
Robotics 1

Remote Midterm Test – November 20, 2020

The test has the form of a Questionnaire with 10 questions. Provide as many answers as you can,
with short but significant texts and formulas/tables/pictures. Please write clearly. If you wish, you
may use the ‘Reply Sheet’ in the Exam.net environment to type in some answers. Take a picture of
each page of your handwritten answers and upload them before submitting. Try to follow the same
order of the questions. Number your answers accordingly (don’t repeat the text of the questions).

Question #1

Given three rotations around the sequence of fixed axes ZYX by the angles α1 = −π/2, α2 = −π/4,
and α3 = π/4 [rad], provide the rotation matrix R that specifies the final orientation. Compute
then a vector r ∈ R3, with ‖r‖ = 1, that will not be rotated by R.

Question #2

A rigid body rotates from an initial orientation Ri to a final orientation Rf , as specified by

Ri =


0 1 0

0.5 0

√
3

2√
3

2
0 −0.5

 , Rf =

 1 0 0

0 −1 0

0 0 −1

 .

Find an axis/angle representation (r, θ) of the rotation. Is the solution unique in this case?

Question #3

The pose of a rigid body B in 3D space w.r.t. a reference frame is expressed by 6 independent
parameters, 3 for its position and 3 for its orientation when using a minimal representation. Why
do we need then only 4 Denavit-Hartenberg parameters to characterize the pose of a link in a serial
manipulator w.r.t. the frame associated to the previous link?

Question #4

For generic m ≥ 1 and n > 1, give the total number of elementary products N× and additions N+

in evaluating, through operations with rotation matrices j−1Rj , the vectors 0vi ∈ R3 by the
expression

0vi =
(
0R1

1R2 . . .
n−1Rn

)
0vi, for i = 1, . . . ,m, (1)

or by successive matrix-vector products as

0vi = 0R1

(
1R2

(
. . .
(
. . .
(
n−1Rn

0vi
))
. . .
))
, for i = 1, . . . ,m. (2)

Given a value n > 1, which is the break-even value of m at which the number of evaluations N×
using (1) becomes advantageous (or disadvantageous) w.r.t. that using (2)?

Question #5

Robots are multi-body electromechanical systems driven by the torques τ produced by the motors
at the joints. In which sense are we allowed to say that one can move them by commanding just
a desired joint velocity q̇ (or a joint position q)?
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Question #6

Consider the 4-dof PRPR robot sketched in Fig. 1, where the base frame RF0 and the end-effector
frame RF4 are already assigned. The robot has a shoulder offset given by the constant N > 0.

z4

x4

y4

z0

x0

y0

N

x0

y0

y4

z4

N

Figure 1: Kinematic skeleton of a PRPR robot. A perspective [left] and a top view (right).

Assign the other frames according to the Denavit-Hartenberg convention and build the associated
table of parameters so that the position of the origin O4 of the end-effector frame will be given by

0p4(q) =

 N cos q2 − q3 sin q2

N sin q2 + q3 cos q2

q1

 . (3)

Determine the symbolic expression of 0R4(q) in the direct kinematics. Further, provide a numerical
matrix R ∈ SO(3) representing an orientation that the end-effector of this robot can never assume.

Question #7

Given a desired p ∈ R3 for 0p4(q) in (3), find all the analytical solutions q =
(
q1 q2 q3

)T
to

the associated inverse kinematics problem in the regular case. Assuming there are no joint limits,
sketch also the primary workspace WS1 of the 4-dof PRPR robot. Finally, compute the numerical

solutions to this inverse kinematics problem for p =
(

0 2 1.5
)T

with N = 0.3 [m].

