
Robotics 1
June 12, 2023

Exercise 1

Consider the ABB CBR 15000 collaborative robot in Fig. 1, with six revolute joints. This robot has offsets
at the elbow and at the wrist. More geometric information is available in the accompanying extra sheet.

Figure 1: The ABB CBR 15000 collaborative robot.

Assign the frames according to the standard Denavit-Hartenberg (DH) convention and fill in the corre-
sponding table of parameters. The origin of the first DH frame is placed on the floor and that of the
last frame should coincide with the center of the final flange. The assignment has to be consistent with
the positive rotations of the joint variables, as specified by the manufacturer (see again the extra sheet).
Moreover, none of the linear DH parameters should be negative (specify also their actual numerical value).
Provide the values of the joint variables qi, i = 1, . . . , 6, in the configuration shown in the extra sheet.

Exercise 2

A unitary mass moves along a circular path centered at the origin of the (x, y) plane and having radius
R > 0. At the initial time t = 0, the mass is in A = (R, 0) while at the final time t = T it should be
in B = (−R, 0). The timing law is chosen as a cubic rest-to-rest profile. If the norm of the Cartesian
acceleration ‖p̈‖ is bounded by A > 0, what is the minimum feasible time T to execute the desired
trajectory? At which time instant(s) is the bound attained? Provide a closed-form solution to the problem
in symbolic form, and then evaluate it with the data R = 1.5 [m], A = 3 [m/s2]. Sketch the time profile of
the norm ‖p̈(t)‖ and of the components p̈x(t) and p̈y(t) of the obtained Cartesian acceleration p̈(t).
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Exercise 3

• For the 4R spatial robot in Fig. 2, compute the 6× 4 geometric Jacobian J(q) and find all its singular
configurations qs, i.e., where rank J(qs) < 4.

• Verify that q0 = 0 is NOT a singular configuration. With the robot at q0, show that one of the two
following six-dimensional end-effector velocities

Va =

(
va

ωa

)
=


0
3
−3
0
0
1

, V b =

(
vb

ωb

)
=


0
0
1
1
0
1


is admissible while the other is not, being v ∈ IR3 the velocity of point P = O4 and ω ∈ IR3 the angular
velocity of the DH reference frame RF4.

• For the admissible end-effector velocity, determine a joint velocity q̇0 ∈ IR4 that realizes it, i.e., such
that J(q0)q̇0 = V i, for either i = a or i = b.
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Figure 2: A 4R spatial robot, with DH frames and non-zero linear parameters shown.

[210 minutes, open books]
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Solution
June 12, 2023

Exercise 1

An assignment of DH frames for the ABB robot consistent with the positive joint rotations specified by
the manufacturer is shown in Fig. 3. The associated parameters are reported in Tab. 1. The numerical
values of the linear DH parameters, expressed in [mm], are taken from the side view of the robot (see the
extra sheet). The angular values of the joint variables correspond to the configuration shown in Fig. 3.
Figure 4 shows the same frame assignment drawn on the side view picture of the robot.1
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Figure 3: Assignment of DH frames for the ABB CBR 15000 robot.

i αi ai di θi

1 −π/2 0 d1 = 265 q1 = 0

2 0 a2 = 444 0 q2 = −π/2

3 −π/2 a3 = 110 0 q3 = 0

4 π/2 0 d4 = 470 q4 = 0

5 −π/2 a5 = 80 0 q5 = 0

6 0 0 d6 = 101 q6 = 0

Table 1: Table of DH parameters for the frame assignment in Fig. 3. Lengths are expressed in [mm].
The values of the joint variables (in blue) correspond to the configuration shown in Fig. 3.

1When compared to Fig. 3, this view is seen from the oppoite side of the robot: the axes z1, z2 and z4, which
are not shown, are entering the page.
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Figure 4: Another view of the DH frames assigned in Fig. 3.

Exercise 2

The given circular path from A to B in the plane (x, y) can be parametrized by

p = p(s) = R

(
cos s
sin s

)
, with s ∈ [0,∆], ∆ = π > 0.

The first and second spatial derivatives of p(s) are

p′ = R

(
− sin s
cos s

)
, p′′ = −R

(
cos s
sin s

)
.

