
Robotics 1

Midterm Test – November 19, 2021

The test has 9 questions. Provide as many answers as you can, with short but significant texts and
formulas/tables/pictures. Please write clearly. Take a picture of each of your handwritten answers
and upload them to Exam.net before submitting. Try to follow the same order of the questions.
Number your answers accordingly (don’t repeat the text of the questions).

Question #1

A rigid body is rotated first by an angle θ = π/3 around the unit vector r = (1/
√

3) ·
(

1 1 1
)T

and then by an angle φ = −π/3 around the fixed y-axis. What is the final orientation of the body?

Question #2

An initial orientation Ri and a final orientation Rf are defined by

Ri =

 0 0.5 −
√

3/2

−1 0 0

0
√

3/2 0.5

 , Rf = I.

Find the two sequences of ZYZ Euler angles that represent the rotation from Ri to Rf .

Question #3

For the 4R robot with a spherical shoulder of Fig. 1, complete the assignment of Denavit-Hartenberg
(D-H) frames and fill in the associated table of parameters [for this, use the extra sheet distributed].
Keep the quantities that are already defined in the figure unchanged. If needed, provide the
transformation between the last D-H frame and the standard frame of an end-effector gripper.
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x0

y0

z1

z3

Figure 1: A 4R spatial robot arm with a spherical shoulder.

Question #4

A 2R planar robot with links of equal length L has limited joint ranges as follows: q1 ∈ [−π/2, π/2],
q2 ∈ [0, π/2]. Draw the primary workspace WS1 ∈ R2. For L = 1.4 [m], is the point P = (1.6,−0.2)
reachable by the robot end effector?
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Question #5

A branched two-arm planar robot having 5 dofs is sketched in Fig. 2, with generic labels for the
link lengths and the actual definition of the joint angles. The sign convention for angles is the
usual one (i.e., positive if counterclockwise). Determine the relative pose of the end-effector frame
of the left arm with respect to that of the right arm, as expressed by the 4×4 homogeneous matrix
rET lE(q) with q = (θ0, θr1, θr2, θl1, θl2). Check numerically the obtained symbolic expression
when all the links have equal and unitary length and the two-arm robot is in the configuration
q∗ = (π/2, 0, 0,−π/2, 0) —the right arm is horizontal and the left one is vertical and upward.
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Figure 2: A two-arm robot with 5 dofs.

Question #6

Figure 3 shows a planar RRP robot, with the definition of its joint variables. The task of interest
is specified by the position p = (px, py) of the robot end effector and by the orientation α of the
forearm w.r.t. the x-axis. The associated direct kinematics is

r =

 px

py

α

 =

 l1c1 + q3c12

l1s1 + q3s12

q1 + q2

 = fr(q).

Determine the analytic solutions to the inverse kinematics problem. Disregard any situation that
is unfeasible or singular. Provide at least one solution for the following (feasible) input data:
l1 = 1 [m], rd = (2, 1, π/6) [m,m,rad].
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Figure 3: A planar RRP robot.
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Question #7

With reference to Fig. 4, a motor with inertia JM drives a link through a gear with toothed wheels
(a photo of this is also shown in the figure). The wheel on the motor shaft (aka, the pinion) has
radius rM = 2 [cm], while the radius of the wheel on the link rotation axis is rL = 10 [cm]. The link
has inertia JL = 0.3 [kgm2] around its rotation axis. Assuming that an optimal inertia matching
is realized by the reduction ratio of this transmission, determine the torque τM that the motor
needs to produce around its zM axis in order to accelerate the link at θ̈L = −5 [rad/s2]. Neglect
dissipative effects as well as the inertia of the transmission components (and of the encoder).

motor
toothed
gear

absolute
encoder

link

shaft

shaft

zM

zL

�̇�#
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L

Figure 4: Set up of a motor-transmission-link system using a toothed gear.

