Robotics I

B: preferred for 5 credits
January 12, 2010

Exercise 1

Consider the Cartesian path defined by

$$
\boldsymbol{p}=\boldsymbol{p}(s)=\left(\begin{array}{c}
x(s) \\
y(s) \\
z(s)
\end{array}\right)=\left(\begin{array}{c}
R \cos s \\
R \sin s \\
h s
\end{array}\right), \quad s \in[0,+\infty)
$$

where $R>0$ and $h>0$. This path is a spiral around the z-axis. Define a timing law $s=s(t)$ having a trapezoidal speed profile in $t \in[0, T]$, for a given and sufficiently large final time $T>0$, such that the resulting planned trajectory $\boldsymbol{p}_{d}(t)=\boldsymbol{p}(s(t))$ satisfies the following conditions:

- $\dot{\boldsymbol{p}}_{d}(0)=\dot{\boldsymbol{p}}_{d}(T)=\mathbf{0} ;$
- $\left\|\dot{\boldsymbol{p}}_{d}(t)\right\| \leq V$, for a given $V>0$;
- $\left\|\ddot{\boldsymbol{p}}_{d}(t)\right\| \leq A$, for a given and sufficiently large $A>0$.

Provide in particular the reached height $z_{d}(T)$ in closed form.
Moreover, define a coordinated motion for the orientation along the above path, by specifying a moving frame that has its \boldsymbol{x}_{o} axis always pointing and orthogonal to the central axis of the spiral (the \boldsymbol{z}-axis) and its \boldsymbol{z}_{o} always parallel to it. What is the maximum value reached by the norm of the angular velocity, $\|\boldsymbol{\omega}\|$, associated to the planned trajectory?
Finally, evaluate the solution found for the following numerical data:

$$
R=0.3[\mathrm{~m}], \quad h=0.1[\mathrm{~m}], \quad V=1[\mathrm{~m} / \mathrm{s}], \quad A=5\left[\mathrm{~m} / \mathrm{s}^{2}\right], \quad T=4[\mathrm{~s}] .
$$

Exercise 2B

Figure 1: A cylindrical manipulator
Derive the 6×3 geometric Jacobian for the cylindrical manipulator in Fig. 1 and find the singularities of its linear velocity part. Consider a desired motion $\boldsymbol{p}_{d}(t)$ of the end-effector position that is twice-differentiable w.r.t. time. Taking the joint accelerations $\ddot{\boldsymbol{q}}=\left(\begin{array}{lll}\ddot{\theta}_{1} & \ddot{d}_{2} & \ddot{d}_{3}\end{array}\right)^{T}$ as control inputs and assuming that only \boldsymbol{q} and $\dot{\boldsymbol{q}}$ are measured, define a Cartesian kinematic controller at the acceleration level that assigns (out of singularities) the closed-loop behavior to the system

$$
\ddot{\boldsymbol{e}}+\boldsymbol{K}_{D} \dot{\boldsymbol{e}}+\boldsymbol{K}_{P} \boldsymbol{e}=\mathbf{0}
$$

where $\boldsymbol{e}=\boldsymbol{p}_{d}-\boldsymbol{p}$, and \boldsymbol{K}_{P} and \boldsymbol{K}_{D} are positive definite, diagonal matrices.
[150 minutes; open books]

Solutions

January 12, 2010

Exercise 1

The velocity vector along the path is given by

$$
\dot{\boldsymbol{p}}_{d}=\frac{d \boldsymbol{p}_{d}(t)}{d t}=\frac{d \boldsymbol{p}(s)}{d s} \frac{d s(t)}{d t}=\left(\begin{array}{c}
-R \sin s \\
R \cos s \\
h
\end{array}\right) \dot{s},
$$

and thus

$$
\left\|\dot{\boldsymbol{p}}_{d}(t)\right\|=\sqrt{R^{2}+h^{2}}|\dot{s}(t)|
$$

The constraint $\left\|\dot{\boldsymbol{p}}_{d}(t)\right\| \leq V$ on the Cartesian velocity becomes

$$
|\dot{s}(t)| \leq \frac{V}{\sqrt{R^{2}+h^{2}}}=: V_{\max }
$$

for the speed profile \dot{s}.
The acceleration vector along the path is given by

$$
\ddot{\boldsymbol{p}}_{d}=\frac{d^{2} \boldsymbol{p}_{d}(t)}{d t^{2}}=\frac{d \boldsymbol{p}(s)}{d s} \ddot{s}(t)+\frac{d^{2} \boldsymbol{p}(s)}{d s^{2}} \dot{s}^{2}(t)=\left(\begin{array}{c}
-R \sin s \\
R \cos s \\
h
\end{array}\right) \ddot{s}+\left(\begin{array}{c}
-R \cos s \\
-R \sin s \\
0
\end{array}\right) \dot{s}^{2},
$$

and thus

$$
\left\|\ddot{\boldsymbol{p}}_{d}(t)\right\|=\sqrt{\left(R^{2}+h^{2}\right) \ddot{s}^{2}(t)+\left(R \dot{s}^{2}(t)\right)^{2}} .
$$