Further, the rest-to-rest cubic timing law is

s = s(t) = ∆
(
3τ2 − 2τ3

)
, with t ∈ [0, T ], τ =

t

T
∈ [0, 1],

where the total motion time T is to be determined. The first and second time derivatives of s(t) are

ṡ =
6∆

T

(
τ − τ2

)
, s̈ =

6∆

T 2
(1− 2τ) .

Accordingly, the Cartesian velocity and acceleration of the unitary mass will be

ṗ = p′ṡ = R

(
− sin s
cos s

)
ṡ ,

p̈ =

(
p̈x
p̈y

)
= p′s̈+ p′′ṡ2 = R

(
− sin s
cos s

)
s̈−R

(
cos s
sin s

)
ṡ2 = R

(
cos s − sin s
sin s cos s

)(
−ṡ2
s̈

)
.

Therefore, the norm of the acceleration is computed as

‖p̈‖ =

√
p̈T p̈ = R

√
ṡ4 + s̈2 =

6R∆

T 2

√
36 ∆2 (τ(1− τ))4 + (1− 2τ)2 =

6R∆

T 2

√
α(τ). (1)

For given ∆ and R, this norm is only a function of the total motion time T , which has to be minimized
while satisfying the bound ‖p̈‖ ≤ A. Thus, we proceed with the analysis of the functional behavior of the
acceleration norm.

The maximum of the norm (1) occurs when the argument α(τ) of the square root has its maximum. This
occurs either at the boundaries of the closed interval [0, 1] of definition for τ or when the time derivative
of α(τ) vanishes. At the boundaries, we have

α(0) = α(1) = 1 ⇒ ‖p̈(t = 0)‖ = ‖p̈(t = T )‖ =
6R∆

T 2
=

6Rπ

T 2
.
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On the other hand, by zeroing the time derivative

dα

dτ
= 144 ∆2 (τ(1− τ))3 (1− 2τ)− 4(1− 2τ) =

(
144 ∆2τ3(1− τ)3 − 4

)
(1− 2τ) = 0, (2)

we see that a first root is at τ = 0.5 (i.e., t = T/2), in correspondence to which the norm takes the value

‖p̈(t = T/2)‖ =
6R∆

T 2
· 3∆

8
=

6Rπ

T 2
· 3π

8
>

6Rπ

T 2
.

Note that the acceleration norm at t = T/2 is larger than at the boundaries (t = 0 and t = T ) because the
path length to travel (as parametrized by the angle ∆ = π) is sufficiently long2. Next, when deleting the
factor (1− 2τ) 6= 0 from (2), any other root τ = τ∗ ∈ [0, 1] should satisfy

τ3(1− τ)3 =
1

36∆2
. (3)

However, by substituting (3) in the expression (1) of ‖p̈‖ and simplifying, it is easy to see that

‖p̈(τ = τ∗)‖ =
6R∆

T 2

√
τ∗(1− τ∗) + (1− 2τ∗)2 =

6R∆

T 2

√
3τ∗2 − 3τ∗ + 1 ≤ 6R∆

T 2
,

where the last inequality holds for any τ∗ ∈ [0, 1]. Thus, also in the stationary points of α(τ) at the
instants τ = τ∗, the acceleration norm is not larger than at τ = 0.5.

In summary, we have shown that, for the given ∆ = π, the maximum acceleration norm occurs at t = T/2
and its value is

max
t∈[0,T ]

‖p̈(t)‖ = ‖p̈(t = T/2)‖ =
9Rπ2

4T 2
.

Thus, the minimum feasible time T is found by equating the maximum acceleration norm to its bound A:

9Rπ2

4T 2
= A ⇒ T =

3π

2

√
R

A
.

Finally, substituting the numerical data R = 1.5 [m] and A = 3 [m/s2], we obtain T = 3.3322 [s].
Figures 5–6 show the time evolution of ‖p̈(t)‖ and of its Cartesian components p̈x(t) and p̈y(t) for the
obtained optimal solution.
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Figure 5: Norm of the optimal Cartesian acceleration p̈(t) for the given data.