Question #8

An absolute encoder is mounted on the motor of the system shown in Fig. 4. If the link length is
L = 0.5 [m], determine the minimum number of tracks nt that the encoder needs to have in order
to achieve at least a resolution of δ = 0.1 [mm] at the link tip.

Question #9

Explain in exactly three short sentences the specific feature of a SCARA-type robot, its common
technical implementation, and the significance in industrial applications.

[150 minutes (2.5 hours); open books]
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Solution
November 19, 2021

Question #1

A rigid body is rotated first by an angle θ = π/3 around the unit vector r = (1/
√

3) ·
(

1 1 1
)T

and then by an angle φ = −π/3 around the fixed y-axis. What is the final orientation of the body?

Reply #1

The rotation matrix associated to an axis/angle representation (r, θ) is

R(r, θ) = rTr +
(
I − rrT

)
cos θ + S(r) sin θ,

while the elementary rotation by an angle φ around the coordinate axis Y is represented by

RY (φ) =

 cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ

 .

Being the sequence of two rotations defined around the fixed axes r and y, the final orientation is
given by product (in the reverse order)

Rr,y = RY

(
−π

3

)
R

 1√
3

 1
1
1

 ,
π

3

 =


1

2
0 −

√
3

2

0 1 0
√

3

2
0

1

2




2

3
−1

3

2

3
2

3

2

3
−1

3

−1

3

2

3

2

3



=

 0.6220 −0.7440 −0.2440

0.6667 0.6667 −0.3333

0.4107 0.0447 0.9107

. �

Question #2

An initial orientation Ri and a final orientation Rf are defined by

Ri =

 0 0.5 −
√

3/2

−1 0 0

0
√

3/2 0.5

 , Rf = I.

Find the two sequences of ZYZ Euler angles that represent the rotation from Ri to Rf .

Reply #2

One has to solve the inverse problem of the ZYZ Euler representation with angles (α1, α2, α3) for
the relative rotation matrix

iRf = RT
i Rf =

 0 0.5 −
√

3/2

−1 0 0

0
√

3/2 0.5


T

· I =

 0 −1 0

0.5 0
√

3/2

−
√

3/2 0 0.5

. (1)
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The symbolic expression of the ZYZ Euler rotation matrix is

RZY Z(α1, α2, α3) = RZ(α1)RY (α2)RZ(α3)

=

 cosα1 − sinα1 0

sinα1 cosα1 0

0 0 1


 cosα2 0 sinα2

0 1 0

− sinα2 0 cosα2


 cosα3 − sinα3 0

sinα3 cosα3 0

0 0 1


=

 cosα1 cosα2 cosα3 − sinα1 sinα3 − cosα1 cosα2 sinα3 − sinα1 cosα3 cosα1 sinα2

sinα1 cosα2 cosα3 + cosα1 sinα3 cosα1 cosα3 − sinα1 cosα2 sinα3 sinα1 sinα2

− sinα2 cosα3 sinα2 sinα3 cosα2

.
(2)

Denote by Rhk the elements of the iRf matrix in (1). The inverse formulas for the ZYZ Euler
representation can be extracted from the simpler elements in the last row and column of the RZY Z

matrix in (2). Since
sin2 α2 = R2

31 +R2
32 = 0.75 > 0,

this is a regular case and there are two solutions. These are computed, e.g., by the Matlab code

alfa2=atan2(sqrt(R(3,1)^2+R(3,2)^2),R(3,3))

alfa2bis=-alfa2

alfa1=atan2(R(2,3)/sin(alfa2),R(1,3)/sin(alfa2))

alfa1bis=atan2(R(2,3)/sin(alfa2bis),R(1,3)/sin(alfa2bis))

alfa3=atan2(R(3,2)/sin(alfa2),-R(3,1)/sin(alfa2))

alfa3bis=atan2(R(3,2)/sin(alfa2bis),-R(3,1)/sin(alfa2bis))

yielding

(α1, α2, α3) = (1.5708, 1.0472, 0) and (α′1, α
′
2, α
′
3) = (−1.5708,−1.0472, 3.1416).