Question #8

What are the pros and cons in estimating online or offline the velocity of a joint from position data
measured by an encoder using numerical differentiation formulas. Write a simple code that uses
the 1-step BDF (Euler) formula to provide online estimates ẏek = ẏe(tk), for k = 1, . . . , 10, of the
velocity from the following series of ten position data (noisy and with only 4 significant digits),
collected with a sampling frequency of 40 Hz from t1 = 0 on:

{yk} =
{

0.0007 0.1251 0.2500 0.3741 0.4977 0.6187 0.7397 0.8579 0.9739 1.0876
}

[rad]

Compute also the average value ¯̇ye of the obtained samples of velocity estimates (for comparison,
the average value of the true velocity samples ẏk, for k = 1, . . . , 10, is ¯̇y = 4.8239 [rad/s]).
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Question #9

With reference to Fig. 2, the second joint of a 2R planar arm having link length L1 = 0.45 and
L2 = 0.35 [m] is actuated by a motor M located at the first joint through a toothed transmission
belt inside the body of link 1 (this may represent the situation of the first two dof of a SCARA
robot). The belt connects a toothed disk of radius r1 = 5 [cm], placed on the output shaft of motor
M , with a second one of radius r2 = 0.25 [m], connected to the axis of joint 2. An incremental
encoder with 700 pulses/turn and electronic multiplication by a factor 4 is mounted on the back
of motor M , for measuring its angular position θM .

a) Suppose that the optical disk of the encoder has generated 300 light pulses while rotating in the
CCW direction in a time interval T = 1.2 [s]. How large is the rotation ∆θ2 (in [rad]) performed

by the second link? And what is the average angular speed
¯̇
θ2 (in [rad/s]) during T?

b) With the robot in the configuration θ = 0 (stretched arm) and keeping joint 1 at rest, what is
the minimal lateral displacement (along the y0 direction) of the tip of link 2 that can be sensed
by the encoder?

motor M
of joint 2

joint
axis 1

encoder joint
axis 2

motor of
joint 1

L2 = .35

x0

z0

x1

z1

x2

z2

tip of
link 2

y0

r1

r2

toothed
belt

L1 = .45

Figure 2: The transmission arrangement for moving joint 2 with a motor M placed at joint 1.

Question #10

The base frame RF0 of a robot has its origin placed in the position Wp0 =
(

1 1 0
)T

and
is rotated by an angle β = π/2 [rad] around the zw axis of the world frame RFW . In a given
configuration, the end-effector pose of the robot is given by

0TE =


0 0.5 −

√
3

2
1

1 0 0 −0.75

0 −
√

3

2
−0.5 1.5

0 0 0 1

 .

The position of the tip of a tool mounted on the end-effector is Eptool =
(

0 0.3 0.3
)T

[m].
Moreover, the tool frame RFtool associated to this point is rotated by an angle γ = −π/2 [rad]
around the xE axis of the end-effector frame RFE . Compute the position of the tip of the tool in
the world frame and the absolute orientation of the tool frame w.r.t. RFW .

[180 minutes (3 hours); open books]
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Solution
November 20, 2020

Question #1

Given three rotations around the sequence of fixed axes ZYX by the angles α1 = −π/2, α2 = −π/4,
and α3 = π/4 [rad], provide the rotation matrix R that specifies the final orientation. Compute
then a vector r ∈ R3, with ‖r‖ = 1, that will not be rotated by R.

Reply #1

The assigned sequence is of the Roll-Pitch-Yaw type, with

RZ =

 cosα1 − sinα1 0

sinα1 cosα1 0

0 0 1


∣∣∣∣∣∣∣
α1 = −π/2

=

 0 1 0

−1 0 0

0 0 1


RY =

 cosα2 0 sinα2

0 1 0

− sinα2 0 cosα2


∣∣∣∣∣∣∣
α2 = −π/4

=

 1/
√

2 0 −1/
√

2

0 1 0

1/
√

2 0 1/
√

2


RX =

 1 0 0

0 cosα3 − sinα3

0 sinα3 cosα3


∣∣∣∣∣∣∣
α3 = π/4

=

 1 0 0

0 1/
√

2 −1/
√

2

0 1/
√

2 1/
√

2

 .

