Robotics 1

Midterm Test - November 18, 2022

Exercise 1

Consider the rotation matrix

$$
\boldsymbol{R}_{d}=\frac{1}{3}\left(\begin{array}{rrr}
-2 & 2 & -1 \\
2 & 1 & -2 \\
-1 & -2 & -2
\end{array}\right)
$$

Find, if possible, all angle-axis pairs (θ, \boldsymbol{r}) that provide the desired orientation \boldsymbol{R}_{d}. At the end, check your results by verifying that $\boldsymbol{R}(\theta, \boldsymbol{r})=\boldsymbol{R}_{d}$.

Exercise 2

The end-effector of a robot undergoes a change of orientation between an initial \boldsymbol{R}_{i} and a final \boldsymbol{R}_{f}, as specified by

$$
\boldsymbol{R}_{i}=\left(\begin{array}{ccc}
0 & 0.5 & -\frac{\sqrt{3}}{2} \\
-1 & 0 & 0 \\
0 & \frac{\sqrt{3}}{2} & 0.5
\end{array}\right), \quad \boldsymbol{R}_{f}=\left(\begin{array}{crc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)
$$

Provide a minimal representation of the relative rotation between the initial and the final orientation using YXY Euler angles $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$. At the end, check your solutions by performing the direct computation.

Exercise 3

A DC motor is used to move a link of length $L=0.7$ [m], as shown in Fig. 1. The motor mounts on its axis an absolute encoder and uses as transmission elements an Harmonic Drive having a flexspline with $N_{F S}=160$ teeth and a gear with two toothed wheels of radius $r_{1}=2$ and $r_{2}=4[\mathrm{~cm}]$, respectively.

- Compute the reduction ratio $n_{r}>1$ of the transmission system. Which is the direction of rotation of the link when the motor angular position θ_{m} is turning counterclockwise?
- Determine the resolution of the absolute encoder that allows distinguishing two link tip positions that are $\Delta r=0.1[\mathrm{~mm}]$ away. What should be the minimum number of tracks N_{t} of the encoder?
- If the link has an angular range $\Delta \theta_{\text {max }}=180^{\circ}$, how many turns of the motor are needed to cover the entire range? With a multi-turn absolute encoder, what is the minimum number of bits for counting all these turns?

Figure 1: The actuation arrangement of a single link.

- If the motor inertia is $J_{m}=1.2 \cdot 10^{-4}\left[\mathrm{kgm}^{2}\right]$, determine the optimal value of the link inertia J_{l} around the axis at its base which minimizes the motor torque τ_{m} needed for a desired link acceleration $\ddot{\theta}$. What is then the value of $\tau_{m}(\mathrm{in}[\mathrm{Nm}])$ for $\ddot{\theta}=7\left[\mathrm{rad} / \mathrm{s}^{2}\right]$?

Exercise 4

A large 6 R robot manipulator is mounted on the ceiling of an industrial cell and holds firmly a cylindric object in its jaw gripper. The world frame $R F_{w}$ of the cell is placed on the floor, at about the cell center. The robot base frame $R F_{0}$ is defined by ${ }^{w} \boldsymbol{T}_{0}$, while its end-effector frame $R F_{e}$ has the origin O_{e} at the center of the grasped object. The robot direct kinematics is expressed in symbolic form by ${ }^{0} \boldsymbol{T}_{e}(\boldsymbol{q})$, in terms of the joint variables \boldsymbol{q}. A camera is placed in the cell and its frame $R F_{c}$, having the origin O_{c} at the center of the image plane and the \boldsymbol{z}_{c} unit vector along the focal axis of the camera, is defined by ${ }^{w} \boldsymbol{T}_{c}$.