It is always good to check the result by plugging each of these two triples into (2) and verifying
that the obtained rotation matrix is equal to iRf . �

Question #3

For the 4R robot with a spherical shoulder of Fig. 1, complete the assignment of Denavit-Hartenberg
(D-H) frames and fill in the associated table of parameters [for this, use the extra sheet distributed].
Keep the quantities that are already defined in the figure unchanged. If needed, provide the trans-
formation between the last D-H frame and the standard frame of an end-effector gripper.

Reply #3

A possible complete assignment of D-H frames for the robot of Fig. 1 is shown in Fig. 5. The
associated set of parameters is given in Table 1, where the sign of the constant parameters is also
indicated. The last D-H frame does not (and cannot) have its axis z4 along the approach direction
of the gripper. Therefore, an extra rotation matrix

4RE =

 0 0 1

1 0 0

0 1 0


is needed to align RF4 with the standard frame RFE of an end-effector gripper. �
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Figure 5: A possible assignment of D-H frames for the 4R robot of Fig. 1.

i αi ai di θi

1 π/2 0 d1 > 0 q1

2 π/2 0 0 q2

3 −π/2 0 d3 > 0 q3

4 0 a4 > 0 0 q4

Table 1: Table of D-H parameters associated to the frame assignment in Fig. 5.

Question #4

A 2R planar robot with links of equal length L has limited joint ranges as follows: q1 ∈ [−π/2, π/2],
q2 ∈ [0, π/2]. Draw the primary workspace WS1 ∈ R2. For L = 1.4 [m], is the point P = (1.6,−0.2)
reachable by the robot end effector?

Reply #4

For the given joint ranges, the primary workspace of a 2R robot with equal links of length L is
shown in Fig. 6. Note that q1 and q2 are defined (by default, if not specified otherwise) according to
the D-H convention. The boundaries of WS1 are drawn with red dotted lines. The inner boundary
is made by two parts, a half circumference of radius L

√
2 and a quarter circumference of radius L.

Also the outer boundary is made by two parts, a quarter circumference of radius L and a half
circumference of radius 2L. If the link length is set to L = 1.4, the point P is out of WS1. This is
shown as well (in the proper scale) in Fig. 6. �
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Figure 6: The primary workspace WS1 of the 2R robot for the given joint limits.

Question #5

A branched two-arm planar robot having 5 dofs is sketched in Fig. 2, with generic labels for the
link lengths and the actual definition of the joint angles. The sign convention for angles is the
usual one (i.e., positive if counterclockwise). Determine the relative pose of the end-effector frame
of the left arm with respect to that of the right arm, as expressed by the 4 × 4 homogeneous
matrix rET lE(q) with q = (θ0, θr1, θr2, θl1, θl2). Check numerically the obtained symbolic expression
when all the links have equal and unitary length and the two-arm robot is in the configuration
q∗ = (π/2, 0, 0,−π/2, 0) —the right arm is horizontal and the left one is vertical and upward.

Reply #5

The result is obtained by computing the direct kinematics of each branch using the 4× 4 homoge-
neous transformation matrices, and then finding the relative pose. The problem is planar (in the
plane z0 = 0), and so all rotations will be defined by an angle around the z0-axis normal to the
plane. Note also that the joint angles in Fig. 2 are not necessarily part of a D-H convention, but
they should be used as defined. For instance, the orientation angles of the right and left forearms
are defined w.r.t. the positive and, respectively, negative x0-axis. For the right arm, the position
of the end-effector frame RFrE is then given by

0pr = L0

 cos θ0

sin θ0

0

+ Lr1

 cos θr1

sin θr1

0

+ Lr2

 cos (θr1 + θr2)

sin (θr1 + θr2)

0

 ,

while its orientation is parametrized by the angle

φr = θr1 + θr2.
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Similarly, for the left arm we have

0pl = L0

 cos θ0

sin θ0

0

+ Ll1

 cos (π + θl1)

sin (π + θl1)

0

+ Ll2

 cos (π + θl1 + θl2)

sin (π + θl1 + θl2)

0


= L0

 cos θ0

sin θ0

0

− Ll1

 cos θl1

sin θl1

0

− Ll2

 cos (θl1 + θl2)

sin (θl1 + θl2)

0


and

φl = π + θr1 + θr2.