The final orientation is computed by the product of these matrices in the reverse order of definition
(rotations around fixed axes) as

R = RXRYRZ =

 0 1/
√

2 −1/
√

2

−1/
√

2 −0.5 −0.5

−1/
√

2 0.5 0.5

 .

The unit vector r ∈ R3 that is not rotated (nor scaled) by R is the eigenvector of R associated to
its real eigenvalue λ = +1, i.e., such that

Rr = r ⇒ normalizing r, up to the sign ⇒ r = ±

 −0.5774

0

0.8165

 .

This can be computed, e.g., with the Matlab instruction [V,D]=eig(R), extracting then the (only)
real eigenvector from the columns of the matrix V. �

Question #2

A rigid body rotates from an initial orientation Ri to a final orientation Rf , as specified by

Ri =


0 1 0

0.5 0

√
3

2√
3

2
0 −0.5

 , Rf =

 1 0 0

0 −1 0

0 0 −1

 .

Find an axis/angle representation (r, θ) of the rotation. Is the solution unique in this case?
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Reply #2

One has to solve the inverse problem for the axis/angle representation (r, θ) of a rotation matrix

R(r, θ) = iRf = RT
i Rf =

 0 −0.5 −0.8660

1 0 0

0 −0.8660 0.5

, (4)

where iRf is the relative rotation from the initial to the final orientation. Denoting by Rhk the
elements of the iRf matrix, from the inverse formulas we have

sin θ = ±1

2

√
(R12 −R21)2 + (R23 −R32)2 + (R13 −R31)2 = 0.9682 6= 0. (5)

Therefore, this is a regular case and there will be two opposite solutions (r, θ) and (−r,−θ). The
solution corresponding to the choice of the + sign in (5) is computed by the four Matlab instructions

ctheta=(R(1,1)+R(2,2)+R(3,3)-1)/2

stheta=sqrt((R(1,2)-R(2,1))^2+(R(2,3)-R(3,2))^2+(R(1,3)-R(3,1))^2)/2

ri=1/(2*stheta)*[R(3,2)-R(2,3); R(1,3)-R(3,1); R(2,1)-R(1,2)]

theta=atan2(stheta,ctheta)

yielding

ir =

 −0.4472

−0.4472

0.7746

 , θ = 1.8235 [rad] = 104.48◦.

Note that the unit axis r obtained with this procedure is naturally expressed in the coordinates of
the initial frame oriented asRi. From (4), the final orientation is in fact computed by concatenating

0RiR
(
ir, θ

)
= 0Ri

iRf = 0Rf ,

where the coordinate frame of definition of each vector/matrix term has been explicitly indicated
by the use of superscripts. Thus, the expression of the invariant axis in the reference frame RF0 is

0r = Ri
ir =

 −0.4472

0.4472

−0.7746

 . �

Question #3

The pose of a rigid body B in 3D space w.r.t. a reference frame is expressed by 6 independent
parameters, 3 for its position and 3 for its orientation when using a minimal representation. Why
do we need then only 4 Denavit-Hartenberg parameters to characterize the pose of a link in a serial
manipulator w.r.t. the frame associated to the previous link?

Reply #3

This reduction follows from the fact that link i (and so, its associated frame RFi) is not free to
be placed in the 3D space w.r.t. link i − 1 (and its associated frame RFi−1). The two links are
connected at a joint that sets 2 scalar geometric constraints on the 6-dimensional relative pose
between link i− 1 and link i, leaving its characterization specified by only 4 residual parameters.
The Denavit-Hartenberg convention is a clever choice of the origins and coordinate axes of the link
frames, which shows how to cut down the number of relative pose parameters from 6 to 4. One
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of these parameters is variable, allowing the motion of frame RFi around or along the axis, of the
1-dof joint (respectively, revolute or prismatic). �

