '

(
0 6π/10 π 6π/10

)T [rad] (or,

equivalently, θ '
(

0 108 180 108
)T [deg]).

L 

L 

P 

Figure 1: A 4R spatial manipulator

Let the robot be in the configuration θ∗ =
(

0 3π/4 π π
)T [rad], and set L = 1 [m] in the

following if you plan to work in a numerical way.

1. Obtain the 6× 4 geometric Jacobian J(θ∗).

2. Show that the following Cartesian linear/angular velocity vector is feasible:

(
vT

d ωT
d

)
=
(

0 0 −L 0 −
√

2
2

0

)
.

3. Determine the minimum norm joint velocity vector θ̇ realizing the above Cartesian velocity.

4. Compute the joint torque vector τ that keeps the robot in static equilibrium when the
following Cartesian force/torque vector is applied from the environment to the end-effector:(

F T MT
)

=
(

1 0 0 0 0 0
)
.

5. Consider only the velocity v of point P . Verify whether the associated 3× 4 Jacobian JL(θ)
is singular or not in the configuration θ∗.

[120 minutes; open books]

1



Solution
December 17, 2009

The 4R spatial manipulator is made by the subset of first four joints of the DLR manipulator
considered in the textbook (p. 79, Fig. 2.29)1. However, the fourth (and last) reference frame is
different, due to the missing axes 5, 6, and 7. The Denavit-Hartenberg parameters are given in
Table 1 (the first three rows are those of Table 2.7 in the textbook, with d3 = L).

i αi ai di θi

1
π

2
0 0 θ1

2
π

2
0 0 θ2

3
π

2
0 L θ3

4 0 L 0 θ4

Table 1: Denavit-Hartenberg parameters

The associated homogeneous transformation matrices are:

0A1(θ1) =


cos θ1 0 sin θ1 0
sin θ1 0 − cos θ1 0

0 1 0 0
0 0 0 1

 =

 0R1(θ1) 0

0T 1

 ,

1A2(θ2) =


cos θ2 0 sin θ2 0
sin θ2 0 − cos θ2 0

0 1 0 0
0 0 0 1

 =

 1R2(θ2) 0

0T 1

 ,

2A3(θ3) =


cos θ3 0 sin θ3 0
sin θ3 0 − cos θ3 0

0 1 0 L
0 0 0 1

 =

 2R3(θ3) 2p23

0T 1

 ,

3A4(θ4) =


cos θ4 − sin θ4 0 L cos θ4
sin θ4 cos θ4 0 L sin θ4

0 0 1 0
0 0 0 1

 =

 3R4(θ4) 3p34(θ4)

0T 1

 .

The 6× 4 geometric Jacobian

J(θ) =

(
JL(θ)
JA(θ)

)
can be computed symbolically or numerically for a given configuration. We present first the general
symbolic derivation, and then a more direct numerical approach.

1Note that in Fig. 2.29 the x1, x2, and x3 axes are drawn in a wrong way. The associated Table 2.7 of DH
parameters is instead correct for the full 7R arm.

2



The 3 × 4 upper part JL of the geometric Jacobian relates θ̇ to the velocity v of point P . It
can be obtained either by (analytic) differentiation of p04, i.e., by computing this vector as(

p04(θ)
1

)
= 0A1(θ1) 1A2(θ2) 2A3(θ3) 3A4(θ4)

(
0

1

)

and obtaining then

JL(θ) =
∂p04(θ)
∂θ

,

or by the geometric formula

JL(θ) =
(
z0 × p04 z1 × p04 z2 × p04 z3 × (p04 − p03)

)
,

where we used the fact that p00 = p01 = p02 = 0 (the origins of frames 0, 1, and 2 coincide).
Thus, for deriving its explicit symbolic form we need

p04 = L

 cos θ1 sin θ2 + cos θ1 sin θ2 sin θ4 + (sin θ1 sin θ3 + cos θ1 cos θ2 cos θ3) cos θ4

sin θ1 sin θ2 + sin θ1 sin θ2 sin θ4 − (cos θ1 sin θ3 − sin θ1 cos θ2 cos θ3) cos θ4

− cos θ2 − cos θ2 sin θ4 + sin θ2 cos θ3 cos θ4

 ,

and, when following the geometric construction, also

p04 − p03 = L

 cos θ1 sin θ2 sin θ4 + (sin θ1 sin θ3 + cos θ1 cos θ2 cos θ3) cos θ4

sin θ1 sin θ2 sin θ4 − (cos θ1 sin θ3 − sin θ1 cos θ2 cos θ3) cos θ4

− cos θ2 sin θ4 + sin θ2 cos θ3 cos θ4


as well as

z0 =

 0
0
1


z1 = 0R1(θ1)

 0
0
1

 =

 sin θ1
− cos θ1

0


z2 = 0R1(θ1) 1R2(θ2)

 0
0
1

 =

 cos θ1 sin θ2
sin θ1 sin θ2
− cos θ2


z3 = 0R1(θ1) 1R2(θ2) 2R3(θ3)

 0
0
1

 =

 − sin θ1 cos θ3 + cos θ1 cos θ2 sin θ3
cos θ1 cos θ3 + sin θ1 cos θ2 sin θ3

sin θ2 sin θ3

 .

Performing symbolic computations2, and factoring out the length L, we obtain

JL(θ) = L ·
(
JL,1 JL,2 JL,3 JL,4

)
,

2When using the Matlab Symbolic Toolbox, take advantage of the simplify instruction to reduce the
length/complexity of terms.