2The crossover point is at ∆ = 8/3 ≈ 2.6666. For smaller values, the path would be too short for the peak
velocity ṡ at t = T/2 to become dominant and the maximum norm would then occur at the boundaries of the time
interval, where s̈ is maximum.
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Figure 6: Cartesian components p̈x(t) (in red) and p̈y(t) (in blue) of the optimal acceleration p̈(t).

Exercise 3

The 6× 4 geometric Jacobian of the 4R spatial robot in Fig. 2 is defined as

J(q) =

(
JL(q)

JA(q)

)
=

(
z0 × p04 z1 × p14 z2 × p24 z3 × p34

z0 z1 z2 z3

)
, (4)

where z0 =
(

0 0 1
)T

and the other elements are determined through the computation of the direct
kinematics of the robot. In alternative, the 3 × 4 linear (upper) block of the Jacobian in (4) can also be
computed, perhaps more directly, as

JL(q) =
∂p

∂q
, with p = p04(q), (5)

i.e., using only the positional part of the direct kinematics for the origin O4 of the DH frame RF4.

Table 2 reports the DH parameters associated to the frames shown in Fig. 2 for the 4R spatial robot.

i αi ai di θi

1 0 a1 d1 q1

2 π/2 0 d2 q2

3 0 a3 0 q3

4 0 a4 0 q4

Table 2: Table of DH parameters corresponding to the frames in Fig. 2.

From this, we compute (e.g., with the MATLAB code for the standard DH direct kinematics available in
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the course material)

0A1(q1) =

(
0R1(q1) 0p01(q1)

0T 1

)
=


c1 −s1 0 a1c1

s1 c1 0 a1s1

0 0 1 d1

0 0 0 1

 ,

1A2(q2) =

(
1R2(q2) 1p12

0T 1

)
=


c2 0 s2 0

s2 0 −c2 0

0 1 0 d2

0 0 0 1

 ,

2A3(q3) =

(
2R3(q3) 2p23(q3)

0T 1

)
=


c3 −s3 0 a3c3

s3 c3 0 a3s3

0 0 1 0

0 0 0 1

 ,

3A4(q4) =

(
3R4(q4) 3p34(q4)

0T 1

)
=


c4 −s4 0 a4c4

s4 c4 0 a4s4

0 0 1 0

0 0 0 1

 .

Based on these homogeneous transformation matrices, one obtains

p =

 a1c1 + c12 (a3c3 + a4c34)

a1s1 + s12 (a3c3 + a4c34)

d1 + d2 + a3s3 + a4s34

 (6)

and

z1 = 0R1(q1)z0 =

 0

0

1

 ,

z2 = 0R2(q1, q2)z0 = 0R1(q1)
(
1R2(q2)z0

)
=

 s12

−c12
0

 ,

z3 = 0R3(q1, q2, q3)z0 = 0R1(q1)
(
1R2(q2)

(
2R3(q3)z0

))
=

 s12

−c12
0

 .

(7)

By differentiation of the positional direct kinematics in (6), one has

JL(q) =

 −a1s1 − s12 (a3c3 + a4c34) −s12 (a3c3 + a4c34) −c12 (a3s3 + a4s34) −a4c12s34
a1c1 + c12 (a3c3 + a4c34) c12 (a3c3 + a4c34) −s12 (a3s3 + a4s34) −a4s12s34

0 0 a3c3 + a4c34 a4c34

 ,

while from the unit vectors in (7) it follows

JA(q) =

 0 0 s12 s12

0 0 −c12 −c12
1 1 0 0

 .

The obtained geometric Jacobian J(q) is expressed in frame RF0 (or, 0J(q)). Attempting to determine
the singularities of this matrix by computing symbolically the determinant of the 4× 4 matrix JT(q)J(q)
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and setting it to zero may be too cumbersome for a standard symbolic manipulation program (such as
MATLAB or Mathematica). On the other hand, because of the structure of the first two joints (having
parallel axes), for singularity analysis it is definitely more convenient to express the Jacobian in the rotated
frame RF2:

2J(q) = 0R̄
T
2 (q1, q2) 0J(q) =

(
0RT

2 (q1, q2) O

O 0RT
2 (q1, q2)

)(
0JL(q)
0JA(q)

)

=



a1s2 0 − (a3s3 + a4s34) −a4s34
0 0 a3c3 + a4c34 a4c34

− (a1c2 + a3c3 + a4c34) − (a3c3 + a4c34) 0 0

0 0 0 0

1 1 0 0

0 0 1 1


.