Question #4

For generic m ≥ 1 and n > 1, give the total number of elementary products N× and additions N+ in
evaluating, through operations with rotation matrices j−1Rj, the vectors 0vi ∈ R3 by the expression

0vi =
(
0R1

1R2 . . .
n−1Rn

)
0vi, for i = 1, . . . ,m, (6)

or by successive matrix-vector products as

0vi = 0R1

(
1R2

(
. . .
(
. . .
(
n−1Rn

0vi
))
. . .
))
, for i = 1, . . . ,m. (7)

Given a value n > 1, which is the break-even value of m at which the number of evaluations N×
using (6) becomes advantageous (or disadvantageous) w.r.t. that using (7)?

Reply #4

The product of a 3× 3 matrix by a 3-dimensional vector needs 9 multiplications and 6 additions,
whereas the product between two 3 × 3 matrices needs three times as many, namely 27 multipli-
cations and 18 additions. When doing the (n − 1) products of the n rotation matrices first, and
then applying it to the m vectors vi ∈ R3 as in the first method (6), one obtains

N×,1 = 27(n− 1) + 9m and N+,1 = 18(n− 1) + 6m.

Using instead the recursive matrix-vector product n times for each of the m vectors vi as in the
second method (7), one has

N×,2 = 9mn and N+,2 = 6mn.

Comparing the number of elementary products, gives

N×,1 = 27(n− 1) + 9m Q 9mn = N×,2 ⇐⇒ 27(n− 1) Q 9m(n− 1) ⇐⇒ 27 Q 9m.

Thus, the break-even is obtained exactly at m = 3, with the first method (6) becoming more
convenient when more than 3 vectors vi have to be transformed. Note that this result is independent
of n. Moreover, it can be generalized to matrix/vector computations in any dimension p ≥ 2 (e.g.,
with p = 4, for 4× 4 homogeneous matrices) leading to m = p as break-even value. �

Question #5

Robots are multi-body electromechanical systems driven by the torques τ produced by the motors at
the joints. In which sense are we allowed to say that one can move them by commanding just a
desired joint velocity q̇ (or a joint position q)?

Reply #5

This statement is correct in so far we assume that a low-level servo system with a feedback loop
is present on each actuator —often, an electrical motor— at the robot joints. The velocity com-
mand q̇ (or the position q) will be the reference input for these controllers. For the generic j-th
servomotor, with j = 1, . . . , n, a voltage Vj and a current ij are generated that make the motor
produce a torque τj on its output shaft. This torque will move the driven link i, possibly through
transmission/reduction elements, until the reference velocity q̇i (or position qi) will be reached,
i.e., when the error between the desired and the measured output variable is zero. �
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Question #6

Consider the 4-dof PRPR robot sketched in Fig. 1, where the base frame RF0 and the end-effector
frame RF4 are already assigned. The robot has a shoulder offset given by the constant N > 0.
Assign the other frames according to the Denavit-Hartenberg convention and build the associated
table of parameters so that the position of the origin O4 of the end-effector frame will be given by

0p4(q) =

 N cos q2 − q3 sin q2

N sin q2 + q3 cos q2

q1

 . (8)

Determine the symbolic expression of 0R4(q) in the direct kinematics. Further, provide a numerical
matrix R ∈ SO(3) representing an orientation that the end-effector of this robot can never assume.

Reply #6

The unique assignment of the remaining Denavit-Hartenberg (DH) frames that is consistent with
the positional direct kinematics (8) is illustrated by the two views in Fig. 3 and Fig. 4. The
associated set of DH parameters is given in Table 1, with the joint variables q taking the values
(or just the signs) according to the configuration shown in Fig. 4.

z3 = z4

x4

x3

z0

x0

y0

N
z1

x1

O1

O0

q1

x2

z2
q2

q3

q4

Figure 3: A perspective view of the DH frame assignment for the PRPR robot of Fig. 1.