Figure 2: Definition of frames $R F_{e}$ and $R F_{c}$ for the considered task.
Figure 2 details the placement of the end-effector frame $R F_{e}$ and of the camera frame $R F_{c}$. The robot should hold the object in front of the camera, with the major axis of the cylinder aligned to the camera focal axis and its center at a distance $d>0$ from O_{c}. Define the task kinematics equation, to be solved for the joint variables \boldsymbol{q}, when the transformation matrices and the object-camera offset are given by

$$
{ }^{w} \boldsymbol{T}_{0}=\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & -1 & 0 & 1 \\
0 & 0 & -1 & 3.5 \\
0 & 0 & 0 & 1
\end{array}\right), \quad{ }^{w} \boldsymbol{T}_{c}=\left(\begin{array}{cccc}
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} & 2 \\
0 & -1 & 0 & 0 \\
-\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} & 2 \\
0 & 0 & 0 & 1
\end{array}\right), \quad d=1[\mathrm{~m}]
$$

Discuss also whether the robot is kinematically redundant for the task or not.

Exercise 5

For the spatial RPR robot of Fig. 3, complete the assignment of Denavit-Hartenberg (DH) frames and fill in the associated table of parameters. The origin of the last frame should be placed at the point P. Moreover, the frame assignment should be such that all constant DH parameters are non-negative and the value of the joint variables $q_{i}, i=1,2,3$, are strictly positive in the shown configuration. Compute then the direct kinematics $\boldsymbol{p}=\boldsymbol{f}(\boldsymbol{q})$ for the position of point P.

Figure 3: A spatial RPR robot.

Exercise 6

For the spatial RPR robot of Fig. 3, provide the closed-form expression of the inverse kinematics for the position \boldsymbol{p} of point P. Assuming for simplicity that the joints have unlimited ranges, how many inverse kinematics solutions are there in the regular case? Compute the numerical values of all inverse solutions \boldsymbol{q} when $\boldsymbol{p}=(3,4,1.5)[\mathrm{m}]$ and the geometric parameters of the robot are $H=L=1[\mathrm{~m}]$. Check the solutions!
[180 minutes, open books]

Solution

November 18, 2022

Exercise 1

It is easy to verify that $\boldsymbol{R}_{d} \in S O(3)$. Denoting by $r_{i j}$ the elements of \boldsymbol{R}_{d}, since the matrix is symmetric, it is

$$
\sin \theta=\frac{1}{2} \sqrt{\left(r_{12}-r_{21}\right)^{2}+\left(r_{13}-r_{31}\right)^{2}+\left(r_{23}-r_{32}\right)^{2}}=0 .
$$

We are in a singular case for the inverse problem of extracting an angle and axis from a rotation matrix. Moreover,

$$
\cos \theta=\frac{\operatorname{trace}\left\{\boldsymbol{R}_{d}\right\}-1}{2}=-1 \quad \Rightarrow \quad \theta=\pi \quad \text { (or }-\pi, \text { which is the same angle). }
$$

Therefore, a solution exists for \boldsymbol{r} and we shall use the special formulas

$$
r=\left(\begin{array}{l}
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right)=\left(\begin{array}{c}
\pm \sqrt{\frac{r_{11}+1}{2}} \\
\pm \sqrt{\frac{r_{22}+1}{2}} \\
\pm \sqrt{\frac{r_{33}+1}{2}}
\end{array}\right)=\left(\begin{array}{c}
\pm \frac{1}{\sqrt{6}} \\
\pm \frac{2}{\sqrt{6}} \\
\pm \frac{1}{\sqrt{6}}
\end{array}\right)=\left(\begin{array}{c}
\pm 0.4082 \\
\pm 0.8165 \\
\pm 0.4082
\end{array}\right),
$$

where the correct combinations of signs (among the 8 possibilities) should be determined so as to guarantee that the remaining three equalities in $\boldsymbol{R}_{d}=2 \boldsymbol{r} \boldsymbol{r}^{T}-\boldsymbol{I}$ hold:

$$
2 r_{x} r_{y}=r_{12}=\frac{2}{3}, \quad 2 r_{x} r_{z}=r_{13}=-\frac{1}{3}, \quad 2 r_{y} r_{z}=r_{23}=-\frac{2}{3}
$$