The constraint $\left\|\ddot{\boldsymbol{p}}_{d}(t)\right\| \leq A$ on the Cartesian acceleration can be rewritten as

$$
\left(R^{2}+h^{2}\right) \ddot{s}^{2}(t) \leq A^{2}-\left(R \dot{s}^{2}(t)\right)^{2}
$$

for the acceleration profile \ddot{s}. Since this constraint has to be satisfied for all $t \in[0, T]$, one should consider the worst case, i.e., $|\dot{s}|=V_{\max }$. We obtain

$$
|\ddot{s}(t)| \leq \sqrt{\frac{A^{2}-\left(\frac{R V^{2}}{R^{2}+h^{2}}\right)^{2}}{R^{2}+h^{2}}}=: A_{\max }
$$

In order to have a feasible $A_{\max }>0$, the value of A should be sufficiently large, i.e.,

$$
\begin{equation*}
A>\frac{R V^{2}}{R^{2}+h^{2}} \tag{1}
\end{equation*}
$$

At this stage, given the total time T and the computed limits $V_{\max }$ and $A_{\max }$, the timing law with trapezoidal speed profile is fully specified. In particular, we have for the acceleration/deceleration interval time

$$
T_{s}=\frac{V_{\max }}{A_{\max }}=\frac{V}{\sqrt{A^{2}-\left(\frac{R V^{2}}{R^{2}+h^{2}}\right)^{2}}}
$$

In order to have a complete trapezoidal profile (with at least one instant where $V_{\max }$ is reached), the total time T should be sufficiently large, i.e.,

$$
\begin{equation*}
T \geq 2 T_{s}=\frac{2 V}{\sqrt{A^{2}-\left(\frac{R V^{2}}{R^{2}+h^{2}}\right)^{2}}} \tag{2}
\end{equation*}
$$

The total displacement of the parameter s at time $t=T$ is then

$$
s_{\max }:=s(T)=\left(T-T_{s}\right) V_{\max }=T V_{\max }-\frac{V_{\max }^{2}}{A_{\max }}=\frac{T V}{\sqrt{R^{2}+h^{2}}}-\frac{V^{2}}{\sqrt{\left(R^{2}+h^{2}\right) A^{2}-\frac{\left(R V^{2}\right)^{2}}{R^{2}+h^{2}}}} .
$$

Therefore, the reached height at the final time $t=T$ is

$$
z_{d}(T)=h s(T)=h s_{\max }
$$

For completeness, we compute also the curvature of the given parametric path:

$$
\kappa(s)=\frac{\left\|\frac{d \boldsymbol{p}}{d s} \times \frac{d^{2} \boldsymbol{p}}{d s^{2}}\right\|}{\left\|\frac{d \boldsymbol{p}}{d s}\right\|^{3}}=\frac{R}{R^{2}+h^{2}}
$$

Indeed, $\kappa(s)$ is constant for all s and collapses to $1 / R$ for $h=0$.
For planning the requested orientation trajectory, which has to be coordinated with the position trajectory, we define a moving frame as a function of the same parameter s. This is given by

$$
\boldsymbol{R}(s)=\left(\begin{array}{lll}
\boldsymbol{x}_{o}(s) & \boldsymbol{y}_{0}(s) & \boldsymbol{z}_{o}(s)
\end{array}\right)=\left(\begin{array}{ccc}
-\cos s & \sin s & 0 \\
-\sin s & -\cos s & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Note that this moving frame is not the Frenet frame associated to the parametrized path. Using the notations $\boldsymbol{p}^{\prime}(s)=d \boldsymbol{p}(s) / d s$ and $\boldsymbol{p}^{\prime \prime}(s)=d^{2} \boldsymbol{p}(s) / d s^{2}$, the Frenet frame is specified as