N

x0 = x1

y0 = y1

q1 = 0

q2 < 0

x2

q3 > 0

q4 = -p/2

x3 = y4

z3 = z4

(at zero height)

Figure 4: Top view of the frame assignment in Fig. 3, with the robot in a different configuration.
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i αi ai di θi

1 0 0 q1 = 0 0

2 −π/2 N > 0 0 q2 < 0

3 0 0 q3 > 0 0

4 0 0 0 q4 = −π/2

Table 1: Table of DH parameters of the PRPR robot: q is associated to the configuration in Fig. 4.

Constructing the DH homogeneous transformation matrices i−1Ai(qi), for i = 1, . . . , 4, it is imme-
diate to compute the orientation of the end-effector frame RF4 as

0R4(q) = 0R1
1R2(q2) 2R3

3R4(q4) =

 cos q2 cos q4 − cos q2 sin q4 − sin q2

sin q2 cos q4 − sin q2 sin q4 cos q2

− sin q4 − cos q4 0

 .

This matrix is parametrized by the two rotational joint variables q2 and q4 only. It is easy to
conclude that the end effector has no sufficient mobility to assume an arbitrary orientation in the
3D space. In particular, the end-effector approach axis z4 can never point out of the horizontal
plane. This is revealed by the structural 0 in position (3, 3) of matrix 0R4. Therefore, unfeasible
orientations for the robot end-effector are given, e.g., by the one-dimensional family of rotation
matrices

R =

 cosβ − sinβ 0

sinβ cosβ 0

0 0 1

 , ∀β ∈ R.

Indeed, any matrixR ∈ SO(3) having R3,3 6= 0 will represent an unfeasible end-effector orientation
for this 4-dof robot. �

Question #7

Given a desired p ∈ R3 for 0p4(q) in (8), find all the analytical solutions q =
(
q1 q2 q3

)T
to

the associated inverse kinematics problem in the regular case. Assuming there are no joint limits,
sketch also the primary workspace WS1 of the 4-dof PRPR robot. Finally, compute the numerical

solutions to this inverse kinematics problem for p =
(

0 2 1.5
)T

with N = 0.3 [m].

Reply #7

The closed-form solution to the inverse kinematics for the end-effector position of the PRP robot

(the last rotational joint is irrelevant here) is found as follows. Let 0p4(q) = p =
(
px py pz

)T
.

Using this in (8), by squaring and summing the first two equations we obtain

(N cos q2 − q3 sin q2)
2

+ (N sin q2 + q3 cos q2)
2

= N2 + q23 = p2x + p2y ⇒ q3 = ±
√
p2x + p2y −N2.

The argument of the square root should not be negative, which sets in fact the only limitation on
the primary workspace WS1 =

{
p ∈ R3 : p2x + p2y ≥ N2

}
. In the regular case (q3 6= 0), for each of

the two values q3 = q+3 and q3 = q−3 we solve the following linear system (whose determinant is
always N2 + q23 > 0) in the unknowns c2 = cos q2 and s2 = sin q2 as(

N −q{+,−}
3

q
{+,−}
3 N

)
=

(
c2

s2

)
=

(
px

py

)
⇒ q2 = atan2

{
Npy − q{+,−}

3 px, Npx + q
{+,−}
3 py

}
.
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Finally, we have the unique value for the first prismatic joint q1 = pz.

Summarizing, in the regular case (p2x + p2y > N2) we have the two solutions:

qI =


pz

atan2
{
pyN − px

√
p2x + p2y −N2, pxN + py

√
p2x + p2y −N2

}
√
p2x + p2y −N2

 ,

qII =


pz

atan2
{
pyN + px

√
p2x + p2y −N2, pxN − py

√
p2x + p2y −N2

}
−
√
p2x + p2y −N2

 .