By coding this logic, one obtains the two solutions

$$
\boldsymbol{r}_{1}=\left(\begin{array}{r}
0.4082 \\
0.8165 \\
-0.4082
\end{array}\right), \quad \boldsymbol{r}_{2}=\left(\begin{array}{r}
-0.4082 \\
-0.8165 \\
0.4082
\end{array}\right)=-\boldsymbol{r}_{1} .
$$

Using

$$
\boldsymbol{R}(\theta, \boldsymbol{r})=\boldsymbol{r} \boldsymbol{r}^{T}+\left(\boldsymbol{I}-\boldsymbol{r} \boldsymbol{r}^{T}\right) \cos \theta+\boldsymbol{S}(\boldsymbol{r}) \sin \theta
$$

we can check that $\boldsymbol{R}\left(\theta, \boldsymbol{r}_{1}\right)=\boldsymbol{R}\left(\theta, \boldsymbol{r}_{2}\right)=\boldsymbol{R}_{d}$ is satisfied.

Exercise 2

The relative rotation ${ }^{i} \boldsymbol{R}_{f}$ between the initial orientation \boldsymbol{R}_{i} and the final orientation \boldsymbol{R}_{f} is computed as

$$
{ }^{i} \boldsymbol{R}_{f}=\boldsymbol{R}_{i}^{T} \boldsymbol{R}_{f}=\left(\begin{array}{rrr}
0 & 0 & -1 \\
0.5 & -\frac{\sqrt{3}}{2} & 0 \\
-\frac{\sqrt{3}}{2} & -0.5 & 0
\end{array}\right) .
$$

On the other hand, the rotation matrix associated to a minimal representation with YXY Euler angles $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ is given by

$$
\begin{aligned}
\boldsymbol{R}_{Y X Y}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) & =\boldsymbol{R}_{Y}\left(\alpha_{1}\right) \boldsymbol{R}_{X}\left(\alpha_{2}\right) \boldsymbol{R}_{Y}\left(\alpha_{3}\right)= \\
& =\left(\begin{array}{ccc}
\cos \alpha_{1} & 0 & \sin \alpha_{1} \\
0 & 1 & 0 \\
-\sin \alpha_{1} & 0 & \cos \alpha_{1}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha_{2} & -\sin \alpha_{2} \\
0 & \sin \alpha_{2} & \cos \alpha_{2}
\end{array}\right)\left(\begin{array}{ccc}
\cos \alpha_{3} & 0 & \sin \alpha_{3} \\
0 & 1 & 0 \\
-\sin \alpha_{3} & 0 & \cos \alpha_{3}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
c_{1} c_{3}-s_{1} c_{2} s_{3} & s_{1} s_{2} & c_{1} s_{3}+s_{1} c_{2} c_{3} \\
s_{2} s_{3} & c_{2} & -s_{2} c_{3} \\
-s_{1} c_{3}-c_{1} c_{2} s_{3} & c_{1} s_{2} & c_{1} c_{2} c_{3}-s_{1} s_{3}
\end{array}\right),
\end{aligned}
$$

where the usual shorthand notation has been used (e.g., $c_{i}=\cos \alpha_{i}$). The inverse representation problem, namely finding all triples $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ of YXY Euler angles such that

$$
\begin{equation*}
\boldsymbol{R}_{Y X Y}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)={ }^{i} \boldsymbol{R}_{f} \tag{1}
\end{equation*}
$$

can be solved in closed form (up to singular cases). Denote by $r_{i j}$ the elements of ${ }^{i} \boldsymbol{R}_{f}$. Taking advantage of the simpler expressions in the second column (viz., second row) of $\boldsymbol{R}_{Y X Y}$, one has from eq. (1)

$$
c_{2}=r_{22}, \quad s_{2}= \pm \sqrt{r_{12}^{2}+r_{32}^{2}} \quad \Rightarrow \quad \alpha_{2}=\operatorname{ATAN} 2\left\{s_{2}, c_{2}\right\}
$$

