

Figure 1: A 3-dof planar robot, with the definition of the joint variables β_i , i = 1, 2, 3.

Consider the 3-dof planar robot with one prismatic and two revolute joints shown in Fig. 1. The joint variables $\beta = (\beta_1, \beta_2, \beta_3)$ are defined therein. The prismatic joint has a limited range, with $\beta_2 \in [-L_2, L_2]$, while the revolute joints are unlimited.

- 1. Sketch the primary workspace of this robot.
- 2. Compute the direct kinematics $\boldsymbol{r} = (\boldsymbol{p}, \alpha) = \boldsymbol{f}(\boldsymbol{\beta})$ for the position $\boldsymbol{p} \in \mathbb{R}^2$ of point P and the orientation $\alpha \in \mathbb{R}$ of the end-effector frame w.r.t. the \boldsymbol{x}_0 axis.
- 3. Given a value of $\mathbf{r} \in \mathbb{R}^3$ solve the inverse kinematics problem in analytic form, taking into account the limited range of the prismatic joint.
- 4. Assign the frames for this robot according to the standard Denavit-Hartenberg (DH) convention and fill in the corresponding table of parameters. Denote by $\mathbf{q} = (q_1, q_2, q_3)$ the DH joint variables.
- 5. Compute the direct kinematics of r as a function of q, i.e., r = k(q). Find the transformation between the two sets of joint variables, in its direct form $q = t(\beta)$ and inverse form $\beta = t^{-1}(q)$, such that $r = f(\beta) = k(t(\beta))$ or, equivalently, $r = k(q) = f(t^{-1}(q))$.
- 6. Determine the singularities of the 3×3 Jacobian J(q) in $\dot{r} = J(q)\dot{q}$.
- 7. In a singular configuration \boldsymbol{q}_s , determine a basis for each of the following four subspaces of \mathbb{R}^3 : $\mathcal{R}(\boldsymbol{J}(\boldsymbol{q}_s)), \mathcal{N}(\boldsymbol{J}(\boldsymbol{q}_s)), \mathcal{R}(\boldsymbol{J}^T(\boldsymbol{q}_s))$, and $\mathcal{N}(\boldsymbol{J}^T(\boldsymbol{q}_s))$.
- 8. Let $L_2 = L_3 = L$. Plan a rest-to-rest trajectory in time T between $\mathbf{r}(0) = (L/2, L/2, \pi/2)$ and $\mathbf{r}(T) = (-L/2, -L/2, -\pi/2)(= -\mathbf{r}(0))$ without violating the joint limits. Is it possible to follow a linear Cartesian path in this case?

[180 minutes, open books]