$$
\begin{aligned}
\boldsymbol{R}_{\text {Frenet }}(s) & =\left(\begin{array}{ccc}
\boldsymbol{t}(s) & \boldsymbol{n}(s) & \boldsymbol{b}(s)
\end{array}\right)=\left(\begin{array}{ccc}
\frac{\boldsymbol{p}^{\prime}(s)}{\left\|\boldsymbol{p}^{\prime}(s)\right\|} & \frac{\boldsymbol{p}^{\prime \prime}(s)}{\left\|\boldsymbol{p}^{\prime \prime}(s)\right\|} & \boldsymbol{t}(s) \times \boldsymbol{n}(s)) \\
& =\left(\begin{array}{ccc}
-\frac{R}{\sqrt{R^{2}+h^{2}}} \sin s & -\cos s & \frac{h}{\sqrt{R^{2}+h^{2}}} \sin s \\
\frac{R}{\sqrt{R^{2}+h^{2}}} \cos s & -\sin s & -\frac{h}{\sqrt{R^{2}+h^{2}}} \cos s \\
\frac{h}{\sqrt{R^{2}+h^{2}}} & 0 & \frac{R}{\sqrt{R^{2}+h^{2}}}
\end{array}\right) .
\end{array} .\right.
\end{aligned}
$$

In fact, the two frames coincide (modulo a rotation of $\pi / 2$ around the \boldsymbol{z}-axis) only when $h=0$.
Setting $\boldsymbol{R}_{d}(t)=\boldsymbol{R}(s(t))$, the angular velocity vector is computed from
$\boldsymbol{S}(\boldsymbol{\omega})=\dot{\boldsymbol{R}}_{d} \boldsymbol{R}_{d}^{T}=\dot{s}(t)\left(\begin{array}{ccc}\sin s(t) & \cos s(t) & 0 \\ -\cos s(t) & \sin s(t) & 0 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{ccc}-\cos s(t) & -\sin s(t) & 0 \\ \sin s(t) & -\cos s(t) & 0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}0 & -\dot{s}(t) & 0 \\ \dot{s}(t) & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.
As expected (being the rotation of the moving frame only around the \boldsymbol{z}-axis and counterclockwise),

$$
\boldsymbol{\omega}=\left(\begin{array}{c}
0 \\
0 \\
\dot{s}(t)
\end{array}\right) \quad \Rightarrow \quad\|\boldsymbol{\omega}\|=|\dot{s}(t)|,
$$

and the maximum value of the norm of the angular velocity vector is obviously $V_{\max }$.
With the given numerical data, which satisfy both inequalities (1) and (2), we obtain:

$$
\begin{gathered}
V_{\max }=\sqrt{10}=3.1623, \quad A_{\max }=4 \sqrt{10}=12.6491, \quad T_{s}=0.25, \\
s_{\max }=3.75 \sqrt{10}=11.8585, \quad z_{d}(T)=0.375 \sqrt{10}=1.1859 .
\end{gathered}
$$

In the following, we show plots of the planned trajectory obtained in Matlab (code available).

Figure 2: The spiral Cartesian trajectory (with coordinates of the final reached point at time $T=4 \mathrm{~s}$)

Figure 3: Timing law: Path parameter $s(t)$, speed $\dot{s}(t)$, and acceleration $\ddot{s}(t)$

Figure 4: Components of Cartesian trajectory: Position, velocity, and acceleration (x in blue, y in green, z in red)

Figure 5: Norms of the Cartesian velocity and acceleration: The given bounds $\left\|\dot{\boldsymbol{p}}_{d}(t)\right\| \leq 1$ and $\left\|\ddot{\boldsymbol{p}}_{d}(t)\right\| \leq 5$ are always satisfied during motion

Exercise 2B

The Jacobian for the cylindrical (RPP) manipulator with $\boldsymbol{q}=\left(\theta_{1}, d_{2}, d_{3}\right)$ is

$$
\boldsymbol{J}(\boldsymbol{q})=\left(\begin{array}{ccc}
\boldsymbol{z}_{0} \times \boldsymbol{p} & \boldsymbol{z}_{1} & \boldsymbol{z}_{2} \\
\boldsymbol{z}_{0} & \mathbf{0} & \mathbf{0}
\end{array}\right)
$$

with the axes of the three joints being

$$
\boldsymbol{z}_{0}=\boldsymbol{z}_{1}=\left(\begin{array}{c}
0 \\
0 \\
1
\end{array}\right), \quad \boldsymbol{z}_{2}=\left(\begin{array}{c}
\cos \theta_{1} \\
\sin \theta_{1} \\
0
\end{array}\right)
$$

and the end-effector position vector given by

$$
\boldsymbol{p}=\boldsymbol{k}(\boldsymbol{q})=\left(\begin{array}{c}
d_{3} \cos \theta_{1} \tag{3}\\
d_{3} \sin \theta_{1} \\
d_{2}
\end{array}\right) .
$$