yielding the two (symmetric) values $\alpha_{2}^{(I),(I I)}= \pm 2.6180[\mathrm{rad}]$. Since $s_{2}= \pm 0.5 \neq 0$, the problem at hand is regular and computations can be carried out also for the other two angles. We have:

$$
s_{1}=\frac{r_{12}}{s_{2}}, \quad c_{1}=\frac{r_{32}}{s_{2}} \quad \Rightarrow \quad \alpha_{1}=\operatorname{ATAN} 2\left\{s_{1}, c_{1}\right\}
$$

and

$$
s_{3}=\frac{r_{21}}{s_{2}}, \quad c_{3}=\frac{-r_{23}}{s_{2}} \quad \Rightarrow \quad \alpha_{3}=\operatorname{ATAN} 2\left\{s_{3}, c_{3}\right\}
$$

Depending on the sign chosen for s_{2}, there are again two solutions for each angle. We obtain

$$
\alpha_{1}^{(I)}=\pi, \quad \alpha_{1}^{(I I)}=0 \quad \text { and } \quad \alpha_{3}^{(I)}=\frac{\pi}{2}, \quad \alpha_{3}^{(I I)}=-\frac{\pi}{2} \quad[\mathrm{rad}]
$$

As a result, the two (regular) solutions of the problem are:

$$
\boldsymbol{\alpha}^{(I)}=\left(\begin{array}{c}
\pi \\
\frac{5 \pi}{6} \\
\frac{\pi}{2}
\end{array}\right)=\left(\begin{array}{c}
3.1416 \\
2.6180 \\
1.5708
\end{array}\right), \quad \boldsymbol{\alpha}^{(I I)}=\left(\begin{array}{c}
0 \\
-\frac{5 \pi}{6} \\
-\frac{\pi}{2}
\end{array}\right)=\left(\begin{array}{c}
0 \\
-2.6180 \\
-1.5708
\end{array}\right) \quad[\mathrm{rad}]
$$

It is easy to check that

$$
\boldsymbol{R}_{i} \boldsymbol{R}_{Y X Y}\left(\boldsymbol{\alpha}^{(I)}\right)=\boldsymbol{R}_{i} \boldsymbol{R}_{Y X Y}\left(\boldsymbol{\alpha}^{(I I)}\right)=\boldsymbol{R}_{f}
$$

Exercise 3

The reduction ratio n_{r} of the entire transmission is the product of the reduction ratios $n_{H D}$ of the Harmonic Drive and n_{g} of the spur gear:

$$
n_{r}=n_{H D} \cdot n_{g}=\frac{N_{F S}}{2} \cdot \frac{r_{2}}{r_{1}}=80 \cdot 2=160
$$

Both transmission elements invert on the output axis the direction of rotation of their input axis. As a result, the angular position θ of the link is turning is the same direction (positive counterclockwise) of the angular position θ_{m} of the motor.
A linear variation $\Delta r=1 \cdot 10^{-4}[\mathrm{~m}]$ in position at the tip of the link corresponds to an angular variation $\Delta \theta$ at the base. Therefore, the needed resolution $\Delta \theta_{m}$ at the motor side (where the absolute encoder is mounted) is

$$
\Delta \theta_{m}=\Delta \theta \cdot n_{r}=\frac{\Delta r}{L} \cdot n_{r}=1.4286 \cdot 10^{-4} \cdot 160=0.0229[\mathrm{rad}]\left(=1.31^{\circ}\right)
$$

Being the resolution of an absolute encoder equal to $\Delta=2 \pi / 2^{N_{t}}$, the request $\Delta \leq \Delta \theta_{m}$ implies that the minimum number of tracks N_{t} is the integer

$$
N_{t}=\left\lceil\log _{2}\left(\frac{2 \pi}{\Delta \theta_{m}}\right)\right\rceil=\lceil 8.1027\rceil=9
$$