The addition of π in the angular expressions pertaining to the left arm is needed in order to express
the quantities in terms of the common base reference frame RF0. As a result, from

0T r =

(
0Rr(φr) 0pr(θ0, θr1, θr2)

0T 1

)
=


cos (θr1 + θr2) − sin (θr1 + θr2) 0

sin (θr1 + θr2) cos (θr1 + θr2) 0

0 0 1

0pr(θ0, θr1, θr2)

0T 1


and

0T l =

(
0Rl(φl)

0pr(θ0, θl1, θl2)

0T 1

)
=


− cos (θl1 + θl2) sin (θl1 + θl2) 0

− sin (θl1 + θl2) − cos (θl1 + θl2) 0

0 0 1

0pl(θ0, θl1, θl2)

0T 1

 ,

one obtains

rT l = 0T−1r · 0T l =

(
0RT

r (φr) −0RT
r (φr)0pr(θ0, θr1, θr2)

0T 1

)(
0Rl(φl)

0pl(θ0, θl1, θl2)

0T 1

)

=

(
0RT

r (φr) 0Rl(φl)
0RT

r (φr)
(
0pl(θ0, θl1, θl2)− 0pr(θ0, θr1, θr2)

)
0T 1

)

or1

rT l(q) =

− cos (θl1 + θl2 − θr1 − θr2) sin (θl1 + θl2 − θr1 − θr2) 0

−Lr2 − Lr1 cos θr2

−Ll1 cos (θl1 − θr1 − θr2)

−Ll2 cos (θl1 + θl2 − θr1 − θr2)

− sin (θl1 + θl2 − θr1 − θr2) − cos (θl1 + θl2 − θr1 − θr2) 0
Lr1 sin θr2 − Ll1 sin (θl1 − θr1 − θr2)

−Ll2 sin (θl1 + θl2 − θr1 − θr2)

0 0 1 0

0 0 0 1


.

1A MATLAB program yielding the simplified final output is reported in Appendix 1 at the end of the solution.
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When the homogeneous transformation matrix rT l(q) is evaluated at q∗ = (π/2, 0, 0,−π/2, 0),
using the numerical data of the problem (all links of equal and unitary length), we obtain

rT l (q∗) =


0 −1 0 −2

1 0 0 2

0 0 1 0

0 0 0 1

 .

It is easy to check that this corresponds to the robot configuration with the right arm horizontal
(pointing to the right) and the left arm vertical (pointing upward). The distance between the end
effectors is d = ‖pl − pr‖ =

√
(−2)2 + 22 = 2

√
2. Similarly, at q∗∗ = (π/2, π/4, π/4,−π/4,−π/4)

—a robot posture that is fully symmetric w.r.t. the y0-axis, we have

rT l (q∗∗) =


1 0 0 0

0 1 0
√

2

0 0 1 0

0 0 0 1

 .

In this case, there is a displacement d =
√

2 between the two end effectors just along the (now,
horizontal) direction yrE , and no relative rotation between the two end-effector frames. �

Question #6

Figure 3 shows a planar RRP robot, with the definition of its joint variables. The task of interest
is specified by the position p = (px, py) of the robot end effector and by the orientation α of the
forearm w.r.t. the x-axis. The associated direct kinematics is

r =

 px

py

α

 =

 l1c1 + q3c12

l1s1 + q3s12

q1 + q2

 = fr(q). (3)

Determine the analytic solutions to the inverse kinematics problem. Disregard any situation that
is unfeasible or singular. Provide at least one solution for the following (feasible) input data:
l1 = 1 [m], rd = (2, 1, π/6) [m,m,rad].