Then, the expression of the geometric Jacobian is

$$
\boldsymbol{J}(\boldsymbol{q})=\left(\begin{array}{ccc}
-d_{3} \sin \theta_{1} & 0 & \cos \theta_{1} \\
d_{3} \cos \theta_{1} & 0 & \sin \theta_{1} \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

which reveals that it is inherently impossible to rotate about the axes \boldsymbol{x}_{0} and \boldsymbol{y}_{0}.
The Jacobian relative to the end-effector linear velocity can be extracted by considering only the first three rows, i.e.

$$
\boldsymbol{J}_{L}(\boldsymbol{q})=\left(\begin{array}{ccc}
-d_{3} \sin \theta_{1} & 0 & \cos \theta_{1} \\
d_{3} \cos \theta_{1} & 0 & \sin \theta_{1} \\
0 & 1 & 0
\end{array}\right),
$$

which coincides indeed with the differentiation w.r.t. \boldsymbol{q} of the direct kinematics function $\boldsymbol{k}(\boldsymbol{q})$ in (3).
Its determinant is

$$
\operatorname{det} \boldsymbol{J}_{L}(\boldsymbol{q})=d_{3},
$$

vanishing at the singularity $d_{3}=0$. This occurs when the end-effector is located along the axis of joint 1 , a situation conceptually similar to the shoulder singularity of an anthropomorphic 3 R arm.

Since $\dot{\boldsymbol{p}}=\boldsymbol{J}_{L}(\boldsymbol{q}) \dot{\boldsymbol{q}}$, the differential kinematics at the acceleration level is

$$
\ddot{\boldsymbol{p}}=\boldsymbol{J}_{L}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\dot{\boldsymbol{J}}_{L}(\boldsymbol{q}) \dot{\boldsymbol{q}},
$$

where
$\dot{\boldsymbol{J}}_{L}(\boldsymbol{q}) \dot{\boldsymbol{q}}=\left(\begin{array}{ccc}-\dot{d}_{3} \sin \theta_{1}-d_{3} \dot{\theta}_{1} \cos \theta_{1} & 0 & -\dot{\theta}_{1} \sin \theta_{1} \\ \dot{d}_{3} \cos \theta_{1}-d_{3} \dot{\theta}_{1} \sin \theta_{1} & 0 & \dot{\theta}_{1} \cos \theta_{1} \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{c}\dot{\theta}_{1} \\ \dot{d}_{2} \\ \dot{d}_{3}\end{array}\right)=\left(\begin{array}{c}-2 \dot{d}_{3} \dot{\theta}_{1} \sin \theta_{1}-d_{3} \dot{\theta}_{1}^{2} \cos \theta_{1} \\ 2 \dot{d}_{3} \dot{\theta}_{1} \cos \theta_{1}-d_{3} \dot{\theta}_{1}^{2} \sin \theta_{1} \\ 0\end{array}\right)$.
Therefore, designing the joint acceleration vector as

$$
\begin{equation*}
\ddot{\boldsymbol{q}}=\boldsymbol{J}_{L}^{-1}(\boldsymbol{q})\left(\ddot{\boldsymbol{p}}_{d}+\boldsymbol{K}_{D}\left(\dot{\boldsymbol{p}}_{d}-\boldsymbol{J}_{L}(\boldsymbol{q}) \dot{\boldsymbol{q}}\right)+\boldsymbol{K}_{P}\left(\boldsymbol{p}_{d}-\boldsymbol{k}(\boldsymbol{q})\right)-\dot{\boldsymbol{J}}_{L}(\boldsymbol{q}) \dot{\boldsymbol{q}}\right) \tag{4}
\end{equation*}
$$

yields

$$
\ddot{\boldsymbol{p}}=\ddot{\boldsymbol{p}}_{d}+\boldsymbol{K}_{D}\left(\dot{\boldsymbol{p}}_{d}-\dot{\boldsymbol{p}}\right)+\boldsymbol{K}_{P}\left(\boldsymbol{p}_{d}-\boldsymbol{p}\right),
$$

namely the desired closed-loop behavior. Note that (4) is implemented using only the measurements of \boldsymbol{q} and $\dot{\boldsymbol{q}}$, beside the knowledge of the desired trajectory (up to its second time derivative) and of the arm direct and differential kinematics.