In order to cover the entire range $\Delta \theta_{\max }$ (in degrees) of link angular motion, the number of motor turns is

$$
n_{t u r n s}=\frac{\Delta \theta_{\max } \cdot n_{r}}{360^{\circ}}=\frac{180^{\circ} \cdot 160}{360^{\circ}}=80
$$

For counting this number of turns, the minimum number of devoted bits $N_{m t}$ in a multi-turn absolute encoder should be

$$
N_{m t}=\left\lceil\log _{2} 80\right\rceil=7 .
$$

Finally, the optimal value of the link inertia J_{l} is computed from the optimal value of the reduction ratio:

$$
n_{r}=\sqrt{\frac{J_{l}}{J_{m}}} \quad \Rightarrow \quad J_{l}=J_{m} \cdot n_{r}^{2}=1.2 \cdot 10^{-4} \cdot 160^{2}=3.0720\left[\mathrm{kgm}^{2}\right] .
$$

The motor torque τ_{m} needed for obtaining a desired link acceleration $\ddot{\theta}=7\left[\mathrm{rad} / \mathrm{s}^{2}\right]$ is then

$$
\tau_{m}=J_{m} \ddot{\theta}_{m}+\frac{1}{n_{r}} J_{l} \ddot{\theta}=\left(J_{m} n_{r}+\frac{J_{l}}{n_{r}}\right) \ddot{\theta}=\left(2 J_{m} n_{r}\right) \ddot{\theta}=0.0384 \cdot 7=0.2688[\mathrm{Nm}] .
$$

Exercise 4

The kinematic identity describing the task is given by

$$
\begin{equation*}
{ }^{w} \boldsymbol{T}_{0}{ }^{0} \boldsymbol{T}_{e}(\boldsymbol{q})={ }^{w} \boldsymbol{T}_{c}{ }^{c} \boldsymbol{T}_{e}, \tag{2}
\end{equation*}
$$

in which the desired pose of the robot end-effector in the world frame is equivalently expressed passing through the robot or through the camera, respectively the left-hand side or the right-hand side of (2). Since the unit axes \boldsymbol{z}_{e} and \boldsymbol{z}_{c} should be aligned and in the opposite direction ($\boldsymbol{z}_{c}=-\boldsymbol{z}_{e}$) and the offset between O_{c} and O_{e} should be only along \boldsymbol{z}_{c}, an homogeneous matrix that defines the correct pose of the end-effector, as seen from the camera frame ${ }^{1}$, is given by

$$
{ }^{c} \boldsymbol{T}_{e}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{3}\\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & d \\
0 & 0 & 0 & 1
\end{array}\right), \quad \text { with } d=1[\mathrm{~m}]
$$

Note that this choice is not unique: it corresponds to aligning also the \boldsymbol{x}_{e} unit vector of the end-effector frame with the unit vector \boldsymbol{x}_{c} of the camera frame. However, such alignment is not necessary and one may choose to have an arbitrary angle $\alpha \in(\pi, \pi]$ between these two vectors. As a result, also the more general homogeneous matrix

$$
{ }^{c} \boldsymbol{T}_{e}(\alpha)=\left(\begin{array}{cccc}
\cos \alpha & -\sin \alpha & 0 & 0 \tag{4}\\
-\sin \alpha & -\cos \alpha & 0 & 0 \\
0 & 0 & -1 & d \\
0 & 0 & 0 & 1
\end{array}\right), \quad \text { with } d=1[\mathrm{~m}],
$$

satisfies the task ${ }^{2}$. Since there is one parameter left free of choice in defining a desired 3D pose, the task is 5 -dimensional and the 6 R robot has one degree of redundancy in realizing this task (in fact, the task involves positioning and pointing in 3D).
Given ${ }^{w} \boldsymbol{T}_{0}$ and ${ }^{w} \boldsymbol{T}_{c}$, one obtains from (2) and (3)

$$
{ }^{0} \boldsymbol{T}_{e}(\boldsymbol{q})=\left({ }^{w} \boldsymbol{T}_{0}\right)^{-1}{ }^{w} \boldsymbol{T}_{c}{ }^{c} \boldsymbol{T}_{e}=\left(\begin{array}{cccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 2.2929 \\
0 & -1 & 0 & 1 \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} & 2.2071 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

[^0]which is the requested task kinematics equation to be solved for \boldsymbol{q} (i,e., the formulation of the inverse kinematics problem for the 6 R robot). A similar equation is found when using (4) in place of (3).