Reply #6

The closed-form solution to the inverse kinematics of the RRP robot in Fig. 3 is found as follows.

Let r = rd =
(
pxd pyd αd

)T
in (3). Substituting q1 + q2 = αd from the last equation in (3) as

argument of the two functions c12 and s12 in the first two equations, rearranging terms, and then
squaring and summing, we obtain

(pxd − q3 cosαd)
2

+ (pyd − q3 sinαd)
2

= l21
(
c21 + s21

)
= l21.

Developing the squares, we find a second-order polynomial equation in the single unknown q3:

q23 − 2 (pxd cosαd + pyd sinαd) q3 +
(
p2xd + p2xd − l21

)
= 0. (4)

Equation (4) has two real roots (regular case) if and only if its discriminant is

∆ = (pxd cosαd + pyd sinαd)
2 −

(
p2xd + p2xd − l21

)
≥ 0.

Note that ∆ can be rewritten also in the following two equivalent forms

∆ = l21 − p2xd sin2 αd − p2yd cos2 αd + pxdpyd sin 2αd = l21 − (pxd sinαd − pyd cosαd)
2
.
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If ∆ = 0, the two real roots are indeed coincident (one inverse kinematics solution only, a singular
case); if ∆ < 0, the two roots of (4) are complex conjugate and there is no solution to the inverse
kinematics problem2. In the regular case, the two solutions for q3 are given by

q±3 = pxd cosαd + pyd sinαd ±
√

∆. (5)

The associated values for q1 and q2 are found from the second and third equation in (3) and,
respectively, from the third equation as

q±1 = atan2
{
pyd − q±3 sinαd, pxd − q±3 cosαd

}
, q±2 = αd − q±1 . (6)

With a length l1 = 1 of the first link and for the (regular) input data rd = (2, 1, π/6) [m,m,rad],
we obtain from eqs. (5–6)

(q1, q2, q3)
+

= (−2.4836, 3.0072, 3.2230) [rad,rad,m]

and
(q1, q2, q3)

−
= (0.3892, 0.1344, 1.2411) [rad,rad,m].

The two solutions are shown in Fig. 7 (with the angular values approximated in degrees). �
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Figure 7: The two inverse kinematics solutions of the RRP robot for the given data.

Question #7

With reference to Fig. 4, a motor with inertia JM drives a link through a gear with toothed wheels
(a photo of this is also shown in the figure). The wheel on the motor shaft (aka, the pinion) has
radius rM = 2 [cm], while the radius of the wheel on the link rotation axis is rL = 10 [cm]. The link
has inertia JL = 0.3 [kgm2] around its rotation axis. Assuming that an optimal inertia matching is
realized by the reduction ratio of this transmission, determine the torque τM that the motor needs to
produce around its zM axis in order to accelerate the link at θ̈L = −5 [rad/s2]. Neglect dissipative
effects as well as the inertia of the transmission components (and of the encoder).

Reply #7

The reduction ratio of the transmission with toothed wheels is nr = rL/rM = 10/2 = 5. On the
other hand, the missing information about the motor inertia JM is recovered from the assumed
optimal inertia matching of the transmission:

nr = n∗r =

√
JL
JM

⇒ JM =
JL
n2r

= 0.012 [kgm2].

2More on these two cases is reported in Appendix 2 at the end of the solution (as additional material not requested
in the solution answer).
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Therefore, the torque that the motor needs to deliver on its axis in order to accelerate the link at
θ̈L = −5 [rad/s2] is given by

τM = JM

(
θ̈Lnr

)
+

1

nr
JLθ̈L = −0.6 [Nm].