3



where:

JL,1 =

 − sin θ1 sin θ2 − sin θ1 sin θ2 sin θ4 + (cos θ1 sin θ3 − sin θ1 cos θ2 cos θ3) cos θ4

cos θ1 sin θ2 + cos θ1 sin θ2 sin θ4 + (sin θ1 sin θ3 + cos θ1 cos θ2 cos θ3) cos θ4

0



JL,2 =

 cos θ1(cos θ2 + cos θ2 sin θ4 − sin θ2 cos θ3 cos θ4)

sin θ1(cos θ2 + cos θ2 sin θ4 − sin θ2 cos θ3 cos θ4)

sin θ2 + sin θ2 sin θ4 + cos θ2 cos θ3 cos θ4



JL,3 =

 (sin θ1 cos θ3 − cos θ1 cos θ2 sin θ3) cos θ4

−(cos θ1 cos θ3 + sin θ1 cos θ2 sin θ3) cos θ4

− sin θ2 sin θ3 cos θ4



JL,4 =

 cos θ1 sin θ2 cos θ4 − (sin θ1 sin θ3 + cos θ1 cos θ2 cos θ3) sin θ4

sin θ1 sin θ2 cos θ4 + (cos θ1 sin θ3 − sin θ1 cos θ2 cos θ3) sin θ4

− cos θ2 cos θ4 − sin θ2 cos θ3 sin θ4

 .

The 3 × 4 lower part JA of the geometric Jacobian, relating θ̇ to the angular velocity ω of
frame 4, is given instead by

JA(θ) =
(
z0 z1 z2 z3

)
,

where the previous symbolic expressions for zi, i = 0, 1, 2, 3, are used.
At this stage, the elements of the Jacobian matrix J(θ) should be evaluated at the given

configuration
θ∗ =

(
0 3π/4 π π

)T
.

In this configuration, the end-effector (the origin of frame 4) is positioned along the axis of joint 1.

Alternatively (and in a much faster way for the problem at hand!), we may first evaluate
numerically the homogeneous transformations at the configuration θ∗, using in this case also L = 1,
and then perform all the required operations, including products of matrices and (vector) cross
products, so as to obtain the numerical value of the geometric Jacobian. The Matlab code is:

% configuration data

th1=0;
th2=3*pi/4;
th3=pi;
th4=pi;
L=1;

% homogeneous transformations

A1 = [cos(th1) 0 sin(th1) 0;
sin(th1) 0 -cos(th1) 0;
0 1 0 0;
0 0 0 1];

A2 = [cos(th2) 0 sin(th2) 0;
sin(th2) 0 -cos(th2) 0;

4



0 1 0 0;
0 0 0 1];

A3 = [cos(th3) 0 sin(th3) 0;
sin(th3) 0 -cos(th3) 0;
0 1 0 L;
0 0 0 1];

A4 = [cos(th4) -sin(th4) 0 L*cos(th4);
sin(th4) cos(th4) 0 L*sin(th4);
0 0 1 0;
0 0 0 1];

A12=A1*A2;
A13=A12*A3;
A14=A13*A4;

% geometric Jacobian

z0=[0 0 1]’;
z1=A1(1:3,3);
z2=A12(1:3,3);
z3=A13(1:3,3);
p0=[0 0 0]’;
p1=A1(1:3,4);
p2=A12(1:3,4);
p3=A13(1:3,4);
p4=A14(1:3,4);

J(1:3,1)=cross(z0,p4-p0);
J(1:3,2)=cross(z1,p4-p1);
J(1:3,3)=cross(z2,p4-p2);
J(1:3,4)=cross(z3,p4-p3);

J(4:6,1)=z0;
J(4:6,2)=z1;
J(4:6,3)=z2;
J(4:6,4)=z3;

% end

Whatever approach is followed, one ends up with the following matrix (where L = 1, if we have

5



worked numerically):

J(θ∗) =



0 −L
√

2 0 −L
√

2
2

0 0 −L 0

0 0 0 −L
√

2
2

0 0
√

2
2

0

0 −1 0 −1

1 0
√

2
2

0


.

It can be seen that the rank of JL(θ∗) is 3, and thus the given configuration θ∗ is not singular
for this sub-Jacobian. By inspection of this matrix, the desired linear/angular velocity vector(
vT

d ωT
d

)T is realized by choosing

θ̇d =
(

0 −
√

2
2

0
√

2

)T

,

obtaining in fact

J(θ∗)θ̇d =



0
0
−L
0

−
√

2
2

0


.

Moreover, one can see that the joint velocity vector θ̇d is the only one providing the desired
linear/angular velocity. Therefore, θ̇d is the minimum norm solution (with ‖θ̇d‖ = 1.5811). As a
check, it can be verified that

J#(θ∗)
(
vd

ωd

)
= θ̇d,

where the pseudoinverse J#(θ∗) can be computed either by using the Matlab function pinv or by
its explicit expression in case of a full (column) rank matrix J with more rows than columns,

J# = (JTJ)−1JT ,

which applies to the present case since the rank of J(θ∗) is 4. Finally, the joint torque vector τ
that balances the specified Cartesian force/torque vector

(
F T MT

)T
is computed as

τ = −JT (θ∗)


1
0
0
0
0
0

 =


0

L
√

2
0

L

√
2

2

 ,

i.e., it is given by the transpose of the first row of J(θ∗), changed of sign (the usual convention
holds also for joint torques: positive torques are counterclockwise).

∗ ∗ ∗ ∗ ∗

6