(8)

Further, a combination of the columns of 2J(q) in (8) simplifies even more the analysis:

2J̄(q) = 2J(q)T = 2J(q)


1 0 0 0

−1 1 0 0

0 0 1 0

0 0 −1 1

 =



a1s2 0 −a3s3 −a4s34
0 0 a3c3 a4c34

−a1c2 − (a3c3 + a4c34) 0 0

0 0 0 0

0 1 0 0

0 0 0 1


. (9)

Indeed, it is
rank 0J(q) = rank 2J(q) = rank 2J̄(q).

At this stage, we could evaluate det
(
2J̄

T
(q)2J̄(q)

)
= 0 and find its solutions. However, we pursue here an

alternative method which is even simpler. The rank of the 6×4 matrix in (9) will drop below 4 (singularity)
if and only if all its 4 × 4 minors will simultaneously vanish. Since the fourth row is zero, there are only
five minors that matter. Denote by 2J̄−{i,4} the 4 × 4 matrix obtained by deleting row 4 and row i 6= 4
from 2J̄ . We impose then the following equalities:

det 2J̄−{1,4} = −a1a3c2c3 = 0

det 2J̄−{2,4} = a1a3c2s3 = 0

det 2J̄−{3,4} = −a1a3s2c3 = 0

det 2J̄−{5,4} = a1a3s2c3 (a3c3 + a4c34) = 0

det 2J̄−{6,4} = −a1a3a4c2s4 = 0.

(10)

It is easy to see3 that the system of five nonlinear equations (10) has a solution if and only if

q2 = ± π

2
and q3 = ± π

2

(while q4 does not matter), which characterize then all the singularities of the geometric Jacobian.

3This result is obtained by simple inspection of the equations. It can also be found by using MATLAB, with the
two instructions:

eqn = [det(J 14) == 0; det(J 24) == 0; det(J 34) == 0; det(J 54) == 0; det(J 64) == 0];

q sing = solve(eqn, [q 2 q 3],′ Real′, true)

.
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For q0 = 0, the geometric Jacobian

J0 = J(q0) =



0 0 0 0

a1 + a3 + a4 a3 + a4 0 0

0 0 a3 + a4 a4

0 0 0 0

0 0 −1 −1

1 1 0 0


is clearly nonsingular (rank J0 = 4, for non-vanishing a1 and a3). From the structure of the matrix J0 it
follows that a component ωx 6= 0 can never be generated: thus, having ωb,x = 1, V b is not admissible in

this configuration,. On the other hand, V a =
(

0 3 −3 0 0 1
)T

is admissible since

rank
(
J0 V a

)
= rank J0 = 4 ⇒ V a ∈ R{J0}.

A joint velocity that realizes V a can be obtained by pseudoinversion of J0:

q̇0 = J#
0 V a =

(
JT

0 J0

)−1
JT

0 V a

=



0
1

a1
0 0 0 −a3 + a4

a1

0 − 1

a1
0 0 0

a1 + a3 + a4
a1

0 0
1

a3
0

a4
a3

0

0 0 − 1

a3
0 −a3 + a4

a3
0





0

3

−3

0

0

1


=



−a3 + a4 − 3

a1
a1 + a3 + a4 − 3

a1

− 3

a3
3

a3


.

It can be immediately check that J0q̇0 = V a. Moreover, being J0 full column rank, the joint velocity q̇0

is the unique solution.

Finally, note that one can also compute q̇b = J#
0 V b =

(
−a3+a4

a1

a1+a3+a4
a1

1
a3

− 1
a3

)T
, but this joint

velocity will not return the desired end-effector velocity, being ėb = V b−J0 q̇b =
(

0 0 0 1 0 0
)T

.
We immediately see that the velocity error is restricted to the inadmissible component ωx. Moreover,
thanks to the property of the pseudoinverse, q̇b is the approximate solution that minimizes the norm of
the task velocity error ėb among all possible joint velocities q̇ ∈ IR4.

∗ ∗ ∗ ∗ ∗
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