Robotics 1

September 11, 2023

Figure 1: A 4P planar robot, with the world frame $R F_{w}$ and of the end-effector frame $R F_{e}$.
Consider the 4 -dof planar robot with a fixed base shown in Fig. 1. All robot joints are prismatic.

1. Draw the Denavit-Hartenberg (DH) frames and fill in the corresponding table of DH parameters.
2. Provide the two constant homogeneous transformations ${ }^{w} \boldsymbol{T}_{0}$ and ${ }^{4} \boldsymbol{T}_{e}$, relating respectively the world frame $R F_{w}$ to the 0 -th DH frame and the 4 -th DH frame to the end-effector frame $R F_{e}$.
3. Compute the direct kinematics as expressed by the homogeneous transformation matrix

$$
{ }^{w} \boldsymbol{T}_{e}(\boldsymbol{q})=\left(\begin{array}{cc}
{ }^{w} \boldsymbol{R}_{e}(\boldsymbol{q}) & { }^{w} \boldsymbol{p}_{w e}(\boldsymbol{q}) \\
0^{T} & 1
\end{array}\right), \quad{ }^{w} \boldsymbol{p}_{w e}(\boldsymbol{q})=\left(\begin{array}{c}
p_{x}(\boldsymbol{q}) \\
p_{y}(\boldsymbol{q}) \\
p_{z}(\boldsymbol{q})
\end{array}\right)
$$

4. Let the task vector be $\boldsymbol{r}=\boldsymbol{f}_{r}(\boldsymbol{q})=\left(p_{x}(\boldsymbol{q}), p_{y}(\boldsymbol{q})\right) \in \mathbb{R}^{2}$. Compute the associated task Jacobian $\boldsymbol{J}(\boldsymbol{q})=\partial \boldsymbol{f}_{r} / \partial \boldsymbol{q}$ and find its singularities.
5. At a given nonsingular \boldsymbol{q}, compute a basis for each of the two subspaces $\mathcal{N}(\boldsymbol{J})$ and $\mathcal{R}\left(\boldsymbol{J}^{\mathcal{T}}\right)$.
6. Determine the joint velocity $\dot{\boldsymbol{q}} \in \mathbb{R}^{4}$ with minimum norm that realizes a desired $\dot{\boldsymbol{r}}=(3,-2)[\mathrm{m} / \mathrm{s}]$.
7. Determine a joint torque $\boldsymbol{\tau} \in \mathbb{R}^{4}$ that statically balances a Cartesian force $\boldsymbol{F}=(2,1)[\mathrm{N}]$ applied at the robot end-effector. Is this $\boldsymbol{\tau}$ unique in the present case?
8. Plan a linear Cartesian trajectory between $\boldsymbol{r}_{\text {in }}=(-1,1)$ and $\boldsymbol{r}_{\text {fin }}=(3,7)$ and determine the minimum rest-to-rest motion time T when the joint velocity and acceleration limits are

$$
\left|\dot{q}_{i}\right| \leq 2[\mathrm{~m} / \mathrm{s}], \quad\left|\ddot{q}_{i}\right| \leq 5\left[\mathrm{~m} / \mathrm{s}^{2}\right], \quad \text { for all } i \in\{1,2,3,4\} .
$$

Motion of all joints should be coordinated. Discontinuous joint accelerations are admissible.