Exercise 5

The (unique) DH frame assignment for the RPR robot of Fig. 3 satisfying all requests is shown in Fig. 4. The corresponding DH parameters are reported in Tab. 1.

Figure 4: DH frames for the spatial RPR robot.

i	α_{i}	a_{i}	d_{i}	θ_{i}
1	$\pi / 2$	0	$d_{1}=H>0$	$q_{1}>0$
2	$\pi / 2$	0	$q_{2}>0$	$\pi / 2$
3	0	$a_{3}=L>0$	0	$q_{3}>0$

Table 1: DH parameters corresponding to the frames in Fig. 4. The signs attributed to the joint variables refer to the shown robot configuration.

From the associated homogeneous transformation matrices

$$
\boldsymbol{A}_{1}\left(q_{1}\right)=\left(\begin{array}{cccc}
c_{1} & 0 & s_{1} & 0 \\
s_{1} & 0 & -c_{1} & 0 \\
0 & 1 & 0 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right), \boldsymbol{A}_{2}\left(q_{2}\right)=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & q_{2} \\
0 & 0 & 0 & 1
\end{array}\right), \boldsymbol{A}_{3}\left(q_{3}\right)=\left(\begin{array}{cccc}
c_{3} & -s_{3} & 0 & a_{3} c_{3} \\
s_{3} & c_{3} & 0 & a_{3} s_{3} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

we compute

$$
\boldsymbol{p}_{\text {hom }}=\binom{\boldsymbol{p}}{1}=\boldsymbol{A}_{1}\left(q_{1}\right)\left(\boldsymbol{A}_{2}\left(q_{2}\right)\left(\boldsymbol{A}_{3}\left(q_{3}\right)\binom{\mathbf{0}}{1}\right)\right)
$$

yielding the direct kinematics of the position of point P as

$$
\boldsymbol{p}=\boldsymbol{f}(\boldsymbol{q})=\left(\begin{array}{c}
s_{1}\left(q_{2}+a_{3} s_{3}\right) \tag{5}\\
-c_{1}\left(q_{2}+a_{3} s_{3}\right) \\
d_{1}+a_{3} c_{3}
\end{array}\right) .
$$

Exercise 6

Consider the direct kinematics (5), with assigned desired values for the components p_{x}, p_{y}, and p_{z} for the position vector \boldsymbol{p} on the left-hand side. From the third equation, one has

$$
c_{3}=\frac{p_{z}-d_{1}}{a_{3}} \quad \Rightarrow \quad s_{3}= \pm \sqrt{1-c_{3}^{2}} .
$$

Provided that $c_{3} \in[-1,1]$, two symmetric solutions are found for q_{3}, each corresponding to a sign chosen for s_{3} :

$$
\begin{equation*}
q_{3}^{(o)}=\operatorname{ATAN} 2\left\{\left|s_{3}\right|, c_{3}\right\}, \quad q_{3}^{(i)}=\operatorname{ATAN} 2\left\{-\left|s_{3}\right|, c_{3}\right\}=-q_{3}^{(o)} . \tag{6}
\end{equation*}
$$