At the (inner) boundary of the primary workspace (p2x + p2y = N2), the two solutions qI and qII

collapse into a single one. Being N > 0, we can write this singular solution as

qs =

 pz

atan2 {py, px}
0


Finally, there is no solution for p2x + p2y < N2.

The primary workspace1 WS1 is obtained by subtracting from the entire Euclidean space R3 an
infinite cylinder of radius N having its axis coincident with the axis z0. For the numerical input

data provided, being
√
p2x + p2y = 4 > 0.3 = N , we will have two regular solutions to the inverse

kinematics, namely

qI =

 1.5

0.1506

1.9774

 , qII =

 1.5

2.9910

−1.9774

 [m; rad; m]. �

Question #8

What are the pros and cons in estimating online or offline the velocity of a joint from position
data measured by an encoder using numerical differentiation formulas. Write a simple code that
uses the 1-step BDF (Euler) formula to provide online estimates ẏek = ẏe(tk), for k = 1, . . . , 10, of
the velocity from the following series of ten position data (noisy and with only 4 significant digits),
collected with a sampling frequency of 40 Hz from t1 = 0 on:

{yk} =
{

0.0007 0.1251 0.2500 0.3741 0.4977 0.6187 0.7397 0.8579 0.9739 1.0876
}

[rad]

Compute also the average value ¯̇ye of the obtained samples of velocity estimates (for comparison,
the average value of the true velocity samples ẏk, for k = 1, . . . , 10, is ¯̇y = 4.8239 [rad/s]).

Reply #8

The results are obtained using, e.g., the following segment of Matlab code (with comments).

1Sorry, no figure! It is rather awkward to draw such a workspace when there is no limit to the ranges of the two
prismatic joints.
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\% position data as input

yN=[0.0007 0.1251 0.2500 0.3741 0.4977 0.6187 0.7397 0.8579 0.9739 1.0876];

\%

ns=length(yN); \% number of samples in yN

Tc=0.025; \% sampling interval for a 40 Hz frequency

t=[0:Tc:(ns-1)*Tc]; \% sampled instants of time

\% this initialization step is commented further in the text

yprec=0; \% alternatives: yprec=yN(1); or yprec=2*yN(1)-yN(2);

for i=1:length(t)

yd1(i)=(yN(i)-yprec)/Tc; \% 1-step (Euler) BDF

yprec=yN(i);

end

\% output results

disp(‘1-step BDF (Euler) velocity estimates and average’)

yd1

avgyd1=mean(yd1)

The output is

{ẏek} =
{

0.0280 4.9760 4.9960 4.9640 4.9440 4.8400 4.8400 4.7280 4.6400 4.5480
}

[rad/s]

with an average value ¯̇ye = 4.3504 [rad/s].

The initialization of the 1-step BDF method (yprec in the command line before the for loop) is
needed for computing the first sample ẏe1 of the velocity estimate. In fact, there is no ‘previous’
position sample to be used in the BDF formula ẏek = (yk − yk−1))/Tc when k = 1. Any choice
for y0 ( i.e., for initializing yprec in the code) is feasible. Since the Euler method is a one-step
approximation, this will affect only the first sample of the produced output. Here, we took y0 = 0
as a neutral value. Another reasonable choice is to set y0 = y1 = 0.0007, i.e., repeating the same
first position sample of the data series. This leads to ẏe1 = (y1 − y0)/Tc = 0 (as opposed to
ẏe1 = 0.0280), with just a slightly larger average ¯̇ye = 4.3476 [rad/s]. It is easy to obtain a better
approximation of the derivative ẏe1 at k = 1 by using the next position sample y2. This future
knowledge would give for the initialization yprec

y0 = y1 −
(
y2 − y1
Tc

)
Tc = 2y1 − y2,

leading to ẏe1 = (y1 − y0)/Tc = (y2 − y1)/Tc = ẏe2 = 4.9760, The average of the output series grows
then to ¯̇ye = 4.8452, which is much closer to the true value ¯̇y = 4.8239 [rad/s]. �

