
Robotics I
Midterm test in classroom – November 18, 2016

Exercise 1 [10 points]

Figure 1 shows the 6R Universal Robot UR5, with a non-spherical wrist, and two axes of the
reference frame RF0 placed at the robot base. The Denavit-Hartenberg parameters are given in
Tab. 1, together with the numerical values for the constant parameters and the current values that
the joint variables assume in the shown configuration.
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Figure 1: The 6R Universal Robot UR5 and the chosen base frame.

i αi ai di θi

1 −π/2 0 d1 = 89.2 θ1 = 0

2 0 a2 = −425 0 θ2 = π/2

3 0 a3 = −392 0 θ3 = 0

4 π/2 0 d4 = 109.3 θ4 = −π/2

5 −π/2 0 d5 = 94.75 θ5 = 0

6 0 0 d6 = 82.5 θ6 = 0

Table 1: DH parameters (in mm or rad), with the value of θ ∈ R6 in the shown configuration.

Using the provided sheet (please write your full name there!), draw all the Denavit-Hartenberg
frames associated to the robot links according to Tab. 1.
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Exercise 2 [5 points]

A frame RFB = {OB ,xB ,yB , zB} is displaced and rotated with respect to a fixed reference frame
RFA = {OA,xA,yA, zA}. The displacement is represented by the vector

ApOAOB
=
(

3 7 −1
)T

[m],

while the orientation of RFB with respect to RFA is represented by the following sequence of three
Euler ZY ′X ′′ angles

α =
π

4
, β = −π

2
, γ = 0 [rad].

For a given point P , provide the value of vector ApOAP knowing that its position with respect to
frame RFB is given by

BpOBP =
(

1 1 0
)T

[m].

Exercise 3 [10 points]

Consider the 2-dof robot in Fig. 2, with two revolute joints having axes (the first vertical and the
second horizontal) that do not intercept.
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Figure 2: A 2R robot moving in the 3D space.

• Assign the frames according to the Denavit-Hartenberg convention and define the associ-
ated table of parameters. Provide the specific expression of the homogenous transformation
matrices between the successive frames that you have assigned.

• Determine the symbolic expression of the position vector 0pOP of point P in the chosen
frame RF0, and find its numerical value when the kinematic quantities are L = 1, M = 2,

N = 0.3 [m] and the robot configuration is q =
(

90◦ −45◦
)T

.

Exercise 4 [5 points]

Given the following matrix

A =

 −0.5 −a 0

0 0 −1

a −0.5 0


determine, if possible, a value a > 0 such that the identity R(r, θ) = A holds, where R(r, θ) is
the rotation matrix associated to an axis-angle representation of the orientation. Provide then all
unit vectors r and associated angles θ ∈ (−π,+π] that are solutions to this equation.

[180 minutes (open books, but NO computer or internet)]
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Solution of Midterm Test
November 18, 2016

Exercise 1
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Figure 3: Assignment of DH frames for the UR5 robot associated to Tab. 1. Except for x2 and x3,
all other xi point inside the sheet. Warning: We are not using this type of DH frame assignment
for the UR10 available in the DIAG Robotics Lab.

Exercise 2

We just need to build the homogeneous transformation matrix that relates frame RFB to frame
RFA. The linear displacement is already represented by the given vector ApOAOB

. As for the
angular part, the rotation matrix ARB is specified from the sequence of three Euler ZY ′X ′′ angles.
Since these are defined around moving axes, we compute

Rz(α)=

 cosα − sinα 0

sinα cosα 0

0 0 1

 , Ry(β)=

 cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

 , Rx(γ)=

 1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 ,
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and multiply them in the suitable order to obtain

ARB = Rz(α)Ry(β)Rx(γ).

Replacing the numerical values (with Rx(γ = 0) = I), we have

ATB =

(
ARB ApOAOB

0T 1

)
=


0 −

√
2/2 −

√
2/2 3

0
√

2/2 −
√

2/2 7

1 0 0 −1

0 0 0 1

 .

Finally

ApOAP,h =A TB
BpOBP,h =A TB


1

1

0

1

 =


3−

√
2
2

7 +
√
2
2

0

1

 =


2.2929

7.7071

0

1

 =

( ApOAP

1

)
.

Exercise 3

An assignment of frames and the associated table of Denavit-Hartenberg are given in Fig. 4 and
Tab. 2, respectively. The origin of frame RF2 is conveniently placed at point P .
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Figure 4: A possible assignment of DH frames for the 2R robot of Fig. 2.

i αi ai di θi

1 π/2 N 0 q1

2 0 L M q2

Table 2: Parameters associated to the DH frames in Fig. 4.

From this, the two homogeneous transformation matrices are computed

0A1(q1) =


cos q1 0 sin q1 N cos q1

sin q1 0 − cos q1 N sin q1

0 1 0 0

0 0 0 1

 , 1A2(q2) =


cos q2 − sin q2 0 L cos q2

sin q2 cos q1 0 L sin q2

0 0 1 M

0 0 0 1

 .
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Thus, the symbolic expression in frame RF0 of the position vector associated to point P (in
homogeneous coordinates) is

0pOP,h(q)= 0A1(q1) 1A2(q2)


0
0
0
1

= 0A1(q1)


L cos q2
L sin q2
M
1

=


L cos q1 cos q2 +M sin q1 +N cos q1
L sin q1 cos q2 −M cos q1 +N sin q1

L sin q2
1


being 0pTOP,h(q) =

(
0pTOP (q) 1

)
.

The numerical value of 0pOP (q) with the data L = 1, M = 2, N = 0.3 [m] and at the requested

robot configuration q =
(
π/2 −π/4

)T
[rad] is

0pOP =
(

2 0.3 +
√
2
2 −

√
2
2

)T
=
(

2 1.0071 −0.7071
)T
.

Exercise 4

One needs first to verify the existence of a scalar a > 0 such that A is a rotation matrix (i.e.,
an orthonormal matrix with determinant = +1). The orthogonality among the three columns is
already in place (and holds for any value of a). Imposing a unit norm to the first two columns
leads to a = ±

√
3/2, so that the matrix will have detA = +1. Although both choices for the sign

of a would work, the + sign is taken in view of the request to find a positive value for a. The
matrix equation

R(r, θ) = A =

 −0.5 −
√

3/2 0

0 0 −1√
3/2 −0.5 0


is solved for r and θ, using the inverse mapping of the axis-angle representation. Denoting by Aij

the elements of A, we find that the problem at hand is a regular one since

sin θ = ± 1

2

√
(A12 −A21)2 + (A13 −A31)2 + (A23 −A32)2 = ± 0.6614 6= 0. (1)

Therefore, from

cos θ =
1

2
(A11 +A22 +A33 − 1) = −0.75,

taking the + sign in (1) we obtain

θ{1} = ATAN2 {0.6614,−0.75} = 2.4189 [rad] = 138.59◦

and then

r{1} =
1

2 sin θ{1}

 A32 −A23

A13 −A31

A21 −A12

 =

 0.3780

−0.6547

0.6547

 .

The second solution is simply given by θ{2} = −θ{1}, r{2} = −r{1}. Indeed, one can check, e.g.,
that

R(r{2}, θ{2}) = r{2}r{2}
T

+
(
I − r{2}r{2}

T
)

cos θ{2} + S(r{2}) sin θ{2} = A.

∗ ∗ ∗ ∗ ∗
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