The solution $q_{3}^{(o)}$ has the forearm (link 3) bent outward from the base joint axis, while with $q_{3}^{(i)}$ the forearm is bent inward. When $c_{3}= \pm 1$, the two solutions in (6) collapse into a singleton $q_{3}=0$ (for $c_{3}=1$, link 3 is vertical and points upward) or $q_{3}=\pi$ (for $c_{3}=-1$, link 3 is vertical and points downward). These two situations are a singularity for the solution q_{3}. When $\left|c_{3}\right|>1$, the inverse kinematics problem has no solution because the desired position \boldsymbol{p} of point P is outside the reachable workspace of the robot.
Next, squaring and summing the first two equations in (5) yields

$$
p_{x}^{2}+p_{y}^{2}=\left(q_{2}+a_{3} s_{3}\right)^{2} \geq 0 .
$$

If this quantity is strictly positive, we can extract the root and substitute it in place of the common factor in the right-hand side of the first two kinematic equations in (5) so as to obtain

$$
p_{x}= \pm s_{1} \sqrt{p_{x}^{2}+p_{y}^{2}}, \quad-p_{y}= \pm c_{1} \sqrt{p_{x}^{2}+p_{y}^{2}}
$$

which involve only the unknown q_{1} and the input data. Then, two solutions are obtained for q_{1},

$$
q_{1}=\operatorname{ATAN} 2\left\{\frac{p_{x}}{ \pm \sqrt{p_{x}^{2}+p_{y}^{2}}}, \frac{-p_{y}}{ \pm \sqrt{p_{x}^{2}+p_{y}^{2}}}\right\}
$$

depending on the upper or lower sign chosen for the square root in both arguments (and independently from the signs in the solution (6) for q_{3}). Actually, since this computation is performed only when $p_{x}^{2}+p_{y}^{2}>0$, one can simplify the expression of the solutions as

$$
\begin{equation*}
q_{1}^{(f)}=\operatorname{ATAN} 2\left\{p_{x},-p_{y}\right\}, \quad q_{1}^{(b)}=\operatorname{ATAN} 2\left\{-p_{x},+p_{y}\right\} \tag{7}
\end{equation*}
$$

In the solution $q_{1}^{(f)}$ the base of the robot faces point P, whereas with $q_{1}^{(b)}$ the base is rotated by π and the robot is giving the back to point P. If $p_{x}^{2}+p_{y}^{2}=0$, i.e., the desired position of point P is on the axis of joint $1, q_{1}$ is undefined and there are infinite solutions to the inverse kinematics problem (singular case).
Two possible ways can be followed to determine the variable q_{2} of the prismatic joint.
First method. Add the first two equations in (5), weighted respectively by s_{1} and $-c_{1}$:

$$
s_{1} p_{x}-c_{1} p_{y}=q_{2}+a_{3} s_{3} .
$$

From this, using the previously obtained results for s_{1}, c_{1} and s_{3}, we have

$$
\begin{equation*}
q_{2}=s_{1} p_{x}-c_{1} p_{y} \mp a_{3} \sqrt{1-c_{3}^{2}}= \pm \sqrt{p_{x}^{2}+p_{y}^{2}} \mp \sqrt{a_{3}^{2}-\left(p_{z}-d_{1}\right)^{2}} . \tag{8}
\end{equation*}
$$

Note that the argument of the last square root in (8) is always non-negative (otherwise the desired position \boldsymbol{p} of point P would be outside the reachable workspace, as already noted). There are four combinations of possible signs to be chosen in eq. (8), resulting in four solutions for q_{2} in the regular case, each corresponding to one of the alternative solutions for q_{1} and for q_{3}. When the solution for q_{3} is in singularity, meaning that $a_{3}^{2}=\left(p_{z}-d_{1}\right)^{2}$, only two solutions are left for q_{2}. The same occurs when the solution for q_{1} is in singularity $\left(p_{x}=p_{y}=0\right)$. At the intersection of the singularities, there is only one solution, namely $q_{2}=0$.

