Robotics 1

March 24, 2023

Exercise 1

Consider the spatial 6-dof robot in Fig. 1.

Figure 1: A spatial 6-dof robot, with three prismatic joints followed by three revolute joints.

- Assign the frames according to the standard Denavit-Hartenberg (DH) convention and provide the corresponding table of parameters. The origin of the last DH frame should coincide with point P. Specify the signs of the linear DH parameters that are constant and non-zero, as well as the signs of the joint variables $q_{i}, i=1, \ldots, 6$, in the shown configuration.
- Determine the symbolic expression of all elements in the 6×6 geometric Jacobian $\boldsymbol{J}(\boldsymbol{q})$ of this robot and check that $\boldsymbol{q}_{0}=(1,1,1,-\pi / 2,-\pi / 2,-\pi / 2)$ is a nonsingular configuration.
- At \boldsymbol{q}_{0}, find the position of point P. Moreover, compute a joint velocity $\dot{\boldsymbol{q}} \in \mathbb{R}^{6}$ that produces the velocity ${ }^{0} \boldsymbol{v}=(0.5,2,-2)[\mathrm{m} / \mathrm{s}]$ of P, while the end-effector has an angular velocity ${ }^{0} \boldsymbol{\omega}=(0,3,0)[\mathrm{rad} / \mathrm{s}]$.

Exercise 2

Consider the planar 2P (Cartesian) robot in Fig. 2, where m_{1} and m_{2} are the masses of the two links in the serial chain. Each input force F_{i} is bounded in absolute value by $F_{i, \max }>0$, for $i=1,2$. Find the expression of the minimum feasible time T for a rest-to-rest robot motion from a start configuration \boldsymbol{q}_{s} to a goal configuration \boldsymbol{q}_{g}. Compute the numerical value of T with the following data: $m_{1}=5, m_{2}=2[\mathrm{~kg}]$; $F_{1, \text { max }}=10, F_{2, \text { max }}=5[\mathrm{~N}] ; \boldsymbol{q}_{s}=(0.3,-0.3), \boldsymbol{q}_{g}=(-0.3,0.3)[\mathrm{m}]$. Plot the evolutions of $F_{i}(t), \dot{q}_{i}(t)$, and $q_{i}(t)$, for $i=1,2$. In your solution, does the mass m_{2} trace a linear path during the time-optimal motion?

Figure 2: A planar Cartesian robot.