Note that the motor and the link rotate in the same direction (positive if CCW) as seen from zM

and zL, respectively. So, there is no inversion of the sense of rotation in this toothed gear (as
opposed to the planar case). �

Question #8

An absolute encoder is mounted on the motor of the system shown in Fig. 4. If the link length is
L = 0.5 [m], determine the minimum number of tracks nt that the encoder needs to have in order
to achieve at least a resolution of δ = 0.1 [mm] at the link tip.

Reply #8

The requested angular resolution at the link base and on the motor side of the transmission are

δL = arctan

(
δ

L

)
' δ

L
=

0.1

500
= 2 · 10−4 [rad] ⇒ δM = δLnr = 0.001 [rad].

Thus, the minimum number of tracks nt of the absolute encoder in order to get the required
resolution is

nt =

⌈
log2

(
2π

δM

)⌉
=
⌈
12.6173

⌉
= 13 tracks. �

Question #9

Explain in exactly three short sentences the specific feature of a SCARA-type robot, its common
technical implementation, and the significance in industrial applications.

Reply #9

[Sample reply] SCARA stands for Selective Compliance Arm for Robotic Assembly, a robot having
4 joints with vertical axes, the third one being prismatic and the others revolute. The end-effector
compliance is present only along horizontal directions, and is usually provided by an harmonic
drive on the motor axis of the first joint and by a transmission belt for driving the second joint
by another motor mounted also on the first joint. This allows to accommodate in a passive way
the lateral forces that may arise in assembly tasks, when the vertical insertion direction is not
sufficiently accurate. �

Appendix 1

A MATLAB code for Question #5

clear all; clc;

syms th0 thr1 thr2 thl1 thl2 L0 Lr1 Lr2 Ll1 Ll2 real

disp(’right arm’)

pr=L0*[cos(th0);sin(th0);0]+Lr1*[cos(thr1);sin(thr1);0]...

+Lr2*[cos(thr1+thr2);sin(thr1+thr2);0]

phir=thr1+thr2
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Rr=[cos(phir) -sin(phir) 0

sin(phir) cos(phir) 0

0 0 1]

Tr=[ Rr pr;

zeros(1,3) 1]

disp(’left arm’)

pl=L0*[cos(th0);sin(th0);0]+Ll1*[cos(pi+thl1);sin(pi+thl1);0]...

+Ll2*[cos(pi+thl1+thl2);sin(pi+thl1+thl2);0];

pl=simplify(pl)

phil=pi+thl1+thl2

Rl=[cos(phil) -sin(phil) 0

sin(phil) cos(phil) 0

0 0 1];

Rl=simplify(Rl);

Tl=[ Rl pl;

zeros(1,3) 1]

disp(’relative homogeneous transformation’)

T_rl=simplify(inv(Tr)*Tl)

% data

L0=1;Lr1=1;Lr2=1;Ll1=1;Ll2=1;

disp(’numerical evaluation for the given data’)

th0=pi/2;thr1=0;thr2=0;thl1=-pi/2;thl2=0;

T_r_l=subs(T_rl)

disp(’numerical evaluation in symmetric conditions’)

th0=pi/2;thr1=pi/4;thr2=pi/4;thl1=-pi/4;thl2=-pi/4;

T_r_l=subs(T_rl)

% end

Appendix 2

Geometric view on the solution of the IK problem for the RRP robot

We present here an extra analysis that pursues more in depth the answer to Question #6.

It can be recognized that, in general, the inverse kinematics (IK) problem for our RRP robot has
one, two, or no solution depending on the existence or not of intersections between a line L (with
orientation) and a circumference C in the R2 plane. In fact, this geometric view is equivalent to
the algebraic analysis of the roots of the second-order polynomial equation (4). With reference
to Fig. 8 (pay attention also to the color codes used), the line L is defined by the point Pd and
by the desired direction αd ∈ (−π, π) of the third robot link, as computed from the horizontal
x-axis (positive if CCW). The circumference C is centered at the origin and has radius equal to
the length l1 of the first link.