Second method. Square and sum all three equations in (5), after having moved d_{1} to the left in the third one. This leads to

$$
p_{x}^{2}+p_{y}^{2}+\left(p_{z}-d_{1}\right)^{2}=\left(q_{2}+a_{3} s_{3}\right)^{2}+\left(a_{3} c_{3}\right)^{2}=q_{2}^{2}+a_{3}^{2}+2 a_{3} s_{3} q_{2}
$$

This is a polynomial equation of second degree in the unknown q_{2}, which can be rewritten in the form

$$
q_{2}^{2}+2 b q_{2}-c=0
$$

with

$$
b=a_{3} s_{3}= \pm \sqrt{a_{3}^{2}-\left(p_{z}-d_{1}\right)^{2}}, \quad c=p_{x}^{2}+p_{y}^{2}+\left(p_{z}-d_{1}\right)^{2}-a_{3}^{2}
$$

Accordingly, we obtain two pairs of solutions (one pair for each sign chosen for b)

$$
\begin{align*}
& q_{2}^{(++/+-)}=b \pm \sqrt{b^{2}+c}=\sqrt{a_{3}^{2}-\left(p_{z}-d_{1}\right)^{2}} \pm \sqrt{p_{x}^{2}+p_{y}^{2}} \\
& q_{2}^{(-+/--)}=-b \pm \sqrt{b^{2}+c}=-\sqrt{a_{3}^{2}-\left(p_{z}-d_{1}\right)^{2}} \pm \sqrt{p_{x}^{2}+p_{y}^{2}} \tag{9}
\end{align*}
$$

The two eqs. (9) are clearly equivalent to eq. (8). When $b=0$, only two solutions are left. When $b=c=0$ simultaneously, $q_{2}=0$ is the only solution.
The four generic solutions in the regular case are summarized below, each having a sketch of the associated robot configuration (the front part of the robot base, where \boldsymbol{z}_{1} is pointing, is shown in dark blue).
$\boldsymbol{q}^{(1)}=\left(\begin{array}{c}q_{1}^{(f)} \\ q_{2}^{(+-)} \\ q_{3}^{(o)}\end{array}\right) \quad$ (base facing, forearm outward) $\quad \boldsymbol{q}^{(2)}=\left(\begin{array}{c}q_{1}^{(f)} \\ q_{2}^{(++)} \\ q_{3}^{(i)}\end{array}\right) \quad$ (base facing, forearm inward)

$\boldsymbol{q}^{(3)}=\left(\begin{array}{c}q_{1}^{(b)} \\ q_{2}^{(--)} \\ q_{3}^{(o)}\end{array}\right) \quad$ (base backing, forearm outward) $\quad \boldsymbol{q}^{(4)}=\left(\begin{array}{c}q_{1}^{(b)} \\ q_{2}^{(-+)} \\ q_{3}^{(i)}\end{array}\right) \quad$ (base backing, forearm inward)

Consider now the given numerical data. Since $d_{1}=H=1$ and $a_{3}=L=1$ [m], the four (regular) solutions for $\boldsymbol{p}=(3,4,1.5)$ are:

$$
\boldsymbol{q}^{(1)}=\left(\begin{array}{c}
2.4981 \\
4.1340 \\
1.0472
\end{array}\right), \boldsymbol{q}^{(2)}=\left(\begin{array}{c}
2.4981 \\
5.8660 \\
-1.0472
\end{array}\right), \boldsymbol{q}^{(3)}=\left(\begin{array}{c}
-0.6435 \\
-5.8660 \\
1.0472
\end{array}\right), \boldsymbol{q}^{(4)}=\left(\begin{array}{c}
-0.6435 \\
-4.1340 \\
-1.0472
\end{array}\right)[\mathrm{rad} / \mathrm{m} / \mathrm{rad}] .
$$

[^0]: ${ }^{1}$ The same description holds as seen from the end-effector frame since in this case ${ }^{e} \boldsymbol{T}_{c}=\left({ }^{c} \boldsymbol{T}_{e}\right)^{-1}={ }^{c} \boldsymbol{T}_{e}$, due to the task symmetry.
 ${ }^{2}$ With $\alpha=\pi$, the unit vectors \boldsymbol{y}_{e} and \boldsymbol{y}_{c} would be aligned.

