Robotics 1

July 10, 2023

Figure 1: A 3-dof planar robot, with the definition of the joint variables $\beta_{i}, i=1,2,3$.
Consider the 3-dof planar robot with one prismatic and two revolute joints shown in Fig. 1. The joint variables $\boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ are defined therein. The prismatic joint has a limited range, with $\beta_{2} \in\left[-L_{2}, L_{2}\right]$, while the revolute joints are unlimited.

1. Sketch the primary workspace of this robot.
2. Compute the direct kinematics $\boldsymbol{r}=(\boldsymbol{p}, \alpha)=\boldsymbol{f}(\boldsymbol{\beta})$ for the position $\boldsymbol{p} \in \mathbb{R}^{2}$ of point P and the orientation $\alpha \in \mathbb{R}$ of the end-effector frame w.r.t. the \boldsymbol{x}_{0} axis.
3. Given a value of $\boldsymbol{r} \in \mathbb{R}^{3}$ solve the inverse kinematics problem in analytic form, taking into account the limited range of the prismatic joint.
4. Assign the frames for this robot according to the standard Denavit-Hartenberg (DH) convention and fill in the corresponding table of parameters. Denote by $\boldsymbol{q}=\left(q_{1}, q_{2}, q_{3}\right)$ the DH joint variables.
5. Compute the direct kinematics of \boldsymbol{r} as a function of \boldsymbol{q}, i.e., $\boldsymbol{r}=\boldsymbol{k}(\boldsymbol{q})$. Find the transformation between the two sets of joint variables, in its direct form $\boldsymbol{q}=\boldsymbol{t}(\boldsymbol{\beta})$ and inverse form $\boldsymbol{\beta}=\boldsymbol{t}^{-1}(\boldsymbol{q})$, such that $\boldsymbol{r}=\boldsymbol{f}(\boldsymbol{\beta})=\boldsymbol{k}(\boldsymbol{t}(\boldsymbol{\beta}))$ or, equivalently, $\boldsymbol{r}=\boldsymbol{k}(\boldsymbol{q})=\boldsymbol{f}\left(\boldsymbol{t}^{-1}(\boldsymbol{q})\right)$.
6. Determine the singularities of the 3×3 Jacobian $\boldsymbol{J}(\boldsymbol{q})$ in $\dot{\boldsymbol{r}}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}$.
7. In a singular configuration \boldsymbol{q}_{s}, determine a basis for each of the following four subspaces of \mathbb{R}^{3} : $\mathcal{R}\left(\boldsymbol{J}\left(\boldsymbol{q}_{s}\right)\right), \mathcal{N}\left(\boldsymbol{J}\left(\boldsymbol{q}_{s}\right)\right), \mathcal{R}\left(\boldsymbol{J}^{T}\left(\boldsymbol{q}_{s}\right)\right)$, and $\mathcal{N}\left(\boldsymbol{J}^{T}\left(\boldsymbol{q}_{s}\right)\right)$.
8. Let $L_{2}=L_{3}=L$. Plan a rest-to-rest trajectory in time T between $\boldsymbol{r}(0)=(L / 2, L / 2, \pi / 2)$ and $\boldsymbol{r}(T)=(-L / 2,-L / 2,-\pi / 2)(=-\boldsymbol{r}(0))$ without violating the joint limits. Is it possible to follow a linear Cartesian path in this case?