The circumference C characterizes a transition from one type of solutions to another. If the point
Pd is outside the circumference C (i.e., for p2xd +p2yd > l21), there may be two, one or no intersection
between L and C. Figure 8(a) shows a regular case with two intersections, and thus two inverse
kinematics solutions q′ and q′′, both having q′3 and q′′3 positive. The same figure shows also two
singular cases, when the line L is tangent to C: there is only one IK solution in each case, but
again with a positive q3. Figure 8(b) shows the same cases considered in (a), but now with desired
orientations αd that differ by ±π from before. The situation is specular w.r.t. case (a), and the
values of q3 are now negative in all (single or double) solutions. Whenever q3 < 0, note that we
adopted a dashed line to represent the (retracted) forearm of the RRP robot.
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When Pd is outside C, the line L may also not intersect C (no solution to the IK problem).
Figure 8(c) shows one such instance. The other two cases in the figure refer to when Pd is inside
(p2xd + p2yd < l21) or on (p2xd + p2yd = l21) the circumference C: both situations lead to two regular
solutions to the IK problem. When the point Pd is strictly inside the circumference C, there are
always two intersections of L with C, and thus two inverse solutions. However, in this case the
two solution values of q3 will have different signs. Finally, Fig. 8(d) suggests that some caution
should be used when Pd is on C. In fact, two distinct (regular) inverse solutions will exist unless
the orientation αd is tangent to C, in which case they collapse into a single one with q3 = 0 (again,
a singular case). Figure 8 summarizes geometrically all the above possible situations.

Note that all singular solutions (i.e., when the cardinality of the solution set drops to 1 for a given
input rd) will occur for cos q2 = 0. This corresponds to a singularity of the 3× 3 analytic Jacobian
matrix J(q) = (∂fr(q)/∂q) associated to the direct kinematics (3). The Jacobian matrix arises
when considering the differential kinematics of a robot, namely the mapping from joint to task
velocities (and vice versa).

𝒚

𝒙

𝑷𝒅 = 𝑝'(, 𝑝*(

𝛼(

𝑙-

1 (singular)
solution

1 (singular)
solution

2 (regular)
solutions

all with
𝑞/ > 0

line L

line L

line L

circumference C
𝑞2

𝑞22

𝒚

𝒙

𝑷𝒅 = 𝑝'(, 𝑝*(𝛼(

𝑙-

1 (singular)
solution

[with cos 𝑞2 = 0]

1 (singular)
solution

[with cos 𝑞2 = 0]

2 (regular)
solutions

all with 𝑞5 < 0
(forearm dashed)

line L

circumference C

line L

line L

𝑞7

𝑞77

(a) (b)

𝒚

𝒙

𝑷𝒅 = 𝑝'(, 𝑝*(𝛼(

𝑙-

no solution

2 (regular) solutions:
with 𝑞/ > 0 and 𝑞/ < 0

(forearm dashed)

𝑷𝒅 = 𝑝'(, 𝑝*(

𝛼(

𝛼(

2 (regular) solutions:
with 𝑞/ = 0 and 𝑞/ < 0

(forearm dashed)

𝑷𝒅 = 𝑝'(, 𝑝*(

line L

circumference C

line L
line L

𝒚

𝒙

𝛼$

𝑙&

1 (singular) solution
with 𝑞( = 0 and cos 𝑞. = 0

(𝑞. = 𝜋 2⁄ , 𝑞. = −𝜋/2)

𝑷𝒅 = 𝑝8$, 𝑝9$ 𝛼$

𝑷𝒅 = 𝑝8$, 𝑝9$

𝛼$

2 (regular) solutions
with sin 𝑞. = 0:

𝑞. = 0, 𝑞( = 0; 𝑞. = 𝜋, 𝑞( = 2𝑙&

line L

circumference C

line L

(c) (d)

Figure 8: A geometric view of possible situations for the inverse kinematics of the RRP robot.
Please refer to the text for a discussion of the cases (a) to (d).
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