Question #9

With reference to Fig. 2, the second joint of a 2R planar arm having link length L1 = 0.45 and
L2 = 0.35 [m] is actuated by a motor M located at the first joint through a toothed transmission
belt inside the body of link 1 (this may represent the situation of the first two dof of a SCARA
robot). The belt connects a toothed disk of radius r1 = 5 [cm], placed on the output shaft of motor
M , with a second one of radius r2 = 0.25 [m], connected to the axis of joint 2. An incremental
encoder with 700 pulses/turn and electronic multiplication by a factor 4 is mounted on the back of
motor M , for measuring its angular position θM .

a) Suppose that the optical disk of the encoder has generated 300 light pulses while rotating in the
CCW direction in a time interval T = 1.2 [s]. How large is the rotation ∆θ2 (in [rad]) performed

by the second link? And what is the average angular speed
¯̇
θ2 (in [rad/s]) during T?
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b) With the robot in the configuration θ = 0 (stretched arm) and keeping joint 1 at rest, what is
the minimal lateral displacement (along the y0 direction) of the tip of link 2 that can be sensed
by the encoder?

Reply #9

a) Since the reduction ratio of the toothed belt transmission is Nr = r2/r1 = 0.25/0.05 = 5, the
answers are

∆θ2 =
∆θM
Nr

=
# pulses

# pulses per turn
· 2π · 1

Nr
=

300

700
· 2π

5
= 0.5386 [rad],

¯̇
θ2 =

∆θ2
T

=
0.5386

1.2
= 0.4488 [rad/s].

In the first formula, only the fraction of a full turn rotation performed by the motor matters
(not the resolution of the position sensor).

b) On the other hand, the minimal displacement of the tip of the second link that can be sensed
depends on the actual resolution of the digital encoder mounted on its driving motor. In the
given situation (arm stretched along the x0-axis and joint 1 not moving), only the length L2 of
the second link of the 2R robot is involved in this evaluation. We have

∆ptip,y = L2 ·∆θ2,res = L2 ·
2π

4×# pulses per turn
· 1

Nr
=

2π

2800
· 0.35

5
= 0.157 [mm]. �

Question #10

The base frame RF0 of a robot has its origin placed in the position Wp0 =
(

1 1 0
)T

and
is rotated by an angle β = π/2 [rad] around the zw axis of the world frame RFW . In a given
configuration, the end-effector pose of the robot is given by

0TE =


0 0.5 −

√
3

2
1

1 0 0 −0.75

0 −
√

3

2
−0.5 1.5

0 0 0 1

 .

The position of the tip of a tool mounted on the end-effector is Eptool =
(

0 0.3 0.3
)T

[m].
Moreover, the tool frame RFtool associated to this point is rotated by an angle γ = −π/2 [rad]
around the xE axis of the end-effector frame RFE. Compute the position of the tip of the tool in
the world frame and the absolute orientation of the tool frame w.r.t. RFW .

Reply #10

The result is obtained by multiplying three homogeneous 4× 4 matrices, the given 0TE associated
to the robot direct kinematics expressed in its base frame, and the two world-to-base and end
effector-to-tool transformations

WT 0 =

 Rzw
(β =

π

2
) Wp0

0T 1

 =


0 −1 0 1

1 0 0 1

0 0 1 0

0 0 0 1
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and, respectively,

ET tool =

 RxE
(γ = −π

2
) Eptool

0T 1

 =


1 0 0 0

0 0 1 0.3

0 −1 0 0.3

0 0 0 1

.
Therefore

WT tool = WT 0
0TE

ET tool =


−1 0 0 1.75

0 0.8660 0.5 1.8902

0 0.5 −0.8660 1.0902

0 0 0 1

 =

( WRtool
Wptool

0T 1

)
. �

∗ ∗ ∗ ∗ ∗
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